MPI: A Message-Passing Interface Standard

Version 3.0 ticket0.

Message Passing Interface Forum

Draft June 17th, 2011

ticket266.
ticket266.

Contents

1 MPI Environmental Management

1.1 Implementation Information
1.1.1 Version Inquirieso
1.1.2 Environmental Inquiries00

Tag Values e
Host Rank
IORank o
Clock Synchronization L .

1.2 Memory Allocation

1.3 Error Handling
1.3.1 Error Handlers for Communicators
1.3.2 FError Handlers for Windows
1.3.3 Error Handlers for Files,
1.3.4 Freeing Errorhandlers and Retrieving Error Strings

1.4 Error Codes and Classes it

1.5 Error Classes, Error Codes, and Error Handlers

1.6 Timers and Synchronization oL

1.7 Startupo
1.7.1 Allowing User Functions at Process Termination
1.7.2 Determining Whether MPIl Has Finished

1.8 Portable MPI Process Startup

2 Tool Interfaces

2.1 Introduction L

2.2 Profiling Interface
2.2.1 Requirements
2.2.2 DiScussion oo
2.2.3 Logicofthe Design L.

Miscellaneous Control of Profiling
2.24 Profiler Implementation [|[Example
2.2.5 MPI Library Implementation [|[Example
Systems with Weak Symbols
Systems Without Weak Symbols
2.2.6 Complications
Multiple Counting
Linker Oddities
2.2.7 Multiple Levels of Interception

ii

CO O = W W N NN = -

O I T N R S e O W g e gt
TN O OO W = O

2.3 MPI_T Tool Information Interface

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6

2.3.7

2.3.8
2.3.9
2.3.10

Verbosity Levels Lo
Binding of MPI_T Variables to MPIl Objects
Convention for Returning Strings
Initialization and Finalization
Datatype System Lo
Control Variables o
Control Variable Query Functions
Example: Printing All Control Variables
Handle Allocation and Deallocation
Control Variable Access Functions
Example: Reading the Value of a Control Variable
Performance Variables
Performance Variable Classes
Performance Variable Query Functions
Performance Experiment Sessions
Handle Allocation and Deallocation
Starting and Stopping of Performance Variables
Performance Variable Access Functions
Example: Tool to Detect Receives with Long Unexpected Message

Queues
Variable Categorization
MPI_T Return Codes
Profiling Interface L

3 Language Bindings Summary
3.1 Defined Values and Handles

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6

Bibliography

Defined Constants L.
Types . . o e
Prototype [d]Definitions Lo L
Deprecated [p|Prototype [d|Definitions
Info Keys o
Info Values

Examples Index

MPI Constant and Predefined Handle Index

MPI Declarations Index

MPI Callback Function Prototype Index

MPI Function Index

iii

63
63
63
75
76
80
81
81

82

83

84

90

91

92

ticketO.
ticketO.
ticketO.

List of Figures

List of Tables

1.1
1.2

2.1
2.2
2.3
24
2.5

Error classes (Part 1) 14
Error classes (Part 2) 15
MPI_T verbosity levels. 37
Constants to identify associations of MPI_T variables. 38
MPI datatypes that can be used by the MPI_T interface. 40
Scopes for MPI_T control variables. 44
Return codes used MPI_T functions. 62

Unofficial Draft for Comment Only v

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

vi

Chapter 1

MPI Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various param-
eters that relate to the MPI implementation and the execution environment (such as error
handling). The procedures for entering and leaving the MPI execution environment are also
described here.

1.1 Implementation Information

1.1.1 Version Inquiries

In order to cope with changes to the MPI| Standard, there are both compile-time and run-
time ways to determine which version of the standard is in use in the environment one is
using.

The “version” will be represented by two separate integers, for the version and subver-
sion: In C and C++,

#define MPI_VERSION 2
#define MPI_SUBVERSION 2

in Fortran,

INTEGER MPI_VERSION, MPI_SUBVERSION
PARAMETER (MPI_VERSION = 2)
PARAMETER (MPI_SUBVERSION = 2)

For runtime determination,

MPI_GET_VERSION(version, subversion)
ouT version version number (integer)

ouT subversion subversion number (integer)

int MPI_Get_version(int *version, int *subversion)

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

Unofficial Draft for Comment Only 1

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

{void MPI::Get_version(int& version, int& subversion) (binding deprecated, see
Section 7?) }

MPI_GET_VERSION is one of the few functions that can be called before MPI_INIT and
after MPI_FINALIZE. Valid (MPI_VERSION, MPI_SUBVERSION) pairs in this and previous
versions of the MPI standard are (2,2), (2,1), (2,0), and (1,2).

1.1.2 Environmental Inquiries

A set of attributes that describe the execution environment are attached to the commu-
nicator MPI_COMM_WORLD when MPI is initialized. The value of these attributes can be
inquired by using the function MPI_COMM_GET_ATTR described in Chapter ?7. It is
erroneous to delete these attributes, free their keys, or change their values.

The list of predefined attribute keys include

MPI_TAG_UB Upper bound for tag value.
MPI_HOST Host process rank, if such exists, MPI_PROC_NULL, otherwise.

MPI_IO rank of a node that has regular I/O facilities (possibly myrank). Nodes in the same
communicator may return different values for this parameter.

MPI_WTIME_IS_GLOBAL Boolean variable that indicates whether clocks are synchronized.

Vendors may add implementation specific parameters (such as node number, real mem-
ory size, virtual memory size, etc.)

These predefined attributes do not change value between MPI initialization (MPI_INIT
and MPI completion (MPI_FINALIZE), and cannot be updated or deleted by users.

Advice to users. Note that in the C binding, the value returned by these attributes
is a pointer to an int containing the requested value. (End of advice to users.)

The required parameter values are discussed in more detail below:

Tag Values

Tag values range from 0 to the value returned for MPI_TAG_UB inclusive. These values are
guaranteed to be unchanging during the execution of an MPI program. In addition, the tag
upper bound value must be at least 32767. An MPI implementation is free to make the
value of MPI_TAG_UB larger than this; for example, the value 230 — 1 is also a legal value
for MPI_TAG_UB.

The attribute MPI_TAG_UB has the same value on all processes of MPI_COMM_WORLD.

Host Rank

The value returned for MPI_HOST gets the rank of the HOST process in the group associated
with communicator MPI_COMM_WORLD, if there is such. MPI_PROC_NULL is returned if
there is no host. MPI does not specify what it means for a process to be a HOST, nor does
it requires that a HOST exists.

The attribute MPI_HOST has the same value on all processes of MPI_COMM_WORLD.

Unofficial Draft for Comment Only

1.1. IMPLEMENTATION INFORMATION 3

10 Rank

The value returned for MPI_IO is the rank of a processor that can provide language-standard
I/0 facilities. For Fortran, this means that all of the Fortran I/O operations are supported
(e.g., OPEN, REWIND, WRITE). For C and C++, this means that all of the ISO C and C++,
I/0 operations are supported (e.g., fopen, fprintf, lseek).

If every process can provide language-standard I/0, then the value MPI_ANY_SOURCE
will be returned. Otherwise, if the calling process can provide language-standard 1/0,
then its rank will be returned. Otherwise, if some process can provide language-standard
I/O then the rank of one such process will be returned. The same value need not be
returned by all processes. If no process can provide language-standard I/O, then the value
MPI_PROC_NULL will be returned.

Advice to users. Note that input is not collective, and this attribute does not indicate
which process can or does provide input. (End of advice to users.)

Clock Synchronization

The value returned for MPI_WTIME_IS_GLOBAL is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise. A collection of clocks is considered
synchronized if explicit effort has been taken to synchronize them. The expectation is that
the variation in time, as measured by calls to MPI_WTIME, will be less then one half the
round-trip time for an MPI message of length zero. If time is measured at a process just
before a send and at another process just after a matching receive, the second time should
be always higher than the first one.

The attribute MPI_WTIME_IS_GLOBAL need not be present when the clocks are not
synchronized (however, the attribute key MPI_WTIME_IS_GLOBAL is always valid). This
attribute may be associated with communicators other then MPI_COMM_WORLD.

The attribute MPI_WTIME_IS_GLOBAL has the same value on all processes of
MPI_COMM_WORLD.

MPI_GET_PROCESSOR_NAME(name, resultlen)

ouT name A unique specifier for the actual (as opposed to vir-
tual) node.

ouT resultlen Length (in printable characters) of the result returned
in name

int MPI_Get_processor_name(char *name, int *resultlen)

MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)
CHARACTER* (*) NAME
INTEGER RESULTLEN, IERROR

{void MPI::Get_processor_name(char* name, int& resultlen) (binding deprecated,
see Section 77) }

This routine returns the name of the processor on which it was called at the moment
of the call. The name is a character string for maximum flexibility. From this value it
must be possible to identify a specific piece of hardware; possible values include “processor

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

9 in rack 4 of mpp.cs.org” and “231” (where 231 is the actual processor number in the
running homogeneous system). The argument name must represent storage that is at least
MPI_MAX_PROCESSOR_NAME characters long. MPI_GET_PROCESSOR_NAME may write
up to this many characters into name.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at name[resultlen]. The resultlen cannot be larger
then MPI_MAX_PROCESSOR_NAME-1. In Fortran, name is padded on the right with blank
characters. The resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME.

Rationale. This function allows MPI implementations that do process migration to
return the current processor. Note that nothing in MPI requires or defines process
migration; this definition of MPI_GET_PROCESSOR_NAME simply allows such an
implementation. (End of rationale.)

Advice to users. The user must provide at least MPI_MAX_PROCESSOR_NAME space
to write the processor name — processor names can be this long. The user should
examine the output argument, resultlen, to determine the actual length of the name.
(End of advice to users.)

The constant MPI_BSEND_OVERHEAD provides an upper bound on the fixed overhead
per message buffered by a call to MPI_BSEND (see Section ?7).

1.2 Memory Allocation

In some systems, message-passing and remote-memory-access (RMA) operations run faster
when accessing specially allocated memory (e.g., memory that is shared by the other pro-
cesses in the communicating group on an SMP). MPI provides a mechanism for allocating
and freeing such special memory. The use of such memory for message-passing or RMA is
not mandatory, and this memory can be used without restrictions as any other dynamically
allocated memory. However, implementations may restrict the use of the MPI_WIN_LOCK
and MPI_WIN_UNLOCK functions to windows allocated in such memory (see Section 77?.)

MPI_ALLOC_MEM(size, info, baseptr)

IN size size of memory segment in bytes (non-negative inte-
ger)

IN info info argument (handle)

ouT baseptr pointer to beginning of memory segment allocated

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void #*baseptr)

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
INTEGER INFO, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

{voidx MPI::Alloc_mem(MPI::Aint size, const MPI::Info& info) (binding
deprecated, see Section 77) }

Unofficial Draft for Comment Only

1.2. MEMORY ALLOCATION)

The info argument can be used to provide directives that control the desired location
of the allocated memory. Such a directive does not affect the semantics of the call. Valid
info values are implementation-dependent; a null directive value of info = MPI_INFO_NULL
is always valid.

The function MPI_ALLOC_MEM may return an error code of class MPI_ERR_NO_MEM
to indicate it failed because memory is exhausted.

MP|_FREE_MEM(base)

IN base initial address of memory segment allocated by
MPI_ALLOC_MEM (choice)

int MPI_Free_mem(void *base)

MPI_FREE_MEM(BASE, IERROR)
<type> BASE(*)
INTEGER IERROR

{void MPI::Free_mem(void xbase) (binding deprecated, see Section ?77) }

The function MPI_FREE_MEM may return an error code of class MPI_ERR_BASE to
indicate an invalid base argument.

Rationale. The C and C++ bindings of MPI_ALLOC_MEM and MPI_FREE_MEM
are similar to the bindings for the malloc and free C library calls: a call to
MPI_Alloc_mem(..., &base) should be paired with a call to MPI_Free_mem(base) (one
less level of indirection). Both arguments are declared to be of same type void* so
as to facilitate type casting. The Fortran binding is consistent with the C and C++
bindings: the Fortran MPI_ALLOC_MEM call returns in baseptr the (integer valued)
address of the allocated memory. The base argument of MPI_FREE_MEM is a choice
argument, which passes (a reference to) the variable stored at that location. (End of
rationale.)

Advice to implementors. If MPI_ALLOC_MEM allocates special memory, then a
design similar to the design of C malloc and free functions has to be used, in order
to find out the size of a memory segment, when the segment is freed. If no special
memory is used, MPI_ALLOC_MEM simply invokes malloc, and MPI_FREE_MEM

invokes free.

A call to MPI_ALLOC_MEM can be used in shared memory systems to allocate mem-
ory in a shared memory segment. (End of advice to implementors.)

Example 1.1
Example of use of MPI_ALLOC_MEM, in Fortran with pointer support. We assume
4-byte REALs, and assume that pointers are address-sized.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

REAL A

POINTER (P, A(100,100)) ! no memory is allocated
CALL MPI_ALLOC_MEM(4%100%*100, MPI_INFO_NULL, P, IERR)
! memory is allocated

A(3,5) = 2.71;

CALL MPI_FREE_MEM(A, IERR) ! memory is freed

Since standard Fortran does not support (C-like) pointers, this code is not Fortran 77
or Fortran 90 code. Some compilers (in particular, at the time of writing, g77 and Fortran
compilers for Intel) do not support this code.

Example 1.2 Same example, in C

float (x £)[100][100] ;

/* no memory is allocated */

MPI_Alloc_mem(sizeof (float)*100%100, MPI_INFO_NULL, &f);
/* memory allocated */

(x£) [6]1[3] = 2.71;

MPI_Free_mem(f);

1.3 Error Handling

An MPI implementation cannot or may choose not to handle some errors that occur during
MPI calls. These can include errors that generate exceptions or traps, such as floating point
errors or access violations. The set of errors that are handled by MPI is implementation-
dependent. Each such error generates an MPI exception.

The above text takes precedence over any text on error handling within this document.
Specifically, text that states that errors will be handled should be read as may be handled.

A user can associate error handlers to three types of objects: communicators, windows,
and files. The specified error handling routine will be used for any MPI exception that occurs
during a call to MPI for the respective object. MPI calls that are not related to any objects
are considered to be attached to the communicator MPI_COMM_WORLD. The attachment
of error handlers to objects is purely local: different processes may attach different error
handlers to corresponding objects.

Several predefined error handlers are available in MPI:

MPI_ERRORS_ARE_FATAL The handler, when called, causes the program to abort on all
executing processes. This has the same effect as if MPI_ABORT was called by the
process that invoked the handler.

MPI_ERRORS_RETURN The handler has no effect other than returning the error code to
the user.

Implementations may provide additional predefined error handlers and programmers
can code their own error handlers.

Unofficial Draft for Comment Only

1.3. ERROR HANDLING 7

The error handler MPI_ERRORS_ARE_FATAL is associated by default with MPI_COMM- !

_WORLD after initialization. Thus, if the user chooses not to control error handling, every 2
error that MPI handles is treated as fatal. Since (almost) all MPI calls return an error code, 8
a user may choose to handle errors in its main code, by testing the return code of MPI calls 4
and executing a suitable recovery code when the call was not successful. In this case, the 5
error handler MPI_ERRORS_RETURN will be used. Usually it is more convenient and more 6
efficient not to test for errors after each MPI call, and have such error handled by a non 7
trivial MPI error handler. 8

After an error is detected, the state of MPI is undefined. That is, using a user-defined 9
error handler, or MPI_ERRORS_RETURN, does not necessarily allow the user to continue to 10
use MPI after an error is detected. The purpose of these error handlers is to allow a user to 1
issue user-defined error messages and to take actions unrelated to MPI (such as flushing I/O 12
buffers) before a program exits. An MPI implementation is free to allow MPI to continue 13
after an error but is not required to do so. 14

15

Advice to implementors. A good quality implementation will, to the greatest possible 16

extent, circumscribe the impact of an error, so that normal processing can continue 17
after an error handler was invoked. The implementation documentation will provide 18
information on the possible effect of each class of errors. (End of advice to implemen- 19
tors.) 20

21

An MPI error handler is an opaque object, which is accessed by a handle. MPI calls are 22
provided to create new error handlers, to associate error handlers with objects, and to test 23
which error handler is associated with an object. C and C++ have distinct typedefs for 24
user defined error handling callback functions that accept communicator, file, and window 25

arguments. In Fortran there are three user routines. 26
An error handler object is created by a call to MPI_XXX_CREATE_ERRHANDLER(function, 27
errhandler), where XXX is, respectively, COMM, WIN, or FILE. 28
An error handler is attached to a communicator, window, or file by a call to 29

MPI_XXX_SET_ERRHANDLER. The error handler must be either a predefined error han- 30
dler, or an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER, 31
with matching XXX. The predefined error handlers MPI_ERRORS_RETURN and 32
MPI_ERRORS_ARE_FATAL can be attached to communicators, windows, and files. In C++, 33
the predefined error handler MPI::ERRORS_THROW_EXCEPTIONS can also be attached to 34

communicators, windows, and files. 35
The error handler currently associated with a communicator, window, or file can be 36
retrieved by a call to MPI_XXX_GET_ERRHANDLER. 37
The MPI function MPI_ERRHANDLER_FREE can be used to free an error handler that 38
was created by a call to MPI_XXX_CREATE_ERRHANDLER. 39

MPI_{COMM,WIN,FILE} _GET_ERRHANDLER behave as if a new error handler object 40
is created. That is, once the error handler is no longer needed, MPI_ERRHANDLER_FREE a1

should be called with the error handler returned from MPI_ERRHANDLER_GET or 42
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark the error handler for deallocation. 43
This provides behavior similar to that of MPI_COMM_GROUP and MPI_GROUP_FREE. 44

45
Advice to implementors. High-quality implementation should raise an error when 46
an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER is a7
attached to an object of the wrong type with a call to MPI_YYY_SET_ERRHANDLER. 48

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

To do so, it is necessary to maintain, with each error handler, information on the
typedef of the associated user function. (End of advice to implementors.)

The syntax for these calls is given below.

1.3.1 Error Handlers for Communicators

MPI_COMM_CREATE_ERRHANDLER(function, errhandler)
IN function user defined error handling procedure (function)

ouT errhandler MPI error handler (handle)

int MPI_Comm_create_errhandler (MPI_Comm_errhandler_function *function,
MPI_Errhandler *errhandler)

MPI_COMM_CREATE_ERRHANDLER (FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

{static MPI::Errhandler
MPI::Comm: :Create_errhandler (MPI: :Comm: :Errhandler_function*
function) (binding deprecated, see Section ?77) }

Creates an error handler that can be attached to communicators. This function is
identical to MPI_ERRHANDLER_CREATE, whose use is deprecated.

The user routine should be, in C, a function of type MPI_Comm_errhandler_function, which
is defined as
typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

The first argument is the communicator in use. The second is the error code to be
returned by the MPI routine that raised the error. If the routine would have returned
MPI_ERR_IN_STATUS, it is the error code returned in the status for the request that caused
the error handler to be invoked. The remaining arguments are “stdargs” arguments whose
number and meaning is implementation-dependent. An implementation should clearly doc-
ument these arguments. Addresses are used so that the handler may be written in Fortran.
This typedef replaces MPI_Handler_function, whose use is deprecated.

In Fortran, the user routine should be of the form:

SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)

INTEGER COMM, ERROR_CODE

In C++4, the user routine should be of the form:
{typedef void MPI::Comm::Errhandler_function(MPI::Comm &, int *, ...);
(binding deprecated, see Section 77)}

Rationale. The variable argument list is provided because it provides an ISO-
standard hook for providing additional information to the error handler; without this
hook, ISO C prohibits additional arguments. (End of rationale.)

Unofficial Draft for Comment Only

1.3. ERROR HANDLING 9

Advice to users. A newly created communicator inherits the error handler that
is associated with the “parent” communicator. In particular, the user can specify
a “global” error handler for all communicators by associating this handler with the
communicator MPI_COMM_WORLD immediately after initialization. (End of advice to
users.)

MPI_COMM_SET_ERRHANDLER(comm, errhandler)
INOUT comm communicator (handle)

IN errhandler new error handler for communicator (handle)

int MPI_Comm_set_errhandler (MPI_Comm comm, MPI_Errhandler errhandler)

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

{void MPI::Comm::Set_errhandler(const MPI::Errhandler& errhandler) (binding
deprecated, see Section 77) }

Attaches a new error handler to a communicator. The error handler must be either
a predefined error handler, or an error handler created by a call to
MPI_COMM_CREATE_ERRHANDLER. This call is identical to MPI_ERRHANDLER_SET,
whose use is deprecated.

MPI_COMM_GET_ERRHANDLER(comm, errhandler)

IN comm communicator (handle)
ouT errhandler error handler currently associated with communicator
(handle)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

{MPI::Errhandler MPI::Comm::Get_errhandler () const(binding deprecated, see
Section 77) }

Retrieves the error handler currently associated with a communicator. This call is
identical to MPI_ERRHANDLER_GET, whose use is deprecated.

Example: A library function may register at its entry point the current error handler
for a communicator, set its own private error handler for this communicator, and restore
before exiting the previous error handler.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

1.3.2 Error Handlers for Windows

MPI_WIN_CREATE_ERRHANDLER(function, errhandler)
IN function user defined error handling procedure (function)

ouT errhandler MPI error handler (handle)

int MPI_Win_create_errhandler(MPI_Win_errhandler_function *function,
MPI_Errhandler *errhandler)

MPI_WIN_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

{static MPI::Errhandler
MPI: :Win: :Create_errhandler(MPI: :Win: :Errhandler_function*
function) (binding deprecated, see Section 77) }

Creates an error handler that can be attached to a window object. The user routine
should be, in C, a function of type MPI_Win_errhandler_function which is defined as
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);

The first argument is the window in use, the second is the error code to be returned.
In Fortran, the user routine should be of the form:

SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
INTEGER WIN, ERROR_CODE

In C++, the user routine should be of the form:
{typedef void MPI::Win::Errhandler_function(MPI::Win &, int *, ...);
(binding deprecated, see Section 7?)}

MPI_WIN_SET_ERRHANDLER(win, errhandler)
INOUT win window (handle)

IN errhandler new error handler for window (handle)

int MPI_Win_set_errhandler (MPI_Win win, MPI_Errhandler errhandler)

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

{void MPI::Win::Set_errhandler(const MPI::Errhandler& errhandler) (binding
deprecated, see Section ?77) }

Attaches a new error handler to a window. The error handler must be either a pre-
defined error handler, or an error handler created by a call to
MPI_WIN_CREATE_ERRHANDLER.

Unofficial Draft for Comment Only

1.3. ERROR HANDLING 11

MPI_WIN_GET_ERRHANDLER(win, errhandler)

IN win window (handle)
ouT errhandler error handler currently associated with window (han-
dle)

int MPI_Win_get_errhandler (MPI_Win win, MPI_Errhandler *errhandler)

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

{MPI::Errhandler MPI::Win::Get_errhandler() const(binding deprecated, see
Section 77) }

Retrieves the error handler currently associated with a window.

1.3.3 Error Handlers for Files

MPI_FILE_CREATE_ERRHANDLER(function, errhandler)
IN function user defined error handling procedure (function)

ouT errhandler MPI error handler (handle)

int MPI_File_create_errhandler(MPI_File_errhandler_function *function,
MPI_Errhandler *errhandler)

MPI_FILE_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

{static MPI::Errhandler
MPI::File: :Create_errhandler (MPI::File: :Errhandler_function*
function) (binding deprecated, see Section ??7) }

Creates an error handler that can be attached to a file object. The user routine should
be, in C, a function of type MPI_File_errhandler_function, which is defined as
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

The first argument is the file in use, the second is the error code to be returned.
In Fortran, the user routine should be of the form:

SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
INTEGER FILE, ERROR_CODE

In C++, the user routine should be of the form:
{typedef void MPI::File::Errhandler_function(MPI::File &, int *, ...);
(binding deprecated, see Section 77)}

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

MPI_FILE_SET_ERRHANDLER(file, errhandler)
INOUT file file (handle)

IN errhandler new error handler for file (handle)

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

{void MPI::File::Set_errhandler(const MPI::Errhandler& errhandler) (binding
deprecated, see Section 77) }

Attaches a new error handler to a file. The error handler must be either a predefined
error handler, or an error handler created by a call to MPI_FILE_CREATE_ERRHANDLER.

MPI_FILE_GET_ERRHANDLER(file, errhandler)
IN file file (handle)

ouT errhandler error handler currently associated with file (handle)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

{MPI::Errhandler MPI::File::Get_errhandler () const(binding deprecated, see
Section 77) }

Retrieves the error handler currently associated with a file.

1.3.4 Freeing Errorhandlers and Retrieving Error Strings

MPI_ERRHANDLER_FREE(errhandler)
INOUT errhandler MPI error handler (handle)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

MPI_ERRHANDLER_FREE (ERRHANDLER, IERROR)
INTEGER ERRHANDLER, IERROR

{void MPI::Errhandler::Free() (binding deprecated, see Section ?7) }

Marks the error handler associated with errhandler for deallocation and sets errhandler
to MPI_ERRHANDLER_NULL. The error handler will be deallocated after all the objects
associated with it (communicator, window, or file) have been deallocated.

Unofficial Draft for Comment Only

1.4. ERROR CODES AND CLASSES 13

MPI_ERROR_STRING(errorcode, string, resultlen)

IN errorcode Error code returned by an MPI routine

ouT string Text that corresponds to the errorcode

ouT resultlen Length (in printable characters) of the result returned
in string

int MPI_Error_string(int errorcode, char *string, int *resultlen)

MPI_ERROR_STRING (ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER* (*) STRING

{void MPI::Get_error_string(int errorcode, char* name,
int& resultlen) (binding deprecated, see Section 77) }

Returns the error string associated with an error code or class. The argument string
must represent storage that is at least MPI_MAX_ERROR_STRING characters long.
The number of characters actually written is returned in the output argument, resultlen.

Rationale. The form of this function was chosen to make the Fortran and C bindings
similar. A version that returns a pointer to a string has two difficulties. First, the
return string must be statically allocated and different for each error message (allowing
the pointers returned by successive calls to MPI_ERROR_STRING to point to the correct
message). Second, in Fortran, a function declared as returning CHARACTER*(*) can
not be referenced in, for example, a PRINT statement. (End of rationale.)

1.4 Error Codes and Classes

The error codes returned by MPI are left entirely to the implementation (with the exception
of MPI_SUCCESS). This is done to allow an implementation to provide as much information
as possible in the error code (for use with MPI_ERROR_STRING).

To make it possible for an application to interpret an error code, the routine
MPI_ERROR_CLASS converts any error code into one of a small set of standard error codes,
called error classes. Valid error classes are shown in Table 1.1 and Table 1.2.

The error classes are a subset of the error codes: an MPI function may return an
error class number; and the function MPI_ERROR_STRING can be used to compute the
error string associated with an error class. An MPI error class is a valid MPI error code.
Specifically, the values defined for MPI error classes are valid MPI error codes.

The error codes satisfy,

0 = MPI_SUCCESS < MPI_ERR_... < MPI_ERR_LASTCODE.

Rationale. The difference between MPI_ERR_UNKNOWN and MPI_ERR_OTHER is that
MPI_ERROR_STRING can return useful information about MPI_ERR_OTHER.

Note that MPI_SUCCESS = 0 is necessary to be consistent with C practice; the sepa-
ration of error classes and error codes allows us to define the error classes this way.
Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

MPI_SUCCESS
MPI_ERR_BUFFER
MPI_ERR_COUNT
MPI_ERR_TYPE
MPI_ERR_TAG
MPI_ERR_COMM
MPI_ERR_RANK
MPI_ERR_REQUEST
MPI_ERR_ROOT
MPI_ERR_GROUP
MPI_ERR_OP
MPI_ERR_TOPOLOGY
MPI_ERR_DIMS
MPI_ERR_ARG
MPI_ERR_UNKNOWN
MPI_ERR_TRUNCATE
MPI_ERR_OTHER
MPI_ERR_INTERN
MPI_ERR_IN_STATUS
MPI_ERR_PENDING
MPI_ERR_KEYVAL
MPI_ERR_NO_MEM

MPI_ERR_BASE
MPI_ERR_INFO_KEY
MPI_ERR_INFO_VALUE

MPI_ERR_INFO_NOKEY

MPI_ERR_SPAWN
MPI_ERR_PORT

MPI_ERR_SERVICE

MPI_ERR_NAME

MPI_ERR_WIN
MPI_ERR_SIZE
MPI_ERR_DISP
MPI_ERR_INFO
MPI_ERR_LOCKTYPE
MPI_ERR_ASSERT

MPI_ERR_RMA_CONFLICT

MPI_ERR_RMA_SYNC

No error
Invalid buffer pointer
Invalid count argument
Invalid datatype argument
Invalid tag argument
Invalid communicator
Invalid rank
Invalid request (handle)
Invalid root
Invalid group
Invalid operation
Invalid topology
Invalid dimension argument
Invalid argument of some other kind
Unknown error
Message truncated on receive
Known error not in this list
Internal MPI (implementation) error
Error code is in status
Pending request

Invalid keyval has been passed
MPI_ALLOC_MEM failed because memory
is exhausted

Invalid base passed to MPI_FREE_MEM
Key longer than MPI_MAX_INFO_KEY
Value longer than MPI_MAX_INFO_VAL
Invalid key passed to MPI_INFO_DELETE
Error in spawning processes

Invalid port name passed to
MPI_COMM_CONNECT

Invalid service name passed to
MPI_UNPUBLISH_NAME

Invalid service name passed to
MPI_LOOKUP_NAME
Invalid win argument
Invalid size argument
Invalid disp argument

Invalid info argument
Invalid locktype argument
Invalid assert argument

Conflicting accesses to window
Wrong synchronization of RMA calls

Table 1.1: Error classes (Part 1)

Unofficial Draft for Comment Only

1.4. ERROR CODES AND CLASSES

MPI_ERR_FILE
MPI_ERR_NOT_SAME

MPI_ERR_AMODE

MPI_ERR_UNSUPPORTED_DATAREP

MPI_ERR_UNSUPPORTED_OPERATION

MPI_ERR_NO_SUCH_FILE
MPI_ERR_FILE_EXISTS
MPI_ERR_BAD_FILE
MPI_ERR_ACCESS
MPI_ERR_NO_SPACE
MPI_ERR_QUOTA
MPI_ERR_READ_ONLY
MPI_ERR_FILE_IN_USE

MPI_ERR_DUP_DATAREP

MPI_ERR_CONVERSION

MPI_ERR_IO
MPI_ERR_LASTCODE

Invalid file handle

Collective argument not identical on all
processes, or collective routines called in
a different order by different processes
Error related to the amode passed to
MPI_FILE_OPEN

Unsupported datarep passed to
MPI_FILE_SET _VIEW

Unsupported operation, such as seeking on
a file which supports sequential access only
File does not exist

File exists

Invalid file name (e.g., path name too long)
Permission denied

Not enough space

Quota exceeded

Read-only file or file system

File operation could not be completed, as
the file is currently open by some process
Conversion functions could not be regis-
tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

An error occurred in a user supplied data
conversion function.

Other 1/0O error

Last error code

Table 1.2: Error classes (Part 2)

MPI_ERROR_CLASS(errorcode, errorclass)

IN errorcode

ouT errorclass

Error code returned by an MPI routine

Error class associated with errorcode

int MPI_Error_class(int errorcode, int *errorclass)

MPI_ERROR_CLASS (ERRORCODE, ERRORCLASS, IERROR)

INTEGER ERRORCODE, ERRORCLASS,

TERROR

{int MPI::Get_error_class(int errorcode) (binding deprecated, see Section ??7) }

15

The function MPI_ERROR_CLASS maps each standard error code (error class) onto

itself.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

1.5 Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPIl implementation, and
this library may have its own set of error codes and classes. An example of such a library
is an I/O library based on MPI, see Chapter ?? on page ??. For this purpose, functions are
needed to:

1. add a new error class to the ones an MPI implementation already knows.
2. associate error codes with this error class, so that MPI_ERROR_CLASS works.
3. associate strings with these error codes, so that MPI_ERROR_STRING works.

4. invoke the error handler associated with a communicator, window, or object.

Several functions are provided to do this. They are all local. No functions are provided
to free error classes or codes: it is not expected that an application will generate them in
significant numbers.

MPI_ADD_ERROR_CLASS(errorclass)

ouT errorclass value for the new error class (integer)

int MPI_Add_error_class(int *errorclass)

MPI_ADD_ERROR_CLASS (ERRORCLASS, IERROR)
INTEGER ERRORCLASS, IERROR

{int MPI::Add_error_class() (binding deprecated, see Section ?77) }

Creates a new error class and returns the value for it.

Rationale. To avoid conflicts with existing error codes and classes, the value is set
by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorclass in the same deterministic way on all processes. (End of advice to
implementors.)

Advice to users. Since a call to MPI_ADD_ERROR_CLASS is local, the same errorclass
may not be returned on all processes that make this call. Thus, it is not safe to assume
that registering a new error on a set of processes at the same time will yield the same
errorclass on all of the processes. However, if an implementation returns the new
errorclass in a deterministic way, and they are always generated in the same order on
the same set of processes (for example, all processes), then the value will be the same.
However, even if a deterministic algorithm is used, the value can vary across processes.
This can happen, for example, if different but overlapping groups of processes make
a series of calls. As a result of these issues, getting the “same” error on multiple
processes may not cause the same value of error code to be generated. (End of advice
to users.)

Unofficial Draft for Comment Only

1.5.

ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 17

The value of MPI_ERR_LASTCODE is a constant value and is not affected by new user-

defined error codes and classes. Instead, a predefined attribute key MPI_LASTUSEDCODE is
associated with MPI_COMM_WORLD. The attribute value corresponding to this key is the
current maximum error class including the user-defined ones. This is a local value and may
be different on different processes. The value returned by this key is always greater than or
equal to MPI_ERR_LASTCODE.

Advice to users. The value returned by the key MPI_LASTUSEDCODE will not change
unless the user calls a function to explicitly add an error class/code. In a multi-
threaded environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI_LASTUSEDCODE is valid. (End of
advice to users.)

MPI_ADD_ERROR_CODE(errorclass, errorcode)

IN errorclass error class (integer)
ouT errorcode new error code to associated with errorclass (integer)
int MPI_Add_error_code(int errorclass, int *errorcode)

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

{int MPI::Add_error_code(int errorclass) (binding deprecated, see Section 77) }

Creates new error code associated with errorclass and returns its value in errorcode.

Rationale. To avoid conflicts with existing error codes and classes, the value of the
new error code is set by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorcode in the same deterministic way on all processes. (End of advice to
implementors.)

MPI_ADD_ERROR_STRING(errorcode, string)

IN
IN

int

errorcode error code or class (integer)

string text corresponding to errorcode (string)

MPI_Add_error_string(int errorcode, char *string)

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)

INTEGER ERRORCODE, IERROR
CHARACTER* (*) STRING

{void MPI::Add_error_string(int errorcode, const char* string) (binding

deprecated, see Section ?77) }

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

20

21

22

23

24

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

Associates an error string with an error code or class. The string must be no more
than MPI_MAX_ERROR_STRING characters long. The length of the string is as defined in
the calling language. The length of the string does not include the null terminator in C
or C++. Trailing blanks will be stripped in Fortran. Calling MPI_ADD_ERROR_STRING
for an errorcode that already has a string will replace the old string with the new string.
It is erroneous to call MPI_ADD_ERROR_STRING for an error code or class with a value
< MPI_ERR_LASTCODE.

If MPI_ERROR_STRING is called when no string has been set, it will return a empty
string (all spaces in Fortran, "" in C and C++).

Section 1.3 on page 6 describes the methods for creating and associating error handlers
with communicators, files, and windows.

MPI_COMM_CALL_ERRHANDLER (comm, errorcode)

IN comm communicator with error handler (handle)

IN errorcode error code (integer)

int MPI_Comm_call_errhandler (MPI_Comm comm, int errorcode)

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

{void MPI::Comm::Call_errhandler(int errorcode) const(binding deprecated, see
Section 77) }

This function invokes the error handler assigned to the communicator with the error
code supplied. This function returns MPI_SUCCESS in C and C++ and the same value in
IERROR if the error handler was successfully called (assuming the process is not aborted
and the error handler returns).

Advice to users. Users should note that the default error handler is
MPI_ERRORS_ARE_FATAL. Thus, calling MPI_COMM_CALL_ERRHANDLER will abort
the comm processes if the default error handler has not been changed for this com-
municator or on the parent before the communicator was created. (End of advice to
users.)

MPI_WIN_CALL_ERRHANDLER (win, errorcode)

IN win window with error handler (handle)

IN errorcode error code (integer)

int MPI_Win_call_errhandler (MPI_Win win, int errorcode)

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)
INTEGER WIN, ERRORCODE, IERROR

{void MPI::Win::Call_errhandler(int errorcode) const (binding deprecated, see
Section 7?) }

Unofficial Draft for Comment Only

1.6. TIMERS AND SYNCHRONIZATION 19

This function invokes the error handler assigned to the window with the error code
supplied. This function returns MPI_SUCCESS in C and C++ and the same value in IERROR
if the error handler was successfully called (assuming the process is not aborted and the
error handler returns).

Advice to users. As with communicators, the default error handler for windows is
MPI_ERRORS_ARE_FATAL. (End of advice to users.)

MPI_FILE_CALL_ERRHANDLER (fh, errorcode)
IN fh file with error handler (handle)

IN errorcode error code (integer)

int MPI_File_call_errhandler (MPI_File fh, int errorcode)

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
INTEGER FH, ERRORCODE, IERROR

{void MPI::File::Call_errhandler(int errorcode) const (binding deprecated, see
Section 77) }

This function invokes the error handler assigned to the file with the error code supplied.
This function returns MPI_SUCCESS in C and C++ and the same value in IERROR if the
error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. Unlike errors on communicators and windows, the default behavior
for files is to have MPI_ERRORS_RETURN. (End of advice to users.)

Advice to users. Users are warned that handlers should not be called recursively
with MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER, or
MPI_WIN_CALL_ERRHANDLER. Doing this can create a situation where an infinite
recursion is created. This can occur if MPI_COMM_CALL_ERRHANDLER,
MPI_FILE_CALL_ERRHANDLER, or MPI_WIN_CALL_ERRHANDLER is called inside

an error handler.

Error codes and classes are associated with a process. As a result, they may be used
in any error handler. Error handlers should be prepared to deal with any error code
they are given. Furthermore, it is good practice to only call an error handler with the
appropriate error codes. For example, file errors would normally be sent to the file
error handler. (End of advice to users.)

1.6 Timers and Synchronization

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing
timers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-
venient or do not provide adequate access to high-resolution timers. See also Section 77 on
page ?77.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

MPI_WTIME()

double MPI_Wtime(void)
DOUBLE PRECISION MPI_WTIME(Q)
{double MPI::Wtime() (binding deprecated, see Section 7?) }

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.

This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

{
double starttime, endtime;
starttime = MPI_Wtime();
stuff to be timed
endtime = MPI_Wtime();
printf ("That took %f seconds\n",endtime-starttime);
}

The times returned are local to the node that called them. There is no requirement
that different nodes return “the same time.” (But see also the discussion of
MPI_WTIME_IS_GLOBAL).

MPI_WTICK()

double MPI_Wtick(void)
DOUBLE PRECISION MPI_WTICK()
{double MPI::Wtick() (binding deprecated, see Section ?7) }

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI_WTICK should be 1073.

1.7 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program writ-
ten using MPI and complying with the relevant language standards is portable as written,
and must not require any source code changes when moved from one system to another.
This explicitly does not say anything about how an MPI program is started or launched from
the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed

Unofficial Draft for Comment Only

1.7. STARTUP 21

before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_INIT(IERROR)
INTEGER IERROR

{void MPI::Init(int& argc, char*x& argv) (binding deprecated, see Section ?7) }
{void MPI::Init() (binding deprecated, see Section ?77) }

All MPI programs must contain exactly one call to an MPI initialization routine:
MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization routines are erro-
neous. The only MPI functions that may be invoked before the MPI initialization routines
are called are MPI_GET_VERSION, MPI_INITIALIZED, [and|] MPI_FINALIZED[], and any
function with the prefix MPI_T. The version for ISO C accepts the argc and argv that are
provided by the arguments to main or NULL:

int main(int argc, char **argv)

{
MPI_Init(&argc, &argv);
/* parse arguments */
/* main program x/
MPI_Finalize(); /* see below */
}

The Fortran version takes only IERROR.

Conforming implementations of MPI are required to allow applications to pass NULL
for both the argc and argv arguments of main in C and C++. In C++, there is an alternative
binding for MPI::Init that does not have these arguments at all.

Rationale. In some applications, libraries may be making the call to

MPI_Init, and may not have access to argc and argv from main. It is anticipated
that applications requiring special information about the environment or information
supplied by mpiexec can get that information from environment variables. (End of
rationale.)

MPI_FINALIZE()

int MPI_Finalize(void)

MPI_FINALIZE(IERROR)
INTEGER IERROR

{void MPI::Finalize() (binding deprecated, see Section 77) }

Unofficial Draft for Comment Only

10
11
12
13
14
15
16
17 ticket266.
1g ticket266.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

This routine cleans up all MPI state. Each process must call MPI_FINALIZE before
it exits. Unless there has been a call to MPI_ABORT, each process must ensure that all
pending nonblocking communications are (locally) complete before calling MPI_FINALIZE.
Further, at the instant at which the last process calls MPI_FINALIZE, all pending sends
must be matched by a receive, and all pending receives must be matched by a send.

For example, the following program is correct:

Process O Process 1
MPI_Init(); MPI_Init();
MPI_Send(dest=1); MPI_Recv(src=0);
MPI_Finalize(); MPI_Finalize();

Without the matching receive, the program is erroneous:

Process 0 Process 1
MPI_Init(); MPI_Init(Q);
MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();

A successful return from a blocking communication operation or from MPI_WAIT or
MPI_TEST tells the user that the buffer can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI_REQUEST_FREE with a request handle generated by
an MPI_ISEND nullifies the handle but provides no assurance of operation completion. The
MPI_ISEND is complete only when it is known by some means that a matching receive has
completed. MPI_FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI_FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI_WAIT, MPI_TEST, or MPI_REQUEST _FREE
combined with some other verification of completion).

Example 1.3 This program is correct:

rank O rank 1
MPI_Isend(); MPI_Recv();
MPI_Request_free(); MPI_Barrier();
MPI_Barrier(); MPI_Finalize();
MPI_Finalize(); exit();

exit();

Example 1.4 This program is erroneous and its behavior is undefined:

Unofficial Draft for Comment Only

1.7. STARTUP 23

rank O rank 1
MPI_Isend(); MPI_Recv();
MPI_Request_free(); MPI_Finalize();
MPI_Finalize(); exit();

exit();

If no MPI_BUFFER_DETACH occurs between an MPI_BSEND (or other buffered send)
and MPI_FINALIZE, the MPI_FINALIZE implicitly supplies the MPI_BUFFER_DETACH.

Example 1.5 This program is correct, and after the MPI_Finalize, it is as if the buffer
had been detached.

rank O rank 1

buffer = malloc(1000000) ; MPI_Recv();
MPI_Buffer_attach(); MPI_Finalize();
MPI_Bsend(); exit O ;
MPI_Finalize();

free(buffer);

exit();

Example 1.6 In this example, MPI_lprobe() must return a FALSE flag.
MPI_Test_cancelled() must return a TRUE flag, independent of the relative order of execu-
tion of MPI_Cancel() in process 0 and MPI_Finalize() in process 1.

The MPI_Iprobe() call is there to make sure the implementation knows that the “tagl”
message exists at the destination, without being able to claim that the user knows about
it.

rank O rank 1

MPI_Init(); MPI_Init();

MPI_Isend(tagl);

MPI_Barrier(); MPI_Barrier();
MPI_Iprobe(tag2);

MPI_Barrier(); MPI_Barrier();
MPI_Finalize();
exit();

MPI_Cancel();
MPI_Wait();
MPI_Test_cancelled();
MPI_Finalize();
exit();

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE until all potential future message cancellations have been processed.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ticket266.
ticket266.

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

24 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

One possible solution is to place a barrier inside MPI_FINALIZE (End of advice to
implementors.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called, ex-
cept for MPI_GET_VERSION, MPI_INITIALIZED, [and] MPI_FINALIZED]|, and any function
with the prefix MPI_T. Each process must complete any pending communication it initiated
before it calls MPI_FINALIZE. If the call returns, each process may continue local compu-
tations, or exit, without participating in further MPI communication with other processes.
MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective
over the union of all processes that have been and continue to be connected, as explained
in Section 77 on page 77.

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still buffered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPIl communication before MPI_FINALIZE
returns. Thus, if a process exits after the call to MPI_FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)

Although it is not required that all processes return from MPI_FINALIZE, it is required
that at least process 0 in MPI_COMM_WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI_FINALIZE.

Example 1.7 The following illustrates the use of requiring that at least one process return
and that it be known that process 0 is one of the processes that return. One wants code
like the following to work no matter how many processes return.

MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;

MPI_Finalize();

if (myrank == 0) {
resultfile = fopen("outfile","w");
dump_results(resultfile);
fclose(resultfile);

}
exit (0);

MPI_INITIALIZED(flag)

ouT flag Flag is true if MPI_INIT has been called and false
otherwise.

int MPI_Initialized(int *flag)

Unofficial Draft for Comment Only

1.7. STARTUP 25

MPI_INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

{bool MPI::Is_initialized() (binding deprecated, see Section ??7) }

This routine may be used to determine whether MPI_INIT has been called.
MPI_INITIALIZED returns true if the calling process has called MPI_INIT. Whether
MPI_FINALIZE has been called does not affect the behavior of MPI_INITIALIZED. It is one
of the few routines that may be called before MPI_INIT is called.

MPI_ABORT(comm, errorcode)

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_ABORT (COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

{void MPI::Comm::Abort(int errorcode) (binding deprecated, see Section ??7) }

This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error
code. However, a Unix or POSIX environment should handle this as a return errorcode
from the main program.

It may not be possible for an MPI implementation to abort only the processes repre-
sented by comm if this is a subset of the processes. In this case, the MP| implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted or connected then this has the effect of
aborting all the processes associated with MPI_COMM_WORLD.

Rationale. The communicator argument is provided to allow for future extensions of
MPI to environments with, for example, dynamic process management. In particular,
it allows but does not require an MP| implementation to abort a subset of
MPI_COMM_WORLD. (End of rationale.)

Advice to users. Whether the errorcode is returned from the executable or from the
MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI
library but not mandatory. (End of advice to users.)

Advice to implementors. ~ Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or
singleton init). (End of advice to implementors.)

1.7.1 Allowing User Functions at Process Termination

There are times in which it would be convenient to have actions happen when an MPI process
finishes. For example, a routine may do initializations that are useful until the MPI job (or

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

that part of the job that being terminated in the case of dynamically created processes) is
finished. This can be accomplished in MPI by attaching an attribute to MPI_COMM_SELF
with a callback function. When MPI_FINALIZE is called, it will first execute the equivalent
of an MPI_COMM_FREE on MPI_COMM_SELF. This will cause the delete callback function
to be executed on all keys associated with MPI_COMM_SELF, in the reverse order that
they were set on MPI_COMM_SELF. If no key has been attached to MPI_COMM_SELF, then
no callback is invoked. The “freeing” of MPI_COMM_SELF occurs before any other parts
of MPI are affected. Thus, for example, calling MPI_FINALIZED will return false in any
of these callback functions. Once done with MPI_COMM_SELF, the order and rest of the
actions taken by MPI_FINALIZE is not specified.

Advice to implementors. Since attributes can be added from any supported language,
the MPI implementation needs to remember the creating language so the correct
callback is made. Implementations that use the attribute delete callback on
MPI_COMM_SELF internally should register their internal callbacks before returning
from MPI_INIT / MPI_INIT_THREAD, so that libraries or applications will not have
portions of the MPI implementation shut down before the application-level callbacks
are made. (End of advice to implementors.)

1.7.2 Determining Whether MPI Has Finished

One of the goals of MPI was to allow for layered libraries. In order for a library to do
this cleanly, it needs to know if MPI is active. In MPI the function MPI_INITIALIZED was
provided to tell if MPI had been initialized. The problem arises in knowing if MPI has been
finalized. Once MPI has been finalized it is no longer active and cannot be restarted. A
library needs to be able to determine this to act accordingly. To achieve this the following
function is needed:

MPI_FINALIZED(flag)
ouT flag true if MPI was finalized (logical)

int MPI_Finalized(int *flag)

MPI_FINALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

{bool MPI::Is_finalized() (binding deprecated, see Section 77) }

This routine returns true if MPI_FINALIZE has completed. It is legal to call
MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE.

Adwvice to users. MPIis “active” and it is thus safe to call MPI functions if MPI_INIT
has completed and MPI_FINALIZE has not completed. If a library has no other
way of knowing whether MPI is active or not, then it can use MPI_INITIALIZED and
MPI_FINALIZED to determine this. For example, MPl is “active” in callback functions
that are invoked during MPI_FINALIZE. (End of advice to users.)

Unofficial Draft for Comment Only

1.8. PORTABLE MPI PROCESS STARTUP 27

1.8 Portable MPI Process Startup

A number of implementations of MPI provide a startup command for MPI programs that
is of the form

mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides flexibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability of MPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard starup mechanism. In order that the “standard” command not be confused with
existing practice, which is not standard and not portable among implementations, instead
of mpirun MPI specifies mpiexec.

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI specifies an mpiexec startup command
and recommends but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below.

It is suggested that

mpiexec -n <numprocs> <program>

be at least one way to start <program> with an initial MPI_COMM_WORLD whose group
contains <numprocs> processes. Other arguments to mpiexec may be implementation-
dependent.

Advice to implementors. Implementors, if they do provide a special startup command
for MPI programs, are advised to give it the following form. The syntax is chosen in
order that mpiexec be able to be viewed as a command-line version of
MPI_COMM_SPAWN (See Section ?77).

Analogous to MPI_COMM_SPAWN, we have

mpiexec -n <maxprocs>
-soft < >
-host < >
-arch < >
-wdir < >
-path < >
-file < >

<command line>

for the case where a single command line for the application program and its argu-
ments will suffice. See Section ?? for the meanings of these arguments. For the case
corresponding to MPI_COMM_SPAWN_MULTIPLE there are two possible formats:

Form A:

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28

CHAPTER 1. MPI ENVIRONMENTAL MANAGEMENT

mpiexec { <above arguments> } : { ... } : { ...} : ...+ { ...}

As with MPI_COMM_SPAWN, all the arguments are optional. (Even the -n x argu-
ment is optional; the default is implementation dependent. It might be 1, it might be
taken from an environment variable, or it might be specified at compile time.) The
names and meanings of the arguments are taken from the keys in the info argument
to MPI_COMM_SPAWN. There may be other, implementation-dependent arguments
as well.

Note that Form A, though convenient to type, prevents colons from being program
arguments. Therefore an alternate, file-based form is allowed:

Form B:
mpiexec -configfile <filename>

where the lines of <filename>> are of the form separated by the colons in Form A.
Lines beginning with ‘#’ are comments, and lines may be continued by terminating
the partial line with ‘\’.

Example 1.8 Start 16 instances of myprog on the current or default machine:

mpiexec -n 16 myprog

Example 1.9 Start 10 processes on the machine called ferrari:

mpiexec -n 10 -host ferrari myprog

Example 1.10 Start three copies of the same program with different command-line
arguments:

mpiexec myprog infilel : myprog infile2 : myprog infile3
Example 1.11 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s:

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

It is assumed that the implementation in this case has a method for choosing hosts of
the appropriate type. Their ranks are in the order specified.

Example 1.12 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s (Form B):

mpiexec -configfile myfile
where myfile contains

-n 5 -arch sun ocean
-n 10 -arch rs6000 atmos

(End of advice to implementors.)

Unofficial Draft for Comment Only

1.8. PORTABLE MPI PROCESS STARTUP

Unofficial Draft for Comment Only

29

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

fleket368:

ticket266.

ticket266.

ticket266.
ticket266.

ticket266.

ticketO.

ticketO.
ticketO.

ticket0. *

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

Chapter 2

Tool Interfaces

2.1 Introduction

[| This chapter discusses a set of interfaces that allows debuggers, performance analyzers,
and other tools to extract information about the operation of MPI processes. Specifically,
this chapter defines both the PMPI profiling interface (Section 2.2) for transparently inter-
cepting and inspecting any profilable MPI call, and the MPI_T tool information interface
(Section 2.3) for querying MPI control and performance variables. The interfaces described
in this chapter are all defined in the context of an MPI process, i.e., are callable from the
same code that invokes other MPI functions.

2.2 Profiling Interface

[WAS: Chapter |

2.2.1 Requirements

[WAS: Section |
To meet [the|the requirements for the MPI profiling interface, an implementation of the
MPI functions must

1. provide a mechanism through which all of the MPI defined [functions|functions, except
those allowed as macros (See Section ?7[)]), may be accessed with a name shift. This
requires, in C and Fortran, an alternate entry point name, with the prefix PMPI_ for
each MPI function. The profiling interface in C++ is described in Section ??. For
routines implemented as macros, it is still required that the PMPI_ version be supplied
and work as expected, but it is not possible to replace at link time the MPI_ version
with a user-defined version.

2. ensure that those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether she
must implement the profile interface for each binding, or can [economise|economize
by implementing it only for the lowest level routines.

Unofficial Draft for Comment Only 30

2.2. PROFILING INTERFACE 31

4. where the implementation of different language bindings is done through a layered
approach ([e.g.|e.g., the Fortran binding is a set of “wrapper” functions that call the
C implementation), ensure that these wrapper functions are separable from the rest
of the library.

This separability is necessary to allow a separate profiling library to be correctly
implemented, since (at least with Unix linker semantics) the profiling library must
contain these wrapper functions if it is to perform as expected. This requirement
allows the person who builds the profiling library to extract these functions from the
original MPI library and add them into the profiling library without bringing along
any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

2.2.2 Discussion

| WAS: Section |

The objective of the MPI profiling interface is to ensure that it is relatively easy for
authors of profiling (and other similar) tools to interface their codes to MPI implementations
on different machines.

Since MPI is a machine independent standard with many different implementations,
it is unreasonable to expect that the authors of profiling tools for MPI will have access to
the source code that implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this chapter is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to
meet the requirements on a Unix system (there are doubtless others that would be equally
valid).

2.2.3 Logic of the Design
[WAS: Section |

Unofficial Draft for Comment Only

2 ticketO.

10
11
12

13 ticket266.

14

" ticket266.
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

44

ticket266.
45
46

" ticket266.

48

ticket266.

ticket266.

ticketO.

ticketO.

oo

10

11

12

13

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

44

45

32 CHAPTER 2. TOOL INTERFACES

Provided that an MPI implementation meets the requirements above, it is possible for
the implementor of the profiling system to intercept all of the MPI calls that are made by
the user program. She can then collect whatever information she requires before calling
the underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

Miscellaneous Control of Profiling

[WAS: Subsection |
There is a clear requirement for the user code to be able to control the profiler dynam-
ically at run time. This is normally used for (at least) the purposes of

e Enabling and disabling profiling depending on the state of the calculation.
e Flushing trace buffers at non-critical points in the [calculation]calculation.
e Adding user events to a trace file.

These requirements are met by use of the MPI_PCONTROL.

MPI_PCONTROL(level, ...)
IN level Profiling level

int MPI_Pcontrol(const int level, ...)

MPI_PCONTROL (LEVEL)
INTEGER LEVEL

{void MPI::Pcontrol(const int level, ...)(binding deprecated, see Section ?77) }

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

e level==0 Profiling is disabled.
e level==1 Profiling is enabled at a normal default level of detail.

e level==2 Profile buffers are [flushed. (This may be a no-op in some profilers).|flushed,
which may be a no-op in some profilers.

e All other values of 1evel have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e. as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and obtain profile
output without having to modify their source code at all.

Unofficial Draft for Comment Only

ticketO.

2.2. PROFILING INTERFACE 33

The provision of MPI_PCONTROL as a no-op in the standard MPI library [allows them
to modify their source code to obtain|supports the collection of more detailed profiling
information|, but still be able to link exactly the|]with source [same code]code that can still
link against the standard MPI library.

[WAS: Subsection Examples]

2.2.4 Profiler Implementation [|[Example

[Suppose that the profiler wishes to]A profiler can accumulate the total amount of data
sent by the [MPI_SEND|MPI_SEND function, along with the total elapsed time spent in
the [function. This could trivially be achieved thus|function, as follows:

static int totalBytes = O;
static double totalTime = 0.0;

int MPI_Send(void* buffer, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{
double tstart = MPI_Wtime(); /* Pass on all the arguments */
int extent;
int result = PMPI_Send(buffer,count,datatype,dest,tag,comm) ;
MPI_Type_size(datatype, &extent); /* Compute size */
totalBytes += count*extent;
totalTime += MPI_Wtime() - tstart; /* and time */
return result;

}

2.2.5 MPI Library Implementation [|[Example

[On a Unix system, in which the MPI library is implemented in C, then]If the MPT library
is implemented in C on a Unix system, then there [there are various possible options, of
which two of the most obvious|are various options, including the two presented here, for
supporting [are presented here. Which is better depends on whether the linker and]the
name-shift requirement. The choice between these two options [compiler support weak
symbols.]depends partly on whether the linker and compiler support weak symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols ([e.g.]e.g., Solaris 2.x, other system
V.4 machines), then only a single library is required through the use of #pragma weak thus

#pragma weak MPI_Example = PMPI_Example
int PMPI_Example(/* appropriate args */)

{
/* Useful content */

Unofficial Draft for Comment Only

1

2

3 ticketO.
4 ticketO.
5 ticket266.

6

" ticket266.
8 ticketO.

9
10 ticketO.
11 ticketO.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

zi’ ticket266.
ticket0.
2

3
33 ticketO.
34
35 ticketO.
36 ticketO.
37
38

39

40
ticketO.
41

42
43
44
45
46
47

48

ticketO-new.

ticketO.

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

34 CHAPTER 2. TOOL INTERFACES

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library), however if no other definition exists, then the
linker will use the weak definition.

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
pre-processor thus

#ifdef PROFILELIB
ifdef __STDC__

define FUNCTION(name) P##name

#

#

else
define FUNCTION(name) P/**/name
endif

define FUNCTION(name) name

#endif

Each of the user visible functions in the library would then be declared thus

int FUNCTION(MPI_Example) (/* appropriate args */)
{
/* Useful content */

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here 1libmyprof .a contains the profiler functions that intercept some of the MPI func-
tions|.|, libpmpi.a contains the “name shifted” MPI functions, and 1ibmpi.a contains the
normal definitions of the MPI functions.

2.2.6 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions ([e.g.]e.g., a portable implementation of the collective operations implemented using
point to point communications), there is potential for profiling functions to be called from
within an MPI function that was called from a profiling function. This could lead to “double

Unofficial Draft for Comment Only

ticketO.

2.2. PROFILING INTERFACE 35

counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances ([e.g.]e.g., it might allow one to answer the question “How much
time is spent in the point to point routines when they’re called from collective functions
?7), we have decided not to enforce any restrictions on the author of the MPI library that
would overcome this. Therefore the author of the profiling library should be aware of this
problem, and guard against it herself. In a single threaded world this is easily achieved
through use of a static variable in the profiling code that remembers if you are already
inside a profiling routine. It becomes more complex in a multi-threaded environment (as
does the meaning of the times recorded| !])[].

Linker Oddities

The Unix linker traditionally operates in one [pass :|pass: the effect of this is that functions
from libraries are only included in the image if they are needed at the time the library is
scanned. When combined with weak symbols, or multiple definitions of the same function,
this can cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be ared out of the
base library and into the profiling one.

2.2.7 Multiple Levels of Interception

| WAS: Section | The scheme given here does not directly support the nesting of profiling
functions, since it provides only a single alternative name for each MPI function. Consider-
ation was given to an implementation that would allow multiple levels of call interception,
however we were unable to construct an implementation of this that did not have the fol-
lowing disadvantages

e assuming a particular implementation language|.|,
e imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

[Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function.]

Unofficial Draft for Comment Only

9 ticketO.
10 ticketO.

11

12

13 ticketO.
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 ticket266.
31

32

45 ticket266.
34

35

36

37

38

39 ticketO.
40

41

42

43

* ticket206.
45

46

" ticket206.
48

ticket266.
ticket266.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 2. TOOL INTERFACES

[Unfortunately such an implementation may require more cooperation between the
different profiling libraries than is required for the single level implementation detailed
above.|Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function. This capability has been demonstrated in the
PYMPI tool infrastructure [1].

[]

2.3 MPI_T Tool Information Interface

To optimize MPI applications or their runtime behavior, it is often advantageous to un-
derstand the performance setting an MPI implementation exposes to the user as well as to
monitor properties and timing information within the MPI implementation. The MPI_T
interface described in this section provides a mechanism for MPI implementors to expose
a set of variables, each of which represent a particular property, setting, or performance
measurement from within the MPI implementation. The interface is split into two parts:
the first part provides information about control variables used by the MPIl implementation
to fine tune its configuration. The second part provides access to performance variables
that can provide insight into internal performance information of the underlying MPI im-
plementation.

The interface is split into two parts: the first part provides information about control
variables used by the MPI implementation to fine tune its configuration. The second part
provides access to performance variables that can provide insight into internal performance
information of the underlying MPI implementation.

To avoid restrictions on the MPI implementation, the MPI_T interface allows the im-
plementation to specify which control and performance variables exist. Additionally, the
MPI_T interface can obtain metadata about each available variable, such as its datatype
and size, a textual description, etc. The MPI_T interface provides the necessary routines
to find all variables that exist in a particular MPIl implementation, query their properties,
retrieve descriptions about their meaning, access and, if appropriate, alter their values.

All identifiers covered by this interface carry the prefix MPI_T and can be used indepen-
dently from the MPI functionality. This includes initialization and finalization of MPI_T,
which is provided through a separate set of routines. Consequently, MPI_T routines can be
called before MPI_INIT (or equivalent) and after MPI_FINALIZE.

On success, all MPI_T routines return MPI_SUCCESS, otherwise they return an appro-
priate return code indicating the reason why the call was not successfully completed. Details
on return codes can be found in Section 2.3.9. However, unsuccessful calls to the MPI_T
interface are not fatal and do not have any impact on the execution of MPI routines.

Since the MPI_T interface mostly focuses on tools and support libraries, MPI imple-
mentations are only required to provide C bindings for MPI_T functions. Except where
otherwise noted, all conventions and principles governing the C bindings of the MPI API
also apply to the MPI_T interface. The MPI_T interface is available by including the mpi.h
header file.

Advice to users. The number and type of control variables and performance variables
can vary between MPI implementations, platforms, and even different builds of the
same implementation on the same platform. Hence, any application relying on a
particular variable will not be portable.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 37

This interface is primarily intended for performance monitoring tools, support tools,
and libraries controlling the application’s environment. Application programmers
should either avoid using the MPI_T interface or avoid being dependent on the exis-
tence of a particular control or performance variable. (End of advice to users.)

2.3.1 Verbosity Levels

The MPI_T interface provides users access to internal configuration and performance in-
formation through a set of control and performance variables defined by the MPI imple-
mentation. Since some implementations may export a large number of variables, variables
are classified by a verbosity level that categorizes both their intended audience (end users,
performance tuners or MPI implementors) and a relative measure of level of detail (basic,
detailed or all.) Table 2.1 lists the constants that are available to describe verbosity levels.

MPI_T_VERBOSITY_USER_BASIC Basic information of interest for end users
MPI_T_VERBOSITY_USER_DETAIL Detailed information of interest for end users
MPI_T_VERBOSITY_USER_ALL All information of interest for end users

MPI_T_VERBOSITY_TUNER_BASIC Basic information required for tuning
MPI_T_VERBOSITY_TUNER_DETAIL | Detailed information required for tuning
MPI_T_VERBOSITY_TUNER_ALL All information required for tuning

MPI_T_VERBOSITY_MPIDEV_BASIC | Basic low-level information for MPI implementors

MPI_T_VERBOSITY_MPIDEV_DETAIL | Detailed low-level information for MPI implementors

MPI_T_VERBOSITY_MPIDEV_ALL All low-level information for MPI implementors

Table 2.1: MPI_T verbosity levels.

Advice to implementors. If an MPI implementation chooses to use only a single ver-
bosity level for all variables, it is recommended that MPI_T_VERBOSITY_USER_BASIC
is used. If an MPI implementation only uses a single level of detail value for all vari-
ables in each target audience, it is recommended that all variables be assigned to the
respective BASIC level. (End of advice to implementors.)

2.3.2 Binding of MPI_T Variables to MPI Objects

Fach MPI_T variable provides access to a particular control setting or performance property
provided by the MPI implementation. A variable may refer to a specific MPI object such as
a communicator, datatype, or one-sided communication window, or the variable may refer
more generally to the MPI environment of the process. In the first case, the variable must
be bound to exactly one MPI object before it can be used. Table 2.2 lists all MPI object
types to which an MPI_T variable can be bound, together with matching constant that are
used by MPI_T routines to identify the object type.

Rationale. Some variables have meanings tied to a specific MPI object. Examples
include the number of send or receive operations using a particular datatype, the
number of times a particular error handler has been called, or the communication
protocol and “eager limit” used for a particular communicator. Creating a new MPI_T
variable for each MPI object could cause the number of variables to grow without

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 2. TOOL INTERFACES

Constant MPI object

MPI_T_BIND_NO_OBJECT N/A; applies globally to entire MPI process
MPI_T_BIND_MPI_COMMUNICATOR | MPI communicators
MPI_T_BIND_MPI_DATATYPE MPI datatypes
MPI_T_BIND_MPI_ERRORHANDLER | MPI error handlers

MPI_T_BIND_MPI_FILE MPI file handles

MPI_T_BIND_MPI_GROUP MPI groups

MPI_T_BIND_MPI_OPERATOR MPI reduction operators
MPI_T_BIND_MPI_REQUEST MPI requests

MPI_T_BIND_MPI_WINDOW MPI windows for one-sided communication
MPI_T_BIND_MPI_MESSAGE MPI message object
MPI_T_BIND_MPI_INFO MPI info object

Table 2.2: Constants to identify associations of MPI_T variables.

bound since they cannot be reused to avoid naming conflicts. By associating MPI_T
variables with a specific MPI object, only a single variable must be specified and
maintained by the MPI implementation, which can then be reused on as many MPI
objects of the respective type as created during the program’s execution. (End of
rationale.)

2.3.3 Convention for Returning Strings

Several MPI_T functions return one or more strings. These functions have two arguments
for each string to be returned: an OUT parameter that identifies a pointer to the buffer
in which the string will be returned, and an IN/OUT parameter to pass the length of the
buffer. The user is responsible for the memory allocation of the buffer and must pass the
size of the buffer (n) as the length argument. Let n be the length value specified to the
function. On return, the function writes at most n — 1 of the string’s characters into the
buffer, followed by a null terminator. If the returned string’s length is greater than or equal
to mn, the string will be truncated to n — 1 characters. In this case, the length of the string
plus one (for the terminating null character) is returned in the length argument. If the
user passes the null pointer as the buffer argument or passes 0 as the length argument, the
function does not return the string and only returns the length of the string plus one in
the length argument. If the user passes the null pointer as the length argument, the buffer
argument is ignored and nothing is returned.

MPI_T does not specify the character encoding of strings in the interface. The only
requirement is that strings are terminated with a null character.

2.3.4 Initialization and Finalization

Since the MPI_T interface is implemented in a separate name space and is independent of
the core MPI functions, it requires a separate set of initialization and finalization routines.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 39

MPI_T_INIT_THREAD(required, provided)
IN required desired level of thread support (integer)
ouT provided provided level of thread support (integer)

int MPI_T_Init_thread(int required, int *provided)

All programs or tools that use the MPI_T interface must initialize the MPI_T interface
before calling any other MPI_T routine. A user can initialize the MPI_T interface by
calling MPI_T_INIT_THREAD, which can be called multiple times. In addition, this routine
initializes the thread environment. The argument required is used to specify the desired level
of thread support. The possible values and their semantics are identical to the ones that
can be used with MPI_INIT_THREAD listed in Section ?7. The call returns in provided
information about the actual level of thread support that will be provided by the MPI
implementation for calls to MPI_T routines. It can be one of the four values listed in
Section 77.

Advice to users. The MPI specification does not require all MPI processes to exist
before the call to MPI_INIT. If MPI_T is used before MPI_INIT has been called,
MPI_T_INIT_THREAD must be called on each process that exists. Processes created
by the MPI implementation during MPI_INIT inherit the status of MPI_T (whether
it is initialized or not as well as all active handles) from the process they are created
from. (End of advice to users.)

Advice to implementors. If MPI_T_INIT_THREAD is called before
MPI_INIT_THREAD, it is possible that the requested and granted thread level for
MPI_T_INIT_THREAD influences the behavior and return value of
MPI_INIT_THREAD. The same is true for the reverse order. (End of advice to imple-
mentors.)

MPI_T_FINALIZE()

int MPI_T_Finalize(void)

This routine finalizes the use of the MPI_T interface and may be called as often as the
corresponding MPI_T_INIT_THREAD routine up to the current point of execution. Calling
it more times is erroneous. As long as the number of calls to MPI_T_FINALIZE is smaller
than the number of calls to MPI_T_INIT_THREAD up to the current point of execution, the
MPI_T interface remains initialized and calls to all MPI_T routines are permissible. Further,
additional calls to MPI_T_INIT_THREAD after one or more calls to MPI_T_FINALIZE are
permissible.

Once MPI_T_FINALIZE is called the same number of times as the routine
MPI_T_INIT_THREAD up to the current point of execution, the MPI_T interface is no
longer initialized. Further, the call to MPI_T_FINALIZE that ends the initialization of
MPI_T may clean up all MPI_T state, invalidate all open sessions (see Section 2.3.7), and
all handles that have been allocated by MPI_T. MPI_T can be reinitialized by subsequent
calls to MPI_T_INIT_THREAD.

At the end of the program execution, unless MPI_ABORT is called, an application must
have called MPI_T_INIT_THREAD and MPI_T_FINALIZE an equal number of times.

Unofficial Draft for Comment Only

© o] ~ [} wt -~ w [N =

= R = e
w (] - (=}

—
IS

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 2. TOOL INTERFACES

2.3.5 Datatype System

All variables managed through the MPI_T interface represent their values through typed
buffers of a given length and typed using an MPI datatype (similar to regular send /receive
buffers). Since the initialization of MPI_T is separate from the initialization of MPI, MPI_T
routines can be called before MPI_INIT and can also use MPI datatypes before MPI_INIT.
Therefore, within the context of MPI_T, it is permissible to use a subset of MPI datatypes as
specified below before a call to MPI_INIT (or equivalent), but only while the MPI_T system
is initialized (i.e., after at least one call to MPI_T_INIT_THREAD without a corresponding
call to MPI_T_FINALIZE).

Allowed MPI Datatype

MPI_INT

MPI_LONG_LONG

MPI_COUNT [ticketcount.][|If the COUNT ticket is passed
MPI_CHAR

MPI_DOUBLE

Table 2.3: MPI datatypes that can be used by the MPI_T interface.

The MPI_T interface only relies on a subset of the basic MPI datatypes and does not
use any derived MPI datatypes. Table 2.3 lists all MPI datatypes that can be returned by
the MPI_T interface to represent MPI_T variables.

Rationale. The MPI_T interface requires a significantly simpler type system than
MPI itself. Therefore, only the subset required by MPI_T is required to be present
before MPI_Init (or equivalent). This avoids the need for MPI implementations to
initialize the complete MPI datatype system. (End of rationale.)

For variables of type MPI_INT, an MPI implementation can provide additional infor-
mation in the form of a name and names for individual values represented by this in-
teger variable. We refer to this in the following as an enumeration. In this case, the
respective calls providing additional metadata for each control or performance variable, i.e.,
MPI_T_CVAR_GET_INFO (Section 2.3.6) and MPI_T_PVAR_GET_INFO (Section 2.3.7), re-
turn a handle of type MPI_T_Enum that can be passed to the following functions to extract
this additional information.

This allows the MPI implementation to describe variables with a fixed set of values
that each represents a particular state, similar to a C style enumeration. The values range
from 0 to N — 1, with a fixed N that can be queried using MPI_T_ENUM_GET _INFO.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 41

MPI_T_ENUM_GET_INFO(enumtype, num, name, name_len)
IN enumtype MPI_T enumeration to be queried (handle)

ouT num number of discrete values represented by this enumer-
ation (integer)

ouT name buffer to return the string containing the name of the
enumeration (char buffer)

INOUT name_len length of the string and/or buffer for name (integer)

int MPI_T_Enum_get_info(MPI_T_Enum enumtype, int *num, char *name, int
*name_len)

If enumtype is a valid enumeration, this routine returns the enumeration range and the
name of the enumeration. For a range of 0 to N — 1, the value N is returned in num. N
must be greater than 0, i.e., the enumeration must represent at least one item. The integer
values in this range denote the N items represented by this enumeration type.

The arguments name and name_len are used to return the name of the enumerations
as described in Section 2.3.3.

The routine is required to return a name of at least length one. This name must be
unique with respect to all other names for MPI_T enumerations used by the MPI implemen-
tation.

Names for the individual items in each enumeration enumtype can be queried using

MPI_T_ENUM_GET_ITEM.

MPI_T_ENUM_GET _ITEM(datatype, item, name, name_len)

IN enumtype MPI_T enumeration to be queried (handle)

IN item item number in the MPI_T enumeration to be queried
(integer)

ouT name buffer to return the string containing the name of the

enumeration item (char buffer)

INOUT name_len length of the string and/or buffer for name (integer)

int MPI_T_Enum_get_item(MPI_T_Enum enumtype, int item, char *name, int
*name_len)

The arguments name and name_len are used to return the name of the enumeration
item as described in Section 2.3.3.

If completed successfully, the routine is required to return a name of at least length
one. This name must be unique with respect to all other names of items for the same
enumeration.

2.3.6 Control Variables

The routines described in this section of the MPI_T interface specification focus on the
ability to list, query, and possibly set control variables exposed by the MPI implementation.
These variables can typically be used by the user to fine tune properties and configuration

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 2. TOOL INTERFACES

settings of the MPI implementation. On many systems, such variables can be set using
environment variables, although other configuration mechanisms may be available, such as
configuration files or central configuration registries. A typical example that is available
in several existing MPI implementations is the ability to specify an “eager limit”, i.e., an
upper bound on the size of messages sent or received using an eager protocol.

Control Variable Query Functions

An MPI implementation exports a set of N control variables through MPI_T. If N is zero,
then the MPI_T implementation does not export any control variables, otherwise the pro-
vided control variables are indexed from 0 to N —1. This index number is used in subsequent
MPI_T calls to identify the individual variables.

An MPI implementation is allowed to increase the number of control variables during
the execution of an MPI application when new variables become available through dynamic
loading. However, MPI implementations are not allowed to change the index of a control
variable or delete a variable once it has been added to the set.

Advice to users. ~ While MPI_T guarantees that indices or variable properties do
not change during a particular run of an MPI program, it does not provide a similar
guarantee between runs. (End of advice to users.)

The following function can be used to query the number of control variables, num_cvar:

MPI_T_CVAR_GET_NUM(num_cvar)

ouT num_cvar returns number of control variables (integer)

int MPI_T_Cvar_get_num(int *num_cvar)

The function MPI_T_CVAR_GET_INFO provides access to additional information for
each variable.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 43

MPI_T_CVAR_GET _INFO(cvar_index, name, name_len, verbosity, datatype, enumtype, count,
desc, desc_len, bind, scope)

IN cvar_index index of the control variable to be queried, value be-
tween 0 and num_cvar (integer)

ouT name buffer to return the string containing the name of the
control variable (char buffer)

INOUT name_len length of the string and/or buffer for name (integer)

ouT verbosity verbosity level of this variable (integer)

ouT datatype MPI_T datatype of the information stored in the con-
trol variable (handle)

ouT enumtype optional descriptor for enumeration information (han-
dle)

ouT count number of elements of datatype used to represent this

variable (integer)

ouT desc buffer to return the string containing a description of
the control variable (char buffer)

INOUT desc_len length of the string and/or buffer for desc (integer)

ouT bind type of MPI object to which this variable must be
bound (integer)

ouT scope scope of when changes to this variable are possible

int MPI_T_Cvar_get_info(int cvar_index, char *name, int *name_len, int
*verbosity, MPI_Datatype *datatype, MPI_T_Enum *enumtype, int
*count, char *desc, int *desc_len, int *bind, int *scope)

After a successful call to MPI_T_CVAR_GET_INFO for a particular variable, subsequent
calls to this routine querying information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values.

The arguments name and name_len are used to return the name of the control variable
as described in Section 2.3.3.

If completed successfully, the routine is required to return a name of at least length
one. The name must be unique with respect to all other names for MPI_T control variables
used by the MPI implementation.

The argument verbosity returns the verbosity level of the variable (see Section 2.3.1).

The argument datatype returns the MPI datatype that is used to represent the control
variable. If the variable is of type MPI_INT, MPI can optionally specify an enumeration for
the values represented by this variable and return it in enumtype. In this case, MPI returns
an enumeration identifier, which can then be used as described in Section 2.3.5 to gather
more information. If the datatype is not MPI_INT or the argument enumtype is the constant
MPI_T_ENUM_NULL, this argument is ignored.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 2.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 2. TOOL INTERFACES

The parameter bind returns the type of the MPI object to which the variable must be
bound or the value MPI_T_BIND_NO_OBJECT (see Section 2.3.2).

The scope of a variable determines whether an operation is either local to the process
or collective across multiple processes can change a variable through the MPI_T interface.
On successful return from MPI_T_CVAR_GET_INFO, the argument scope will be set to one
of the constants listed in Table 2.4.

Scope Constant Description

MPI_T_SCOPE_READONLY | read-only, cannot be written
MPI_T_SCOPE_LOCAL may be writeable, writing is a local operation
MPI_T_SCOPE_GLOBAL may be writeable, writing is a global operation

Table 2.4: Scopes for MPI_T control variables.

Advice to users. The scope of a variable only indicates if a variable might be
changeable; it is not a guarantee that it can be changed at any time. (End of advice
to users.)

Example: Printing All Control Variables

The following example shows how the MPI_T interface can be used to query and print all
control variables.

#include <mpi.h>
int list_all_control_vars() {
int i, num, namelen, bind,verbose,count,scope;
char name[100] ;
MPI_Datatype datatype;

err=MPI_T_Cvar_get_num(&num) ;
if (err!=MPI_SUCCESS)
return err;

for (i=0; i<num; i++) {
namelen=100;
err=MPI_T_Cvar_get_info(i, name, &namelen,
&verbose, &datatype, &count,
NULL, NULL, /*no description */
&bind, &scope);
if (err!=MPI_SUCCESS) return err;
printf("Var %i: %s\n", i, name);
}
return MPI_SUCCESS;
}

Handle Allocation and Deallocation

Before reading or writing the value of a variable, a user must first allocate a handle of type
MPI_T_Cvar_handle for it by binding it to an MPI object (see also Section 2.3.2).

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 45

Rationale. MPI_T handles are distinct from MPI handles because they must be usable
before MPI_INIT and after MPI_FINALIZE. Further, accessing handles, in particular
for performance variables, can be time critical and having a separate handle space
enables optimizations. (End of rationale.)

MPI_T_CVAR_HANDLE_ALLOC(cvar_index, object, handle)

IN cvar_index index of control variable for which handle is to be al-
located (index)

IN obj_handle reference to a handle of the MPI object to which this
variable is supposed to be bound (pointer)
ouT handle allocated handle (handle)

int MPI_T_Cvar_handle_alloc(int cvar_index, void *obj_handle,
MPI_T_Cvar_handle *handle)

This routine binds the control variable specified by the argument index to the MPI
object referenced by the handle passed in argument obj_handle and returns an allocated
variable handle in the argument handle. The value of cvar_index should be in the range 0
to num_cvar — 1, where num_cvar is the number of available control variables as determined
from a prior call to MPI_T_CVAR_GET_NUM. The value of obj_handle must be the address
of the memory location where the object’s MPI handle is stored. The type of the MPI object
it references must be consistent with the type returned in the bind argument in a prior call
to MPI_T_CVAR_GET_INFO.

In the case the bind argument equals MPI_T_BIND_NO_OBJECT, the argument
obj_handle is ignored.

MPI_T_CVAR_HANDLE_FREE(handle)
INOUT handle handle to be freed (handle)

int MPI_T_Cvar_handle_free(MPI_T_Cvar_handle *handle)

When a handle is no longer needed, a user of MPI_T should call
MPI_T_CVAR_HANDLE_FREE to free the handle and the associated resources in the MPI
implementation. On a successful return, MPI_T sets the handle to
MPI_T_CVAR_HANDLE_NULL.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 2. TOOL INTERFACES

Control Variable Access Functions

MPI_T_CVAR_READ(handle, buf)

IN handle handle to the control variable to be read (handle)
ouT buf initial address of storage location for variable value
(choice)

int MPI_T_Cvar_read(MPI_T_Cvar_handle handle, void* buf)

The MPI_T_CVAR_READ queries the value of the control variable identified by the
argument handle and stores the result in the buffer identified by the parameter buf. The
user is responsible to ensure that the buffer is of the appropriate size to hold the entire value

of the control variable (based on the returned datatype and count from a prior corresponding
call to MPI_T_CVAR_GET_INFO).

MPI_T_CVAR_WRITE(handle, buf)

IN handle handle to the control variable to be written (handle)
IN buf initial address of storage location for variable value
(choice)

int MPI_T_Cvar_write(MPI_T_Cvar_handle handle, void* buf)

The MPI_T_CVAR_WRITE sets the value of the control variable identified by the ar-
gument handle to the data stored in the buffer identified by the parameter buf. The user
is responsible to ensure that the buffer is of the appropriate size to hold the entire value of
the control variable (based on the returned datatype and count from a prior corresponding
call to MPI_T_CVAR_GET_INFO).

If the variable has a global scope (as returned by a prior corresponding
MPI_T_CVAR_GET_INFO call), any write call to this variable must be issued by the user
consistently in all connected (as defined in Section ?7) MPI processes. The user is responsible
to ensure that the writes in all processes are consistent.

If it is not possible to change the variable at the time the call is made, the function
returns either MPI_T_ERR_SETNOTNOW, if there may be a later time at which the variable
could be set, or MPI_T_ERR_SETNEVER, if the variable cannot be set for the remainder of
the application’s execution.

Example: Reading the Value of a Control Variable

The following example shows how the MPI_T interface can be used to query the value with
a control variable of a given index.

int getValue_int_comm(int index, MPI_Comm comm, int *val) {
int err;
MPI_T_Cvar_handle handle;

/* Check if variable index can be bound to a communicator */

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 47

err=MPI_T_Cvar_handle_alloc(index,&comm,&handle) ;
if (err!=MPI_SUCCESS) return err;

/* The following assumes that the variable is */
/* represented by an integer */

err=MPI_T_Cvar_read(handle,val);
if (err!=MPI_SUCCESS) return err;

err=MPI_T_Cvar_handle_free(&handle);
return err;

2.3.7 Performance Variables

The following section focuses on the ability to list and query performance variables provided
by the MPI implementation. Performance variables provide insight into MPIl implementation
specific internals and can represent information such as the state of the MPI implementation
(e.g., waiting blocked, receiving, not active), aggregated timing data for submodules, or
queue sizes and lengths. Performance variables are always local to an MPI process.

Rationale. The interface for performance variables is separate from the interface for
control variables, since performance variables have different requirements and param-
eters. By keeping them separate, the interface provides cleaner semantics and allows
for more performance optimization opportunities. (End of rationale.)

Performance Variable Classes

Each performance variable is associated with a class that describes its basic semantics,
basic behavior, its starting value, and when and how an MPI implementation can change
its value. The starting value is the value the variable assumes when it is used for the first
time or whenever it is reset.

Additionally, the class of the variable defines what datatypes can represent it and
whether or not the value of a variable can overflow.

Advice to users. If a performance variable belongs to a class that can overflow, it is
up to the user to appropriately protect against this, e.g., by frequently reading and
reseting the variable value. (End of advice to users.)

Advice to implementors. MPI implementations should use large enough datatypes
for each performance variable to avoid overflows under normal circumstances. (End
of advice to implementors.)

The classes are defined by the following constants:

e MPI_T_PVAR_CLASS_STATE
A performance variable in this class represents a set of discrete states. Variables
of this class are represented by a single MPI_INT and can be set by the MPI imple-
mentation at any time. Variables of this type should be described further using an

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48

CHAPTER 2. TOOL INTERFACES

enumeration, as discussed in Section 2.3.5. The starting value is the current state of
the implementation at the time the starting value is set. Variables of this class cannot
overflow.

MPI_T_PVAR_CLASS_LEVEL

A performance variable in this class represents a value that describes the utilization
level of a resource. The value of a variable of this class can change at any time to
match the current utilization level of the resource. Values returned from variables
in this class are represented by a single element of one of the following datatypes:
MPI_INT, MPI_LONG_LONG, MPI_DOUBLE. The starting value is the current
utilization level of the resource at the time the starting value is set. Variables of this
class cannot overflow.

MPI_T_PVAR_CLASS_SIZE

A performance variable in this class represents a value that describes the maximal
size of of a resource. Values returned from variables in this class are represented by
a single element of one of the following datatypes: MPI_INT, MPI_LONG_LONG,
and MPI_DOUBLE. The starting value is the current utilization level of the resource
at the time the starting value is set. Variables of this class cannot overflow.

MPI_T_PVAR_CLASS_PERCENTAGE

The value of a performance variable in this class represents the percentage utiliza-
tion of a finite resource. The value of a variable of this class can change at any
time to match the current utilization level of the resource. It will be returned as an
MPI_DOUBLE datatype. The value must always be between 0.0 (resource not used
at all) and 1.0 (resource completely used). The starting value is the current percent-
age utilization level of the resource at the time the starting value is set. Variables of
this class cannot overflow.

MPI_T_PVAR_CLASS_HIGHWATERMARK

A performance variable in this class represents a value that describes the high wa-
termark utilization of a resource. The value of a variable of this class grows mono-
tonically from the initialization or reset of the variable. It can be represented by
a single element of one of the following datatypes: MPI_INT, MPI_LONG_LONG,
MPI_DOUBLE. The starting value is the current utilization level of the resource at
the time the starting value is set. Variables of this class cannot overflow.

MPI_T_PVAR_CLASS _LOWWATERMARK

A performance variable in this class represents a value that describes the low water-
mark utilization of a resource. The value of a variable of this class decreases monotoni-
cally from the initialization or reset of the variable. It can be represented by a single el-

ement of one of the following datatypes: MPI_INT, MPI_LONG_LONG,MPI_DOUBLE.

The starting value is the current utilization level of the resource at the time the start-
ing value is set. Variables of this class cannot overflow.

MPI_T_PVAR_CLASS_COUNTER

A performance variable in this class counts the number of occurrences of a specific
event (e.g., the number of memory allocations within an MPI library). The value of
a variable of this class increases monotonically from the initialization or reset of the
performance variable by one for each specific event that is observed. Values must be

Unofficial Draft for Comment Only

2.3.

MPI_T TOOL INFORMATION INTERFACE 49

non-negative and represented by a single element of one of the following datatypes:
MPI_INT, MPI_LONG_LONG. The starting value for variables of this class is 0.
Variables of this class can overflow.

MPI_T_PVAR_CLASS_AGGREGATE

The value of a performance variable in this class is an an aggregated value that repre-
sents a sum of arguments processed during a specific event (e.g., the amount of mem-
ory allocated by all memory allocations). This class is similar to the counter class,
but instead of counting individual events, the value can be incremented by arbitrary
amounts. The value of a variable of this class increases monotonically from the initial-
ization or reset of the performance variable. It must be non-negative and represented
by a single element of one of the following datatypes: MPI_INT, MPI_LONG_LONG,
MPI_DOUBLE. The starting value for variables of this class is 0. Variables of this
class can overflow.

MPI_T_PVAR_CLASS_TIMER

The value of a performance variable in this class represents the aggregated time that
the MPI implementation spends executing a particular event or type of event. This
class has the same basic semantics as MPI_T_PVAR_CLASS_AGGREGATE, but
explicitly records a timing value. The value of a variable of this class increases mono-
tonically from the initialization or reset of the performance variable. It must be
non-negative and represented by a single element of one of the following datatypes:
MPI_T_INT, MPI_T_LONG_LONG, MPI_T_DOUBLE. The starting value for vari-
ables of this class is 0. If the type MPI_DOUBLE is used, the units representing time
in this datatype must match the units used by MPI_WTIME. Variables of this class
can overflow.

MPI_T_PVAR_CLASS_GENERIC

This class can be used to describe a variable that does not fit into any of the other
classes. For variables in this class, there is no default starting value or behavior nor
any restrictions on which datatype can be used.

Performance Variable Query Functions

An MPI implementation exports a set of N performance variables through MPI_T. If N is
zero, then the MPI implementation does not export any performance variables, otherwise
the provided performance variables are indexed from 0 to N — 1. This index number is used
in subsequent MPI_T calls to identify the individual variables.

An MPI implementation is allowed to increase the number of performance variables

during the execution of an MPI application when new variables become available through
dynamic loading. However, MPI_T implementations are not allowed to change the index of
a performance variable or delete a variable once it has been added to the set.

The following function can be used to query the number of performance variables, N:

MPI_T_PVAR_GET_NUM(num_pvar)

ouT num_pvar returns number of performance variables (integer)

int MPI_T_Pvar_get_num(int *num_pvar)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 2. TOOL INTERFACES

The function MPI_T_PVAR_GET_INFO provides access to additional information for
each variable.

MPI_T_PVAR_GET_INFO(pvar_index, name, name_len, verbosity, varclass, datatype, count,
enumtype, desc, desc_len, bind, readonly, continuous)

IN pvar_index index of the performance variable to be queried be-
tween 0 and num_pvar — 1 (integer)

ouT name buffer to return the string containing the name of the
performance variable (char buffer)

INOUT name_len length of the string and/or buffer for name (integer)
ouT verbosity verbosity level of this variable (integer)

ouT var_class class of performance variable (integer)

ouT datatype MPI_T datatype of the information stored in the per-

formance variable (handle)

ouT count number of elements of datatype used to represent this
variable (integer)

ouT enumtype optional descriptor for enumeration information (han-
dle)
ouT desc buffer to return the string containing a description of

the performance variable (char buffer)

INOUT desc_len length of the string and/or buffer for desc (integer)

ouT bind type of MPI object to which this variable must be
bound (integer)

ouT readonly flag indicating whether a variable can be written/reset
(integer)

ouT continuous flag indicating whether a variable can be started and

stopped or is continuously active (integer)

int MPI_T_Pvar_get_info(int pvar_index, char *name, int *name_len, int
*verbosity, int *var_class, MPI_Datatype *datatype, int
*count, MPI_T_Enum *enumtype, char *desc, int *desc_len, int
*bind, int *readonly, int *continuous)

After a successful call to MPI_T_PVAR_GET_INFO for a particular variable, subsequent
calls to this routine querying information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values.

The arguments name and name_len are used to return the name of the performance
variable as described in Section 2.3.3. If completed successfully, the routine is required to
return a name of at least length one.

The argument verbosity returns the verbosity level of the variable (see Section 2.3.1).

The class of the performance variable is returned in the parameter var_class. The class
must be one of the constants defined in Section 2.3.7.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE ol

The combination of the name and the class of the performance variable must be unique
with respect to all other names for MPI_T performance variables used by the MPI imple-
mentation.

The argument datatype returns the MPI datatype that is used to represent the perfor-
mance variable. The value consists of count elements of this datatype.

If the variable is of type MPI_INT, MPI can optionally specify an enumeration for the
values represented by this variable and return it in enumtype. In this case, MPI returns
an enumeration identifier, which can then be used as described in Section 2.3.5 to gather
more information. If the datatype is not MPI_INT or the argument enumtype is the constant
MPI_T_ENUM_NULL, this argument is ignored.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return from this function.

The parameter bind returns the type of the MPI object to which the variable must be
bound or the value MPI_T_BIND_NO_OBJECT (see Section 2.3.2).

Upon return, the argument readonly is set to zero if the variable can be written or reset
by the user. It is set to one if the variable can only be read.

Upon return, the argument continuous is set to zero if the variable can be started and
stopped by the user, i.e, it is possible for the user to control if and when the value of a
variable is updated. It is set to one if the variable is always active and cannot be controlled
by the user.

Performance Experiment Sessions

Within a single program, multiple components can use the MPI_T interface. To avoid
collisions with respect to accesses to performance variables, users of the MPI_T interface
must first create a session. All subsequent calls accessing performance variables are then
within the context of this session. Any call executed in a session must not influence the
results in any other session.

MPI_T_PVAR_SESSION_CREATE((session)

ouT session identifier of performance session (handle)

int MPI_T_Pvar_session_create(MPI_T_Pvar_session *session)

This call creates a new session for accessing performance variables and returns a handle
for this session in the argument session of type MPI_T _Pvar_session.

MPI_T_PVAR_SESSION_FREE(session)

INOUT session identifier of performance experiment session (handle)

int MPI_T_Pvar_session_free(MPI_T_Pvar_session *session)

This call frees an existing session. Calls to MPI_T can no longer be made within the
context of a session after it is freed. This call also frees all handles that have been allocated

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 2. TOOL INTERFACES

within the specified session (see below for handle allocation and freeing). On a successful
return, MPI_T sets the session identifier to MPI_T_PVAR_SESSION_NULL.

Handle Allocation and Deallocation

Before using a performance variable, a user must first allocate a handle of type
MPI_T_Pvar_handle for it by binding it to an MPI object (see also Section 2.3.2).

MPI_T_PVAR_HANDLE_ALLOC(session, pvar_index, obj_handle, handle)

IN session identifier of performance experiment session (handle)

IN pvar_index index of performance variable for which handle is to
be allocated (integer)

IN obj_handle reference to a handle of the MPI object to which this
variable is supposed to be bound (pointer)
ouT handle allocated handle (handle)

int MPI_T_Pvar_handle_alloc(MPI_T_Pvar_session session, int pvar_index,
void *obj_handle, MPI_T_Pvar_handle *handle)

This routine binds the performance variable specified by the argument index to the MPI
object referenced by the handle passed in argument obj_handle and returns an allocated
variable handle in the argument handle. The value of index should be in the range 0 to
num_pvar — 1, where num_pvar is the number of available control variables as determined
from a prior call to MPI_T_PVAR_GET_NUM. The value of obj_handle must be the address
of the memory location where the object’s MPI handle is stored. The type of the MPI object
it references must be consistent with the type returned in the bind argument in a prior call
to MPI_T_PVAR_GET_INFO.

In the case the bind argument equals MPI_T_BIND_NO_OBJECT, the argument
obj_handle is ignored.

MPI_T_PVAR_HANDLE_FREE(session, handle)
IN session identifier of performance experiment session (handle)

INOUT handle handle to be freed (handle)

int MPI_T_Pvar_handle_free(MPI_T_Pvar_session session, MPI_T_Pvar_handle
*handle)

When a handle is no longer needed, a user of MPI_T should call
MPI_T_PVAR_HANDLE_FREE to free the handle and the associated resources in the MPI
implementation. On a successful return, MPI_T sets the handle to
MPI_T_PVAR_HANDLE_NULL.

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating once a handle has been allocated. Such variables may be queried at

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 93

any time, but they cannot be stopped or paused by the user. All other variables are in a
stopped state after their handle has been allocated; their values are not updated until they
have been started by the user.

MPI_T_PVAR_START (session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_Pvar_start(MPI_T_Pvar_session session, MPI_T_Pvar_handle handle)

This functions starts the performance variable with the handle identified by the pa-
rameter handle in the session identified by the parameter session.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to start all variables within the session identified by the parameter session for
which handles have been allocated. In this case, the routine returns
MPI_SUCCESS if all variables are started successfully, otherwise MPI_T_ERR_NOSTARTSTOP
is returned. Continuous variables and variables that are already started are ignored when
MPI_T_PVAR_ALL_HANDLES is specified.

MPI_T_PVAR_STOP(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_Pvar_stop(MPI_T_Pvar_session session, MPI_T_Pvar_handle handle)

This functions stops the performance variable with the handle identified by the param-
eter handle in the session identified by the parameter session.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to stop all variables within the session identified by the parameter session for
which handles have been allocated. In this case, the routine returns
MPI_SUCCESS if all variables are stopped successfully, otherwise MPI_T_ERR_NOSTARTSTOP
is returned. Continuous variables and variables that are already stopped are ignored when
MPI_T_PVAR_ALL_HANDLES is specified.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 2. TOOL INTERFACES

Performance Variable Access Functions

MPI_T_PVAR_READ(session, handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

ouT buf initial address of storage location for variable value
(choice)

int MPI_T_Pvar_read(MPI_T_Pvar_session session, MPI_T_Pvar_handle handle,
void* buf)

The MPI_T_PVAR_READ call queries the value of the performance variable with the
handle handle in the session identified by the parameter session and stores the result in the
buffer identified by the parameter buf. The user is responsible to ensure that the buffer is
of the appropriate size to hold the entire value of the performance variable (based on the
returned datatype and count during the MPI_T_PVAR_GET_INFO call).

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the
MPI_T function MPI_T_PVAR_READ.

MPI_T_PVAR_WRITE(session,handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

IN buf initial address of storage location for variable value
(choice)

int MPI_T_Pvar_write(MPI_T_Pvar_session session, MPI_T_Pvar_handle, void*
buf)

The MPI_T_PVAR_WRITE call attempts to write the value of the performance variable
with the handle identified by the parameter handle in the session identified by the parameter
session. The value to be written is passed in the buffer identified by the parameter buf. The
user is responsible to ensure that the buffer is of the appropriate size to hold the entire
value of the performance variable (based on the returned datatype and count during the
MPI_T_PVAR_GET_INFO call).

If it is not possible to change the variable, the function returns
MPI_T_ERR_PVAR_WRITE.

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the
MPI_T function MPI_T_PVAR_WRITE.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 95

MPI_T_PVAR_RESET (session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_Pvar_reset(MPI_T_Pvar_session session, MPI_T_Pvar_handle handle)

The MPI_T_PVAR_RESET call sets the performance variable with the handle identified
by the parameter handle to its starting value specified in Section 2.3.7. If it is not possible
to change the variable, the function returns MPI_T_ERR_PVAR_WRITE.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to reset all variables within the session identified by the parameter session for which
handles have been allocated. In this case, the routine returns MPI_SUCCESS if all variables
are reset successfully, otherwise MPI_T_ERR_NOWRITE is returned. Readonly variables are
ignored when MPI_T_PVAR_ALL_HANDLES is specified.

MPI_T_PVAR_READRESET (session, handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

ouT buf initial address of storage location for variable value
(choice)

int MPI_T_Pvar_readreset(MPI_T_Pvar_session session, MPI_T_Pvar_handle
handle, void* buf)

This call atomically combines the functionality of MPI_T_PVAR_READ and
MPI_T_PVAR_RESET with the same semantics as if these two calls were called separately.

The constant MPI_T_PVAR_ALL_HANDLES can not be used as an argument for the
MPI_T function MPI_T_PVAR_READRESET.

Advice to implementors. Although MPI places no requirements on the interaction
with external mechanisms such as signal handlers, it is strongly recommended that
all routines to start, stop, read, write, and reset performance variables should be safe
to call in asynchronous contexts. Examples of asynchronous contexts include signal
handlers and interrupt handlers. Such safety permits the development of sampling-
based tools. High quality implementations should strive to make the results of any
such interactions intuitive to users, and document known restrictions. (End of advice
to implementors.)

Example: Tool to Detect Receives with Long Unexpected Message Queues

The following example shows a sample tool to identify receive operations that occur during
times with long message queues. The tool assumes that the MPI implementation exports
the current length of the unexpected message queue as a variable with the name
MPIT_UMQ_LENGTH. The tool is implemented as a PMPI tool using the MPI profiling
interface.

The tool consists of two parts: (1) the initialization (by intercepting calls to MPI_INIT)
and (2) the test for long unexpected message queues (by intercepting calls to MPI_RECV).

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 2. TOOL INTERFACES

To capture all receives, the example would have to be extended to have similar wrappers
for all receive operations.

Part 1— Initialization: During initialization, the tool searches for the variable and, once
the right index is found, allocates a session, a handle for the variable with the found index,
and starts the performance variable.

#include <mpi.h> /* Adds MPIT definitions as well */

/* Global variables for the tool */
static MPI_T_Pvar_session session;
static MPI_T_Pvar_handle handle;

int MPI_Init(int *argc, char *¥*xargv) {
int err, num, i, index, namelen, verb, varclass, bind,threadsup;
MPIT_Pvar_attributes attr;
char name[16];
MPI_Comm comm;

err=PMPI_Init(argc,argv);
if (err!=MPI_SUCCESS) return err;

err=PMPI_T_Init_thread (MPI_THREAD_SINGLE,&threadsup) ;
if (err!=MPI_SUCCESS) return err;

err=PMPI_T_Pvar_get_num(&num) ;
if (err!=MPI_SUCCESS) return err;
index=-1;
while ((i<num) && (index<0)) {
namelen=16;
err=PMPI_T_Pvar_get_info(i, name, namelen, &verb, &varclass,
&count, NULL, NULL, &bind, &attr);
if (strcmp(name,MPIT_UMQ_LENGTH)==0) index=i; i++; }

/* this could be handled in a more flexible way for a generic tool */
ASSERT (index>=0) ;

ASSERT (varclass==MPI_T_PVAR_RESOURCE_LEVEL) ;

ASSERT (datatype==MPI_INT);

ASSERT (bind==MPI_T_BIND_MPI_COMMUNICATOR) ;

/* Create a session */
err=PMPI_T_Pvar_session_create(&session);
if (err!=MPI_SUCCESS) return err;

/* Get a handle and bind to MPI_COMM_WORLD */
comm=MPI_COMM_WORLD;

err=PMPI_T_Pvar_handle_alloc(session, index, &comm, &handle);
if (err!=MPI_SUCCESS) return err;

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE o7

/* Start variable */
err=PMPI_T_Pvar_start(session, handle);
if (err!=MPI_SUCCESS) return err;

return MPI_SUCCESS;

Part 2 — Testing the Queue Lengths During Receives: During every receive operation, the
tool reads the unexpected queue length through the matching performance variable and
compares it against a predefined threshold.

#define THRESHOLD 5

int MPI_Recv(void *buf, int count, MPI_Datatype dt, int source, int tag,
MPI_Comm comm, MPI_Status *status)

{
int value, err;
if (comm==MPI_COMM_WORLD) {
err=PMPI_T_Pvar_read(session, handle, &value);
if ((err==MPI_SUCCESS) && (value>THREASHOLD))
{
/* tool identified receive with long UMQ */
/* execute tool functionality, */
/* e.g., gather and print call stack */
}
}
return PMPI_Recv(buf, count, dt, source, tag, comm, status);
}

2.3.8 Variable Categorization

MPI implementations can optionally group performance and control variables into categories
to express logical relationships between various variables. For example, an MPI implemen-
tation could group all control and performance variables that refer to message transfers in
the MPI implementation and thereby distinguish them from variables that refer to local
resources such as memory allocations or other interactions with the operating system.

Categories can also contain other categories to form a hierarchical grouping. Categories
can never include themselves, either directly or transitively within other included categories.
Expanding on the example above, this allows MPI to refine the grouping of variables re-
ferring to message transfers into variables to control and monitor message queues, message
matching activities and communication protocols. Each of these groups of variables would
be represented by a separate category and these categories would then be listed in a single
category representing variables for message transfers.

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories via

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

o8 CHAPTER 2. TOOL INTERFACES

the MPI_T interface. If N = 0, then the MPIl implementation does not export any categories,
otherwise the provided categories are indexed from 0 to N — 1. This index number is used
in subsequent calls to MPI_T functions to identify the individual categories.

An MPI implementation is permitted to increase the number of categories during the
execution of an MPI program when new categories become available through dynamic load-
ing. However, MPI| implementations are not allowed to change the index of a category or
delete it once it has been added to the set.

Similarly, MPI implementations are allowed to add variables to categories, but they
are not allowed to remove variables from categories or change the order in which they are
returned.

The following function can be used to query the number of control variables, N.

MPI_T_CATEGORY_GET_NUM(num_cat)

ouT num_cat current number of categories (integer)

int MPI_T_Category_get_num(int *num_cat)

Individual category information can then be queried by calling the following function:

MPI_T_CATEGORY _GET_INFO(cat_index, name, name_len, desc, desc_len, num_controlvars,
num_perfvars, num_categories)

IN cat_index index of the category to be queried (integer)

ouT name buffer to return the string containing the name of the
category (char buffer)

INOUT name_len length of the string and/or buffer for name (integer)

ouT desc buffer to return the string containing the description
of the category (char buffer)

INOUT desc_len length of the string and/or buffer for desc (integer)

ouT num_controlvars number of control variables in the category (array of
integers)

ouT num_perfvars number of performance variables in the category (ar-

ray of integers)

ouT num_categories number of MPI_T categories contained in the category
(array of integers)

int MPI_T_Category_get_info(int cat_index, char *name, int *name_len, char
*desc, int *desc_len, int *num_controlvars, int *num_perfvars,
int *num_categories)

The arguments name and name_len are used to return the name of the category as
described in Section 2.3.3.

The routine is required to return a name of at least length one. This name must be
unique with respect to all other names for MPI_T categories used by the MPI implementa-
tion.

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 99

The arguments desc and desc_len are used to return the description of the category as
described in Section 2.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

The function returns the number of control variables, performance variables and other
categories contained in the queried category in the arguments num_controlvars,
num_perfvars, and num_categories respectively.

Advice to implementors. To avoid confusion and to simplify the interpretation of the
categories provided by a particular implementation, it is recommended that categories
should either only contain other categories or only control and performance variables.
Mixing categories and control and performance variables within a single category is
not recommended. (End of advice to implementors.)

MPI_T_CATEGORY_GET_CVARS(cat_index, len, indices)

IN cat_index index of the category to be queried, in the range [0, N—
1] (integer)

IN len the length of the indices array (integer)

ouT indices an integer array of size len, indicating control variable

indices (array of integers)

int MPI_T_Category_get_cvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CVARS can be used to query which control variables are
contained in a particular category. A category contains zero or more control variables.

MPI_T_CATEGORY _GET_PVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N —
1] (integer)

IN len the length of the indices array (integer)

ouT indices an integer array of size len, indicating performance

variable indices (array of integers)

int MPI_T_Category_get_pvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_PVARS can be used to query which performance variables
are contained in a particular category. A category contains zero or more performance
variables.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 2. TOOL INTERFACES

MPI_T_CATEGORY_GET_CATEGORIES(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N—
1] (integer)

IN len the length of the indices array (integer)

ouT indices an integer array of size len, indicating category indices

(array of integers)

int MPI_T_Category_get_categories(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CATEGORIES can be used to query which other categories
are contained in a particular category. A category contains zero or more other categories.

As mentioned above, MPI implementations can grow the number of categories as well
as the number of variables or other categories within a category. In order to allow users
of the MPI_T interface to quickly check whether new categories have been added or new
variables or categories have been added to a category, MPIl maintains a virtual timestamp.
This timestamp is monotonically increasing during the execution and is returned by the
following function:

MPI_T_CATEGORY _CHANGED(stamp)

ouT stamp a virtual time stamp to indicate the last change to the
categories (integer)

int MPI_T_Category_changed(int *stamp)

If two subsequent calls to this routine return the same timestamp, it is guaranteed that
the category information has not changed between the two calls. If the timestamp retrieved
from the second call is higher, then some categories have been added or expanded.

Advice to users. The timestamp value is purely virtual and only intended to check
for changes in the category information. It should not be used for any other purbose.
(End of advice to users.)

The index values returned in indices by MPI_T_CATEGORY_GET_CVARS,
MPI_T_CATEGORY_GET_PVARS and MPI_T_CATEGORY _GET_CATEGORIES can be used
as input to MPI_T_CVAR_GET_INFO, MPI_T_PVAR_GET_INFO andr
MPI_T_CATEGORY_GET_INFO respectively.

The user is responsible for allocating the arrays passed into the functions
MPI_T_CATEGORY_GET_CVARS, MPI_T_CATEGORY_GET_PVARS and
MPI_T_CATEGORY_GET_CATEGORIES. Starting from array index 0, each function writes
up to len elements into the array. If the category contains more than len elements, the
function returns an arbitrary subset of size len. Otherwise, the entire set of elements is
returned in the beginning entries of the array, and any remaining array entries are not

modified.

2.3.9 MPI_T Return Codes

All MPI_T functions return an integer return code (see Table 2.5) to indicate whether the
MPI_T function has completed successfully or aborted its execution. In the latter case

Unofficial Draft for Comment Only

2.3. MPI_T TOOL INFORMATION INTERFACE 61

the return code indicates the reason for not completing the routine. None of the return
codes returned by an MPI_T routine impact the execution of the MPI process and do not
invoke MPI error handlers. The execution of the MPI process continues as if the MPI_T
call would have completed. However, the MPI| implementation is not required to check all
user provided parameters; if a user passes invalid parameter values to any MPI_T routine
the behavior of the implementation is undefined.

2.3.10 Profiling Interface

All requirements for the profiling interfaces, as described in Section 2.2, also apply to the
MPI_T interface. In particular, this means that compliant MPIl implementation must provide
matching PMPI_T calls for every MPI_T call. All rules, guidelines, and recommendations
from Section 2.2 apply equally to PMPI_T calls.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62

CHAPTER 2.

’ Return Code

\ Description

Return Codes for all MPI_T Functions

MPI_SUCCESS
MPI_T_ERR_MEMORY
MPI_T_ERR_NOTINITIALIZED
MPI_T_ERR_CANTINIT

Call completed successfully

Out of memory

MPI_T not initialized

MPI_T not in the state to be initialized

Return Codes for Datatype Functions: MPI_T_ENUM_*

MPI_T_ERR_INVALIDINDEX
MPI_T_ERR_INVALIDITEM

The enumeration index is invalid
The item index queried is out of range
(for MPI_T_MPI_T_ENUMITEM only)

Return Codes for variable and category query functions: MPI_T_*_GET_INFO

MPI_T_ERR_INVALIDINDEX

\ The variable or category index is invalid

Return Codes for Handle Functions: MPI_T_*_ALLOCATE,FREE

MPI_T_ERR_INVALIDINDEX
MPI_T_ERR_INVALIDHANDLE
MPI_T_ERR_OUTOFHANDLES

The variable index is invalid
The handle is invalid
No more handles available

Return Codes for Session Functions: MPI_T_PVAR_SESSION_*

MPI_T_ERR_OUTOFSESSIONS
MPI_T_ERR_INVALIDSESSION

No more sessions available
Session argument is not a valid session

Return Codes for Control Variable Access Functions:
MPI_T_CVAR_READ, WRITE

MPI_T_ERR_SETNOTNOW
MPI_T_ERR_SETNEVER
MPI_T_ERR_INVALIDVAR
MPI_T_ERR_INVALIDHANDLE

Variable cannot be set at this moment
Variable cannot be set until end of execution
Control variable does not exist

The handle is invalid

Return Codes for Performance Variable Access and Control:
MPI_T_PVAR_START, STOP, READ, WRITE, RESET, READRESET

MPI_T_ERR_INVALIDHANDLE
MPI_T_ERR_INVALIDSESSION
MPI_T_ERR_NOSTARTSTOP

MPI_T_ERR_NOWRITE

The handle is invalid

Session argument is not a valid session
Variable can not be started or stopped
for MPI_T_PVAR_START and
MPI_T_PVAR_STOP

Variable can not be written or reset
for MPI_T_PVAR_WRITE and
MPI_T_PVAR_RESET

Return Codes for Category Functions: MPI_T_CATEGORY _*

MPI_T_ERR_INVALIDINDEX

‘ The category index is invalid

Table 2.5: Return codes used MPI_T functions.

Unofficial Draft for Comment Only

TOOL INTERFACES

Chapter 3

Language Bindings Summary

In this section we summarize the specific bindings for C, Fortran, and C++. First we
present the constants, type definitions, info values and keys. Then we present the routine
prototypes separately for each binding. Listings are alphabetical within chapter.

3.1 Defined Values and Handles

3.1.1 Defined Constants

The C and Fortran name is listed in the left column and the C++ name is listed in the
middle or right column. Constants with the type const int may also be implemented as
literal integer constants substituted by the preprocessor.

Return Codes
C type: const int (or unnamed enum) C++ type: const int

Fortran type: INTEGER (or unnamed enum)
MPI_SUCCESS MPI::SUCCESS
MPI_ERR_BUFFER MPI::ERR_BUFFER
MPI_ERR_COUNT MPI::ERR_COUNT
MPI_ERR_TYPE MPI::ERR_TYPE
MPI_ERR_TAG MPI::ERR_TAG
MPI_ERR_COMM MPI::ERR_COMM
MPI_ERR_RANK MPI::ERR_RANK
MPI_ERR_REQUEST MPI::ERR_REQUEST
MPI_ERR_ROOT MPI::ERR_ROOT
MPI_ERR_GROUP MPI::ERR_GROUP
MPI_ERR_OP MPI::ERR_OP
MPI_ERR_TOPOLOGY MPI::ERR_TOPOLOGY
MPI_ERR_DIMS MPI::ERR_DIMS
MPI_ERR_ARG MPI::ERR_ARG
MPI_ERR_UNKNOWN MPI::ERR_UNKNOWN
MPI_ERR_TRUNCATE MPI::ERR_TRUNCATE
MPI_ERR_OTHER MPI::ERR_OTHER
MPI_ERR_INTERN MPI::ERR_INTERN
MPI_ERR_PENDING MPI::ERR_PENDING

(Continued on next page)

Unofficial Draft for Comment Only 63

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

64 CHAPTER 3. LANGUAGE BINDINGS SUMMARY

1 Return Codes (continued)

2 MPI_ERR_IN_STATUS MPI::ERR_IN_STATUS

3 MPI_ERR_ACCESS MPI::ERR_ACCESS

4 MPI_ERR_AMODE MPI::ERR_AMODE

5 MPI_ERR_ASSERT MPI::ERR_ASSERT

6 MPI_ERR_BAD_FILE MPI::ERR_BAD_FILE

7 MPI_ERR_BASE MPI::ERR_BASE

8 MPI_ERR_CONVERSION MPI::ERR_CONVERSION

9 MPI_ERR_DISP MPI::ERR_DISP

10 MPI_ERR_DUP_DATAREP MPI::ERR_DUP_DATAREP
1 MPI_ERR_FILE_EXISTS MPI::ERR_FILE_EXISTS

12 MPI_ERR_FILE_IN_USE MPI::ERR_FILE_IN_USE

13 MPI_ERR_FILE MPI::ERR_FILE

14 MPI_ERR_INFO_KEY MPI::ERR_INFO_VALUE

15 MPI_ERR_INFO_NOKEY MPI::ERR_INFO_NOKEY
16 MPI_ERR_INFO_VALUE MPI::ERR_INFO_KEY

17 MPI_ERR_INFO MPI::ERR_INFO

18 MPI_ERR_IO MPI::ERR_IO

19 MPI_ERR_KEYVAL MPI::ERR_KEYVAL

20 MPI_ERR_LOCKTYPE MPI::ERR_LOCKTYPE

21 MPI_ERR_NAME MPI::ERR_NAME

22 MPI_ERR_NO_MEM MPI::ERR_NO_MEM

23 MPI_ERR_NOT_SAME MPI::ERR_NOT_SAME

24 MPI_ERR_NO_SPACE MPI::ERR_NO_SPACE

25 MPI_ERR_NO_SUCH_FILE MPI::ERR_NO_SUCH_FILE
26 MPI_ERR_PORT MPI::ERR_PORT

27 MPI_ERR_QUOTA MPI::ERR_QUOTA

28 MPI_ERR_READ_ONLY MPI::ERR_READ_ONLY

29 MPI_ERR_RMA_CONFLICT MPI::ERR_RMA_CONFLICT
30 MPI_ERR_RMA_SYNC MPI::ERR_RMA_SYNC

31 MPI_ERR_SERVICE MPI::ERR_SERVICE

32 MPI_ERR_SIZE MPI::ERR_SIZE

33 MPI_ERR_SPAWN MPI::ERR_SPAWN

34 MPI_ERR_UNSUPPORTED_DATAREP MPI::ERR_UNSUPPORTED_DATAREP
35 MPI_ERR_UNSUPPORTED_OPERATION MPI::ERR_UNSUPPORTED_OPERATION
36 MPI_ERR_WIN MPI::ERR_WIN

37 MPI_ERR_LASTCODE MPI::ERR_LASTCODE

ticket266. *®

39
40
41
42
43
44
45
46
47

48

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES

MPI_T Return Codes

MPI_T_ERR_MEMORY
MPI_T_ERR_NOTINITIALIZED
MPI_T_ERR_CANTINIT
MPI_T_ERR_INVALIDINDEX
MPI_T_ERR_INVALIDITEM
MPI_T_ERR_INVALIDINDEX
MPI_T_ERR_INVALIDINDEX
MPI_T_ERR_INVALIDHANDLE
MPI_T_ERR_OUTOFHANDLES
MPI_T_ERR_OUTOFSESSIONS
MPI_T_ERR_INVALIDSESSION
MPI_T_ERR_SETNOTNOW
MPI_T_ERR_SETNEVER
MPI_T_ERR_INVALIDVAR
MPI_T_ERR_INVALIDHANDLE
MPI_T_ERR_INVALIDHANDLE
MPI_T_ERR_INVALIDSESSION

MPI_T_ERR_NOSTARTSTOP
MPI_T_ERR_NOWRITE

Buffer Address Constants

C type: void * const

C++ type:

Fortran type: (predefined memory location) void * const

MPI_BOTTOM MPI::BOTTOM
MPI_IN_PLACE MPI::IN_PLACE
Assorted Constants
C type: const int (or unnamed enum) C++ type:

Fortran type: INTEGER

const int (or unnamed enum)

MPI_PROC_NULL
MPI_ANY_SOURCE
MPI_ANY _TAG
MPI_UNDEFINED
MPI_BSEND_OVERHEAD
MPI_KEYVAL_INVALID
MPI_LOCK_EXCLUSIVE
MPI_LOCK_SHARED
MPI_ROOT

MPI::PROC_NULL
MPI::ANY_SOURCE
MPI::ANY _TAG
MPI::UNDEFINED
MPI::BSEND_OVERHEAD
MPI::KEYVAL_INVALID
MPI::LOCK_EXCLUSIVE
MPI::LOCK_SHARED
MPI::ROOT

Status size and reserved index values (Fortran only)

Fortran type: INTEGER

MPI_STATUS_SIZE
MPI_SOURCE
MPI_TAG
MPI_ERROR

Not defined for C++
Not defined for C++
Not defined for C++
Not defined for C++

Unofficial Draft for Comment Only

65

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

66

CHAPTER 3. LANGUAGE BINDINGS SUMMARY

Variable Address Size (Fortran only)

Fortran type: INTEGER

MPI_ADDRESS_KIND Not defined for C++
MPI_INTEGER_KIND Not defined for C++
MPI_OFFSET_KIND Not defined for C++

Error-handling specifiers

C type: MPI_Errhandler C++ type: MPI: :Errhandler

Fortran type: INTEGER

MPI_ERRORS_ARE_FATAL MPI::ERRORS_ARE_FATAL
MPI_ERRORS_RETURN MPI::ERRORS_RETURN
MPI::ERRORS_THROW_EXCEPTIONS

Maximum Sizes for Strings

C type: const int (or unnamed enum) C++ type:

Fortran type: INTEGER

const int (or unnamed enum)

MPI_MAX_PROCESSOR_NAME MPI::
MPI_MAX_ERROR_STRING MPI::
MPI_MAX_DATAREP_STRING MPI::
MPI_MAX_INFO_KEY MPI::

MPI_MAX_INFO_VAL MPI::
MPI_MAX_OBJECT_NAME MPI::
MPI_MAX_PORT_NAME MPI::

MAX_PROCESSOR_NAME
MAX_ERROR_STRING
MAX_DATAREP_STRING
MAX_INFO_KEY
MAX_INFO_VAL
MAX_OBJECT_NAME
MAX_PORT_NAME

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES 67
Named Predefined Datatypes C/C++ types
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_CHAR MPI::CHAR char
(treated as printable
character)
MPI_SHORT MPI::SHORT signed short int
MPI_INT MPI:INT signed int
MPI_LONG MPI1::LONG signed long

MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_SIGNED_CHAR

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT

MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_C_BOOL

MPI_INT8_T

MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINTS8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPI_AINT

MPI_OFFSET
MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX
MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX
MPI_BYTE

MPI_PACKED

MPI::LONG_LONGL_INT
MPI::LONG_LONG
MPI::SIGNED_CHAR

MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT

MPI::UNSIGNED
MPI::UNSIGNED_LONG

MPI1::UNSIGNED_LONG_LONG

MPI::FLOAT
MPI1::DOUBLE
MPI::LONG_DOUBLE
MPI::WCHAR

use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
use C datatype handle)
(use C datatype handle)
MPI::BYTE
MPI::PACKED

NN AN N N N N N N N N N N
w0
)

signed long long
long long (synonym)
signed char

(treated as integral value)

unsigned char

(treated as integral value)

unsigned short
unsigned int
unsigned long
unsigned long long
float

double

long double
wchar_t
(defined in <stddef.h>)
(treated as printable
character)

_Bool

int8_t

intl6_t

int32_t

int64_t

uint8_t

uintl6_t

uint32_t

uint64_t

MPI_Aint
MPI_Offset

float _Complex
float _Complex
double _Complex
long double _Complex
(any C/CH++ type)
(any C/C++ type)

10

11

12

13

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

Unofficial Draft for Comment Only

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68

Named Predefined Datatypes

CHAPTER 3. LANGUAGE BINDINGS SUMMARY

Fortran types

C type: MPI_Datatype
Fortran type: INTEGER

C++ type: MPI::Datatype

MPI_INTEGER

MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_LOGICAL
MPI_CHARACTER
MPI_AINT

MPI_OFFSET

MPI_BYTE

MPI_PACKED

MPI:INTEGER

MPI::REAL
MPI::DOUBLE_PRECISION
MPI::F_COMPLEX
MPI::LOGICAL
MPI::CHARACTER

(use C datatype handle)
(use C datatype handle)
MPI::BYTE

MPI::PACKED

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
CHARACTER (1)

INTEGER (KIND=MPI_ADDRESS_KIND)
INTEGER (KIND=MPI_OFFSET_KIND)

(any Fortran type)
(any Fortran type)

C++4-Only Named Predefined Datatypes | C++ types

C++ type: MPI::Datatype

MPI::BOOL bool

MPI::COMPLEX Complex<float>
MPI::DOUBLE_COMPLEX Complex<double>
MPI::LONG_DOUBLE_COMPLEX Complex<long double>

C type: MPI_Datatype

Fortran type: INTEGER

MPI_DOUBLE_COMPLEX

MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_INTEGER16
MPI_REAL2
MPI_REAL4
MPI_REALS
MPI_REAL16
MPI_COMPLEX4
MPI_COMPLEXS
MPI_COMPLEX16

Optional datatypes (Fortran) Fortran types
C++ type: MPI: :Datatype
MPI::F_DOUBLE_COMPLEX | DOUBLE COMPLEX
MPI::INTEGER1 INTEGER*1
MPI::INTEGER2 INTEGER*8
MPI::INTEGER4 INTEGER*4
MPI::INTEGERS8 INTEGER*8

INTEGER*16
MPI::REAL2 REAL*2
MPI::REAL4 REAL*4
MPI::REAL8 REAL%*8
REAL*16
COMPLEX*4
COMPLEX*8
COMPLEX*16
COMPLEX*32

MPI_COMPLEX32

Unofficial Draft for Comment Only

3.1.

DEFINED VALUES AND HANDLES

Datatypes for reduction functions (C and C++)

C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER

MPI_FLOAT_INT MPI::FLOAT_INT
MPI_DOUBLE_INT MPI::DOUBLE_INT
MPI_LONG_INT MPI::LONG_INT

MPI_2INT MPI:TWOINT
MPI_SHORT_INT MPI::SHORT_INT

MPI_LONG_DOUBLE_INT MPI::LONG_DOUBLE_INT

Datatypes for reduction functions (Fortran)

C type: MPI_Datatype C++ type: MPI: :Datatype
Fortran type: INTEGER

MPI_2REAL MPI:: TWOREAL
MPI_2DOUBLE_PRECISION MPI::TWODOUBLE_PRECISION
MPI_2INTEGER MPI:: TWOINTEGER

Special datatypes for constructing derived datatypes

C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER

MPI_UB MPI::UB

MPI_LB MPI::LB

Reserved communicators
C type: MPI_Comm C++ type: MPI::Intracomm
Fortran type: INTEGER
MPI_COMM_WORLD MPI::COMM_WORLD
MPI_COMM_SELF MPI::COMM_SELF

Results of communicator and group comparisons

C type: const int (or unnamed enum) C++ type: const int

Fortran type: INTEGER (or unnamed enum)

MPI_IDENT MPI::IDENT
MPI_CONGRUENT MPI::CONGRUENT
MPI_SIMILAR MPI::SIMILAR
MPI_UNEQUAL MPI::UNEQUAL

Environmental inquiry keys

C type: const int (or unnamed enum) C+-+ type: const int

Fortran type: INTEGER (or unnamed enum)

MPI_TAG_UB MPI::TAG_UB
MPI_IO MPI::10
MPI_HOST MPI::HOST

MPI_WTIME_IS_GLOBAL MPI::WTIME_IS_GLOBAL

Unofficial Draft for Comment Only

69

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 CHAPTER 3. LANGUAGE BINDINGS SUMMARY

Collective Operations

C type: MPI_Op
Fortran type: INTEGER

C++ type: const MPI::0p

MPI_MAX
MPI_MIN
MPI_SUM
MPI_PROD
MPI_MAXLOC
MPI_MINLOC
MPI_BAND
MPI_BOR
MPI_BXOR
MPI_LAND
MPI_LOR
MPI_LXOR
MPI_REPLACE

MPI::MAX
MPI::MIN
MPI::SUM
MPI::PROD
MPI::MAXLOC
MPI::MINLOC
MPI::BAND
MPI::BOR
MPI::BXOR
MPI::LAND
MPI::LOR
MPI::LXOR
MPI::REPLACE

Null Handles

C/Fortran name
C type / Fortran type

C++ name
C++ type

MPI_GROUP_NULL

MPI_Group / INTEGER
MPI_COMM_NULL

MPI_Comm / INTEGER
MPI_DATATYPE_NULL

MPI_Datatype / INTEGER
MPI_REQUEST_NULL

MPI_Request / INTEGER
MPI_OP_NULL

MPI_Op / INTEGER
MPI_ERRHANDLER_NULL

MPI_Errhandler / INTEGER
MPI_FILE_NULL

MPI_File / INTEGER
MPI_INFO_NULL

MPI_Info / INTEGER
MPI_WIN_NULL

MPI_Win / INTEGER

MPI::GROUP_NULL

const MPI::Group
MPI::COMM_NULL

Y
MPI::DATATYPE_NULL

const MPI::Datatype
MPI::REQUEST_NULL

const MPI::Request
MPI::OP_NULL

const MPI::0p
MPI::ERRHANDLER_NULL

const MPI::Errhandler
MPI::FILE_NULL

MPI::INFO_NULL
const MPI::Info
MPI::WIN_NULL

1Y C++4 type: See Section ?? on page ?? regarding
class hierarchy and the specific type of MPIl::COMM_NULL

Empty group

C type: MPI_Group C++ type: const MPI::Group

Fortran type: INTEGER

MPI_GROUP_EMPTY MPI::GROUP_EMPTY

Unofficial Draft for Comment Only

3.1.

DEFINED VALUES AND HANDLES

Topologies

C type: const int (or unnamed enum)

Fortran type: INTEGER

C++ type: const int
(or unnamed enum)

MPI_GRAPH
MPI_CART
MPI_DIST_GRAPH

MPI::GRAPH
MPI::CART
MPI::DIST_GRAPH

Predefined functions

C/Fortran name
C type / Fortran type

C++ name
C++ type

MPI_COMM_NULL_COPY_FN
MPI_Comm_copy_attr_function
/ COMM_COPY_ATTR_FN
MPI_COMM_DUP_FN
MPI_Comm_copy_attr_function
/ COMM_COPY_ATTR_FN
MPI_COMM_NULL_DELETE_FN
MPI_Comm_delete_attr_function
/ COMM_DELETE_ATTR_FN

MPI_COMM_NULL_COPY_FN

same as in C 1)

MPI_COMM_DUP_FN

same as in C 1)

MPI_COMM_NULL_DELETE_FN

same as in C 1)

MPI_WIN_NULL_COPY_FN
MPI_Win_copy_attr_function
/ WIN_COPY_ATTR_FN
MPI_WIN_DUP_FN
MPI_Win_copy_attr_function
/ WIN_COPY_ATTR_FN
MPI_WIN_NULL_DELETE_FN
MPI_Win_delete_attr_function
/ WIN_DELETE_ATTR_FN

MPI_WIN_NULL_COPY_FN

same as in C 1)

MPI_WIN_DUP_FN

same as in C 1)

MPI_WIN_NULL_DELETE_FN

same as in C 1)

MPI_TYPE_NULL_COPY_FN
MPI_Type_copy_attr_function
/ TYPE_COPY_ATTR_FN
MPI_TYPE_DUP_FN
MPI_Type_copy_attr_function
/ TYPE_COPY_ATTR_FN
MPI_TYPE_NULL_DELETE_FN
MPI_Type_delete_attr_function
/ TYPE_DELETE_ATTR_FN

MPI_TYPE_NULL_COPY_FN

same as in C 1)

MPI_TYPE_DUP_FN

same as in C 1)

MPI_TYPE_NULL_DELETE_FN

same as in C 1)

I See the advice to implementors on MPI_COMM_NULL_COPY_FN, ... i

Section 7?7 on page 77

Unofficial Draft for Comment Only

71

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

72

CHAPTER 3. LANGUAGE BINDINGS SUMMARY

Deprecated predefined functions

C/Fortran name
C type / Fortran type

C++ name
CH+ type

MPI_NULL_COPY_FN

MPI_Copy_function / COPY_FUNCTION

MPI_DUP_FN

MPI_Copy_function / COPY_FUNCTION

MPI_NULL_DELETE_FN

MPI_Delete_function / DELETE_FUNCTION

MPI::NULL_COPY_FN
MPI: :Copy_function
MPI::DUP_FN
MPI: :Copy_function
MPI::NULL_DELETE_FN
MPI::Delete_function

Predefined Attribute Keys

C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_APPNUM MPI::APPNUM

MPI_LASTUSEDCODE
MPI_UNIVERSE_SIZE
MPI_WIN_BASE
MPI_WIN_DISP_UNIT
MPI_WIN_SIZE

MPI::LASTUSEDCODE
MPI::UNIVERSE_SIZE
MPI::WIN_BASE
MPI::WIN_DISP_UNIT
MPI::WIN_SIZE

Mode Constants

C type: const int (or unnamed enum)
Fortran type: INTEGER

C++ type:
const int (or unnamed enum)

MPI_MODE_APPEND
MPI_MODE_CREATE
MPI_MODE_DELETE_ON_CLOSE
MPI_MODE_EXCL
MPI_MODE_NOCHECK
MPI_MODE_NOPRECEDE
MPI_MODE_NOPUT
MPI_MODE_NOSTORE
MPI_MODE_NOSUCCEED
MPI_MODE_RDONLY
MPI_MODE_RDWR
MPI_MODE_SEQUENTIAL
MPI_MODE_UNIQUE_OPEN
MPI_MODE_WRONLY

MPI::MODE_APPEND
MPI::MODE_CREATE
MPI::MODE_DELETE_ON_CLOSE
MPI::MODE_EXCL
MPI::MODE_NOCHECK
MPI::MODE_NOPRECEDE
MPI::MODE_NOPUT
MP1::MODE_NOSTORE
MP1::MODE_NOSUCCEED
MPI::MODE_RDONLY
MPI::MODE_RDWR
MPI::MODE_SEQUENTIAL
MP1::MODE_UNIQUE_OPEN
MPI::MODE_WRONLY

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES

Datatype Decoding Constants

C type: const int (or unnamed enum) C++ type:

Fortran type: INTEGER const int (or unnamed enum)
MPI_COMBINER_CONTIGUOUS MPI::COMBINER_CONTIGUOUS
MPI_COMBINER_DARRAY MPI::COMBINER_DARRAY
MPI_COMBINER_DUP MPI::COMBINER_DUP
MPI_COMBINER_F90_COMPLEX MPI::COMBINER_F90_COMPLEX
MPI_COMBINER_F90_INTEGER MPI::COMBINER_F90_INTEGER
MPI_COMBINER_F90_REAL MPI::COMBINER_F90_REAL
MPI_COMBINER_HINDEXED_INTEGER MPI::COMBINER_HINDEXED_INTEGER
MPI_COMBINER_HINDEXED MPI::COMBINER_HINDEXED
MPI_COMBINER_HVECTOR_INTEGER MPI::COMBINER_HVECTOR_INTEGER
MPI_COMBINER_HVECTOR MPI::COMBINER_HVECTOR
MPI_COMBINER_INDEXED_BLOCK MPI::COMBINER_INDEXED_BLOCK
MPI_COMBINER_INDEXED MPI::COMBINER_INDEXED
MPI_COMBINER_NAMED MPI::COMBINER_NAMED
MPI_COMBINER_RESIZED MPI::COMBINER_RESIZED
MPI_COMBINER_STRUCT_INTEGER MPI::COMBINER_STRUCT_INTEGER
MPI_COMBINER_STRUCT MPI::COMBINER_STRUCT
MPI_COMBINER_SUBARRAY MPI::COMBINER_SUBARRAY
MPI_COMBINER_VECTOR MPI::COMBINER_VECTOR

Threads Constants
C type: const int (or unnamed enum) C++ type:

Fortran type: INTEGER const int (or unnamed enum)
MPI_THREAD_FUNNELED MPI:: THREAD_FUNNELED
MPI_THREAD_MULTIPLE MPI::THREAD_MULTIPLE
MPI_THREAD_SERIALIZED MPI:: THREAD_SERIALIZED
MPI_THREAD_SINGLE MPI:: THREAD_SINGLE

File Operation Constants, Part 1

73

C type: const MPI_Offset (or unnamed enum) C++ type:
Fortran type: INTEGER (KIND=MPI_OFFSET_KIND) const MPI::0ffset (or unnamed enum)

MPI_DISPLACEMENT_CURRENT MPI::DISPLACEMENT _CURRENT

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

74

CHAPTER 3. LANGUAGE BINDINGS SUMMARY
File Operation Constants, Part 2
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_DISTRIBUTE_BLOCK MPI::DISTRIBUTE_BLOCK
MPI_DISTRIBUTE_CYCLIC MPI::DISTRIBUTE_CYCLIC
MPI_DISTRIBUTE_DFLT_DARG MPI::DISTRIBUTE_DFLT_DARG
MPI_DISTRIBUTE_NONE MPI::DISTRIBUTE_NONE
MPI_ORDER_C MPI::ORDER_C
MPI_ORDER_FORTRAN MPI::ORDER_FORTRAN
MPI_SEEK_CUR MPI::SEEK_CUR
MPI_SEEK_END MPI::SEEK_END
MPI_SEEK_SET MPI::SEEK_SET
F90 Datatype Matching Constants
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_TYPECLASS_COMPLEX MPI::TYPECLASS_COMPLEX
MPI_TYPECLASS_INTEGER MPI::TYPECLASS_INTEGER
MPI_TYPECLASS_REAL MPI::TYPECLASS_REAL
Constants Specifying Empty or Ignored Input
C/Fortran name C++ name
C type / Fortran type C++ type
MPI_ARGVS_NULL MPI::ARGVS_NULL
char*** / 2-dim. array of CHARACTER* (*) const char *x*x
MPI_ARGV_NULL MPI::ARGV_NULL
char** / array of CHARACTER* (*) const char **
MPI_ERRCODES_IGNORE Not defined for C++
int* / INTEGER array
MPI_STATUSES_IGNORE Not defined for C++
MPI_Statusx* / INTEGER, DIMENSION(MPI_STATUS_SIZE,*)
MPI_STATUS_IGNORE Not defined for C++
MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE)
MPI_UNWEIGHTED Not defined for C++

C Constants Specifying Ignored Input (no C++ or Fortran)

C type: MPI_Fintx*

MPI_F_STATUSES_IGNORE
MPI_F_STATUS_IGNORE

C and C+H+ preprocessor Constants and Fortran Parameters

C/C++ type: const int (or unnamed enum)
Fortran type: INTEGER

MPI_SUBVERSION
MPI_VERSION

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES

MPI_T Verbosity Levels

MPI_T_VERBOSITY_USER_BASIC
MPI_T_VERBOSITY_USER_DETAIL
MPI_T_VERBOSITY_USER_ALL

MPI_T_VERBOSITY_TUNER_BASIC MPI_T_VERBOSITY_TUNER_DETAIL

MPI_T_VERBOSITY_TUNER_ALL
MPI_T_VERBOSITY_MPIDEV_BASIC
MPI_T_VERBOSITY_MPIDEV_DETAIL
MPI_T_VERBOSITY_MPIDEV_ALL

Constants to identify associations of MPI_T variables

MPI_T_BIND_NO_OBJECT
MPI_T_BIND_MPI_COMMUNICATOR
MPI_T_BIND_MPI_DATATYPE
MPI_T_BIND_MPI_ERRORHANDLER
MPI_T_BIND_MPI_FILE
MPI_T_BIND_MPI_GROUP
MPI_T_BIND_MPI_OPERATOR
MPI_T_BIND_MPI_REQUEST
MPI_T_BIND_MPI_WINDOW
MPI_T_BIND_MPI_MESSAGE
MPI_T_BIND_MPI_INFO

Constants describing the scope of a MPI_T control variable

MPI_T_SCOPE_READONLY
MPI_T_SCOPE_LOCAL
MPI_T_SCOPE_GLOBAL

Constants used by MPI_T
MPI_T_PVAR_ALL_HANDLES

3.1.2 Types

The following are defined C type definitions, included in the file mpi.h.

/* C opaque types */
MPI_Aint

MPI_Fint

MPI_Offset

MPI_Status

/* C handles to assorted structures */
MPI_Comm

Unofficial Draft for Comment Only

75

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ticket266.

76 CHAPTER 3. LANGUAGE BINDINGS SUMMARY

! MPI_Datatype
2 MPI_Errhandler

8 MPI_File

4 MPI_Group

5 MPI_Info

6 MPI_Op

7 MPI_Request
8 MPI_Win

ticket266. 1° /* Types for the MPI_T interface *
1 MPI_T_Enum
12 MPI_T_Cvar_handle
13 MPI_T_Pvar_handle
14 MPI_T_Pvar_session
15
16 // C++ opaque types (all within the MPI namespace)
17 MPI::Aint
18 MPI::Offset
19 MPI::Status
20
21 // C++ handles to assorted structures (classes,
22 // all within the MPI namespace)
23 MPI::Comm
2 MPI::Intracomm
25 MPI::Graphcomm
26 MPI::Distgraphcomm
27 MPI::Cartcomm
28 MPI::Intercomm
29 MPI::Datatype
30 MPI::Errhandler
31 MPI::Exception

32 MPI::File
33 MPI::Group
34 MPI::Info
35 MPI::Op

36 MPI::Request

37 MPI::Prequest

38 MPI::Grequest

39 MPI::Win

40

41

ticket0. * 3.1.3 Prototype [d]Definitions

43

44 The following are defined C typedefs for user-defined functions, also included in the file

15 mpi.h.

46

47 /* prototypes for user-defined functions */

18 typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES 7

MPI_Datatype *datatype);

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm,
int comm_keyval, void *extra_state, void *attribute_val_in,
void *attribute_val_out, int*xflag);

typedef int MPI_Comm_delete_attr_function(MPI_Comm comm,
int comm_keyval, void *attribute_val, void *extra_state);

typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,
void *attribute_val, void *extra_state);

typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag);
typedef int MPI_Type_delete_attr_function(MPI_Datatype type,

int type_keyval, void *attribute_val, void *extra_state);

typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

typedef int MPI_Grequest_query_function(void *extra_state,
MPI_Status *status);
typedef int MPI_Grequest_free_function(void *extra_state);
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
MPI_Aint *file_extent, void *extra_state);

typedef int MPI_Datarep_conversion_function(void *userbuf,
MPI_Datatype datatype, int count, void *filebuf,
MPI_QOffset position, void *extra_state);

For Fortran, here are examples of how each of the user-defined subroutines should be
declared.
The user-function argument to MPI_OP_CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE

The copy and delete function arguments to MPI_COMM_CREATE_KEYVAL should be
declared like these:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDCOMM, COMM_KEYVAL, IERROR

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

78 CHAPTER 3. LANGUAGE BINDINGS SUMMARY

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT
LOGICAL FLAG

SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_WIN_CREATE_KEYVAL should be
declared like these:

SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT
LOGICAL FLAG

SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_TYPE_CREATE_KEYVAL should be
declared like these:

SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
LOGICAL FLAG

SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The handler-function argument to MPI_COMM_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)
INTEGER COMM, ERROR_CODE

The handler-function argument to MPI_WIN_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
INTEGER WIN, ERROR_CODE

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES 79

The handler-function argument to MPI_FILE_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
INTEGER FILE, ERROR_CODE

The query, free, and cancel function arguments to MPI_GREQUEST_START should be
declared like these:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)
INTEGER IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
INTEGER IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE
LOGICAL COMPLETE

The extend and conversion function arguments to MPI_REGISTER_DATAREP should
be declared like these:

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,
POSITION, EXTRA_STATE, IERROR)
<TYPE> USERBUF (%), FILEBUF (*)
INTEGER COUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) POSITION
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The following are defined C++ typedefs, also included in the file mpi.h.

namespace MPI {
typedef void User_function(const void* invec, void *inoutvec,
int len, const Datatype& datatype);

typedef int Comm::Copy_attr_function(const Comm& oldcomm,
int comm_keyval, void* extra_state, void* attribute_val_in,
void* attribute_val_out, bool& flag);

typedef int Comm::Delete_attr_function(Comm& comm, int
comm_keyval, void* attribute_val, void* extra_state);

typedef int Win::Copy_attr_function(const Win& oldwin,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

ticketO.
ticketO.

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

80 CHAPTER 3. LANGUAGE BINDINGS SUMMARY

int win_keyval, void* extra_state, void* attribute_val_in,
void* attribute_val_out, bool& flag);

typedef int Win::Delete_attr_function(Win& win, int
win_keyval, void* attribute_val, void* extra_state);

typedef int Datatype::Copy_attr_function(const Datatype& oldtype,
int type_keyval, void* extra_state,
const voidx attribute_val_in, void* attribute_val_out,
bool& flag);
typedef int Datatype::Delete_attr_function(Datatype& type,
int type_keyval, void* attribute_val, void* extra_state);

typedef void Comm::Errhandler_function(Comm &, int *, ...);
typedef void Win::Errhandler_function(Win &, int *, ...);
typedef void File::Errhandler_function(File &, int *, ...);

typedef int Grequest::Query_function(void* extra_state, Status& status);
typedef int Grequest::Free_function(void* extra_state);
typedef int Grequest::Cancel_function(void* extra_state, bool complete);

typedef void Datarep_extent_function(const Datatype& datatype,
Aint& file_extent, void* extra_state);

typedef void Datarep_conversion_function(void* userbuf,
Datatype& datatype, int count, void* filebuf,
Offset position, void* extra_state);

3.1.4 Deprecated [p|Prototype [d]|Definitions

The following are defined C typedefs for deprecated user-defined functions, also included in
the file mpi.h.

/* prototypes for user-defined functions */

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,
void *attribute_val, void *extra_state);

typedef void MPI_Handler_function(MPI_Comm *, int *, ...);

The following are deprecated Fortran user-defined callback subroutine prototypes. The
deprecated copy and delete function arguments to MPI_KEYVAL_CREATE should be de-
clared like these:

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)
INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

Unofficial Draft for Comment Only

3.1. DEFINED VALUES AND HANDLES

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

The deprecated handler-function for error handlers should be declared like this:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE)
INTEGER COMM, ERROR_CODE

3.1.5 Info Keys

access_style
appnum

arch
cb_block_size
cb_buffer_size
cb_nodes
chunked_item
chunked_size
chunked
collective_buffering
file_perm
filename

file

host
io_node_list
ip_address
ip_port
nb_proc
no_locks
num_io_nodes
path

soft
striping_factor
striping_unit
wdir

3.1.6 Info Values

false

random
read_mostly
read_once
reverse_sequential
sequential

true

write_mostly
write_once

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] Martin Schulz and Bronis R. de Supinski. PYMPI Tools: A Whole Lot Greater Than
the Sum of Their Parts. In ACM/IEEE Supercomputing Conference (SC), pages 1-10.

ACM, 2007. 2.2.7

Unofficial Draft for Comment Only

82

Examples Index

This index lists code examples throughout the text.

Some examples are referred to by

content; others are listed by the major MPI function that they are demonstrating. MPI
functions listed in all capital letter are Fortran examples; MPI functions listed in mixed
case are C/C++ examples.

MPI_ALLOC_MEM, 5
MPI_Alloc_mem, 6
MPI_Barrier, 22, 23
MPI_Buffer_attach, 23
MPI_Cancel, 23
MPI_Finalize, 2224
MPI_FREE_MEM, 5
MPI_Iprobe, 23
MPI_Request_free, 22
MPI_Test_cancelled, 23
mpiexec, 28

Profiling interface, 33

Unofficial Draft for Comment Only

83

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© oo ~ =] [ol) - w [-

[[[e~ =~ > -~ [w w w w w w w w w w [[M [~ N ¥ N N [V [= = [= = = [= [=
~ =] (S [w N - o © oo ~ [=2] ot [w N - o © oo ~ (=] o - w N - (=] © oo ~ (=2} ot = w N - o

'S
oo

MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:

MPI:
MPI:

MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:
MPI:

:ANY_SOURCE, 65

:ANY_TAG, 65

:APPNUM, 72

:ARGV_NULL, 74
:ARGVS_NULL, 74

:BAND, 70

:BOOL, 68

:BOR, 70

:BOTTOM, 65
:BSEND_OVERHEAD, 65
:BXOR, 70

:BYTE, 67, 68

:CART, 71

:CHAR, 67

:CHARACTER, 68
:COMBINER_CONTIGUOUS, 73
:COMBINER_DARRAY, 73
:COMBINER_DUP, 73
:COMBINER_F90_COMPLEX, 73
:COMBINER_F90_INTEGER, 73
:COMBINER_F90_REAL, 73
:COMBINER_HINDEXED, 73
:COMBINER_HINDEXED_INTEGER,

73

:COMBINER_HVECTOR, 73
:COMBINER_HVECTOR_INTEGER,

73

:COMBINER_INDEXED, 73
:COMBINER_INDEXED_BLOCK, 73
:COMBINER_NAMED, 73
:COMBINER_RESIZED, 73
:COMBINER_STRUCT, 73
:COMBINER_STRUCT_INTEGER, 73
:COMBINER_SUBARRAY, 73
:COMBINER_VECTOR, 73

MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:

:COMM_NULL, 70
:COMM_SELF, 69
:COMM_WORLD, 69
:COMPLEX, 68
:CONGRUENT, 69
‘DATATYPE_NULL, 70
‘DISPLACEMENT_CURRENT, 73
:DIST_GRAPH, 71
DISTRIBUTE_BLOCK, 74
:DISTRIBUTE_CYCLIC, 74
:DISTRIBUTE_DFLT_DARG, 74
DISTRIBUTE_NONE, 74
‘DOUBLE, 67
‘DOUBLE_COMPLEX, 68
‘DOUBLE_INT, 69
‘DOUBLE_PRECISION, 68
DUP_FN, 72
:ERR_ACCESS, 64
-ERR_AMODE, 64
:.ERR_ARG, 63
:‘ERR_ASSERT, 64
‘ERR_BAD_FILE, 64
‘ERR_BASE, 64
:.ERR_BUFFER, 63
:-ERR_COMM, 63
:-ERR_CONVERSION, 64
:.ERR_COUNT, 63
:ERR_DIMS, 63
‘ERR_DISP, 64
.ERR_DUP_DATAREP, 64
ERR_FILE, 64
:ERR_FILE_EXISTS, 64
ERR_FILE_IN_USE, 64
:-ERR_GROUP, 63
ERR_IN_STATUS, 64

Unofficial Draft for Comment Only 84

MPI Constant and Predefined Handle Index

MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:

MPI:
MPI:
MPI:
MPI:
MPI:

MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:

:F_COMPLEX, 68

:ERR_INFO, 64 MPI:
ERR_INFO_KEY, 64 MPI:
:ERR_INFO_NOKEY, 64 MPI:
ERR_INFO_VALUE, 64 MPI:
:ERR_INTERN, 63 MPL:
ERR_IO, 64 MPI:
:ERR_KEYVAL, 64 MPL:
:ERR_LASTCODE, 64 MPI:
:ERR_LOCKTYPE, 64 MPL:
:ERR_NAME, 64 MPI:
:ERR_NO_MEM, 64 MPL:
:-ERR_NO_SPACE, 64 MPL:
ERR_NO_SUCH_FILE, 64 MPI:
:ERR_NOT_SAME, 64 MPI:
ERR_OP, 63 MPI:
:-ERR_OTHER, 63 MPL:
:ERR_PENDING, 63 MPI:
:-ERR_PORT, 64 MPL:
ERR_QUOTA, 64 MPI:
:ERR_RANK, 63 MPL:
:-ERR_READ_ONLY, 64 MPI:
:ERR_REQUEST, 63 MPL:
:-ERR_RMA_CONFLICT, 64 MPI:
ERR_RMA_SYNC, 64 MPI:
:ERR_ROOT, 63 MPI:
:ERR_SERVICE, 64 MPI:
:ERR_SIZE, 64 MPL:
:ERR_SPAWN, 64 MPI:
:ERR_TAG, 63 MPL:
:ERR_TOPOLOGY, 63 MPI:
:ERR_TRUNCATE, 63 MPL:
:ERR_TYPE, 63 MPL:
:ERR_UNKNOWN, 63 MPI:
:-ERR_UNSUPPORTED_DATAREP, 64 MPTI:

:ERR_UNSUPPORTED_OPERATION, MPI:

64 MPI:
:ERR_WIN, 64 MPI:
:‘ERRHANDLER_NULL, 70 MPI:
-ERRORS_ARE_FATAL, 66 MPI:
:‘ERRORS_RETURN, 66 MPI:
:-ERRORS_THROW _EXCEPTIONS, 7, MPIL:

66 MPI:

MPI:

:F_DOUBLE_COMPLEX, 68 MPI:
.FILE_NULL, 70 MPT:
FLOAT, 67 MPT:
:FLOAT_INT, 69 MPT:
.GRAPH, 71 MPT:

:GROUP_EMPTY, 70
:GROUP_NULL, 70

"HOST, 69

IDENT, 69

:IN_PLACE, 65
:INFO_NULL, 70

:(INT, 67

INTEGER, 68

INTEGERI, 68
INTEGERZ2, 68
INTEGER4, 68
INTEGERS, 68

10, 69

:KEYVAL_INVALID, 65
.LAND, 70
:LASTUSEDCODE, 72

LB, 69
:LOCK_EXCLUSIVE, 65
:LOCK_SHARED, 65
:LOGICAL, 68

:LONG, 67
:LONG_DOUBLE, 67
:LONG_DOUBLE_COMPLEX, 68
:LONG_DOUBLE_INT, 69
.LONG_INT, 69
:LONG_LONG, 67
:LONG_LONG_INT, 67
:LOR, 70

:LXOR, 70

MAX, 70
:MAX_DATAREP_STRING, 66
:MAX_ERROR_STRING, 66
:MAX_INFO_KEY, 66
:MAX_INFO_VAL, 66
:MAX_OBJECT_NAME, 66
:MAX_PORT_NAME, 66
:MAX_PROCESSOR_NAME, 66
:MAXLOC, 70

‘MIN, 70

:MINLOC, 70
:MODE_APPEND, 72
:MODE_CREATE, 72
:MODE_DELETE_ON_CLOSE, 72
:MODE_EXCL, 72
:MODE_NOCHECK, 72
:MODE_NOPRECEDE, 72
:MODE_NOPUT, 72
:MODE_NOSTORE, 72

Unofficial Draft for Comment Only

85

© oo ~ =] t - w [V =

> - [t - Lo - = - w w w w w w w w w w [[%) [[[} %) [} N N [— - - = — = — = - =
~ =] (o)) - w M) - o © oo ~ [=2] ot = w S - o © oo ~ =] a - w) - [=] © oo ~ (=2} ot - w [- o

'
oo

© oo ~ =] [oy) - w [=

[[[e~ = > - [w w w w w w w w w w [[M [N) [V N [V [= = [= = = [[[=
~ =] (S - w N - o © oo ~ [=2] ot [w N - o © oo ~ (=] o - w N - (=] © oo ~ (=2} ot = w [- o

'S
oo

86

MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPI:
MPTI:
MPI:
MPI:
MPI:
MPI:

:MODE_NOSUCCEED, 72
:MODE_RDONLY, 72
:MODE_RDWR, 72
:MODE_SEQUENTIAL, 72
:MODE_UNIQUE_OPEN, 72
:MODE_WRONLY, 72
:NULL_COPY_FN, 72
:NULL_DELETE_FN, 72
:OP_NULL, 70

:ORDER_C, 74
:ORDER_FORTRAN, 74
.PACKED, 67, 68
:PROC_NULL, 65

.PROD, 70

REAL, 68

:REAL2, 68

REALA, 68

:REALS, 68

REPLACE, 70
:REQUEST_NULL, 70
:ROOT, 65

:SEEK_CUR, 74
:SEEK_END, 74
:SEEK_SET, 74

:SHORT, 67

:SHORT_INT, 69
:SIGNED_CHAR, 67
.SIMILAR, 69

:SUCCESS, 63

:SUM, 70

:TAG_UB, 69

" THREAD_FUNNELED, 73
:THREAD_MULTIPLE, 73
:THREAD_SERIALIZED, 73
:THREAD_SINGLE, 73

" TWODOUBLE_PRECISION, 69
.TWOINT, 69
"TWOINTEGER, 69
TWOREAL, 69

" TYPECLASS_COMPLEX, 74
' TYPECLASS_INTEGER, 74
TYPECLASS_REAL, 74
.UB, 69

:UNDEFINED, 65
.UNEQUAL, 69
:UNIVERSE_SIZE, 72
:UNSIGNED, 67
:UNSIGNED_CHAR, 67

MPI Constant and Predefined Handle Index

MPI::UNSIGNED_LONG, 67
MPI:UNSIGNED_LONG_LONG, 67
MPI:UNSIGNED_SHORT, 67
MPIL:WCHAR, 67
MPI:WIN_BASE, 72
MPI:WIN_DISP_UNIT, 72
MPI:WIN_NULL, 70
MPIL:WIN_SIZE, 72
MPIL:WTIME_IS_GLOBAL, 69
MPI_2DOUBLE_PRECISION, 69
MPI_2INT, 69
MPI_2INTEGER, 69
MPI_2REAL, 69
MPI_ADDRESS_KIND, 66
MPI_AINT, 67, 68
MPI_ANY_SOURCE, 3, 65
MPI_ANY_TAG, 65
MPI_APPNUM, 72
MPI_ARGV_NULL, 74
MPI_ARGVS_NULL, 74
MPI_BAND, 70
MPI_BOR, 70
MPI_BOTTOM, 65
MPI_BSEND_OVERHEAD, 4, 65
MPI_BXOR, 70
MPI_BYTE, 67, 68
MPI_C_BOOL, 67
MPI_C_COMPLEX, 67
MPI_C_DOUBLE_COMPLEX, 67
MPI_C_FLOAT_COMPLEX, 67
MPI_C_LONG_DOUBLE_COMPLEX, 67
MPI_CART, 71
MPI_CHAR, 40, 67
MPI_CHARACTER, 68
MPI_COMBINER_CONTIGUOUS, 73
MPI_COMBINER_DARRAY, 73
MPI_COMBINER_DUP, 73
MPI_COMBINER_F90_COMPLEX, 73
MPI_COMBINER_F90_INTEGER, 73
MPI_COMBINER_F90_REAL, 73
MPI_COMBINER_HINDEXED, 73
MPI_COMBINER_HINDEXED_INTEGER,
73
MPI_COMBINER_HVECTOR, 73
MPI_COMBINER_HVECTOR_INTEGER,
73
MPI_COMBINER_INDEXED, 73
MPI_COMBINER_INDEXED_BLOCK, 73

Unofficial Draft for Comment Only

MPI Constant and Predefined Handle Index

MPI_COMBINER_NAMED, 73
MPI_COMBINER_RESIZED, 73
MPI_COMBINER_STRUCT, 73
MPI_COMBINER_STRUCT_INTEGER, 73
MPI_COMBINER_SUBARRAY, 73
MPI_COMBINER_VECTOR, 73
MPI_COMM_NULL, 70
MPI_COMM_SELF, 26, 69
MPI_COMM_WORLD, 2, 3, 6, 9, 17, 24,
25, 27, 69
MPI_COMPLEX, 68
MPI_COMPLEX16, 68
MPI_COMPLEX32, 68
MPI_COMPLEX4, 68
MPI_COMPLEXS, 68
MPI_CONGRUENT, 69
MPI_COUNT, 40
MPI_DATATYPE_NULL, 70
MPI_DISPLACEMENT_CURRENT, 73
MPI_DIST_GRAPH, 71
MPI_DISTRIBUTE_BLOCK, 74
MPI_DISTRIBUTE_CYCLIC, 74
MPI_DISTRIBUTE_DFLT_DARG, 74
MPI_DISTRIBUTE_NONE, 74
MPI_DOUBLE, 40, 49, 67
MPI_DOUBLE_COMPLEX, 68
MPI_DOUBLE_INT, 69
MPI_DOUBLE_PRECISION, 68
MPI_DUP_FN, 72
MPI_ERR_ACCESS, 15, 64
MPI_ERR_AMODE, 15, 64
MPI_ERR_ARG, 14, 63
MPI_ERR_ASSERT, 14, 64
MPI_ERR_BAD_FILE, 15, 64
MPI_ERR_BASE, 5, 14, 64
MPI_ERR_BUFFER, 14, 63
MPI_ERR_COMNM, 14, 63
MPI_ERR_CONVERSION, 15, 64
MPI_ERR_COUNT, 14, 63
MPI_ERR_DIMS, 14, 63
MPI_ERR_DISP, 14, 64
MPI_ERR_DUP_DATAREP, 15, 64
MPI_ERR_FILE, 15, 64
MPI_ERR_FILE_EXISTS, 15, 64
MPI_ERR_FILE_IN_USE, 15, 64
MPI_ERR_GROUP, 14, 63
MPI_ERR_IN_STATUS, 8, 14, 64
MPI_ERR_INFO, 14, 64

87

MPI_ERR_INFO_KEY, 14, 64
MPI_ERR_INFO_NOKEY, 14, 64
MPI_ERR_INFO_VALUE, 14, 64
MPI_ERR_INTERN, 14, 63
MPI_ERR_IO, 15, 64
MPI_ERR_KEYVAL, 14, 64
MPI_ERR_LASTCODE, 13, 15, 17, 18, 64
MPI_ERR_LOCKTYPE, 14, 64
MPI_ERR_NAME, 14, 64
MPI_ERR_NO_MEM, 5, 14, 64
MPI_ERR_NO_SPACE, 15, 64
MPI_ERR_NO_SUCH_FILE, 15, 64
MPI_ERR_NOT_SAME, 15, 64
MPI_ERR_OP, 14, 63
MPI_ERR_OTHER, 13, 14, 63
MPI_ERR_PENDING, 14, 63
MPI_ERR_PORT, 14, 64
MPI_ERR_QUOTA, 15, 64
MPI_ERR_RANK, 14, 63
MPI_ERR_READ_ONLY, 15, 64
MPI_ERR_REQUEST, 14, 63
MPI_ERR_RMA_CONFLICT, 14, 64
MPI_ERR_RMA_SYNC, 14, 64
MPI_ERR_ROOT, 14, 63
MPI_ERR_SERVICE, 14, 64
MPI_ERR_SIZE, 14, 64
MPI_ERR_SPAWN, 14, 64
MPI_ERR_TAG, 14, 63
MPI_ERR_TOPOLOGY, 14, 63
MPI_ERR_TRUNCATE, 14, 63
MPI_ERR_TYPE, 14, 63
MPI_ERR_UNKNOWN, 13, 14, 63
MPI_ERR_UNSUPPORTED_DATAREP, 15,
64
MPI_ERR_UNSUPPORTED_OPERATION,
15, 64
MPI_ERR_WIN, 14, 64
MPI_ERRCODES_IGNORE, 74
MPI_ERRHANDLER_NULL, 12, 70
MPI_ERROR, 65
MPI_ERROR_STRING, 13
MPI_ERRORS_ARE_FATAL, 6, 7, 18, 19,
66
MPI_ERRORS_RETURN, 6, 7, 19, 66
MPI_F_STATUS_IGNORE, 74
MPI_F_STATUSES_IGNORE, 74
MPI_FILE_NULL, 70
MPI_FLOAT, 67

Unofficial Draft for Comment Only

© oo ~ =] t - w [V =

- w w w w w w w w w w [[%) [[[} %) [} N N [— - - = — = — = - =
o © oo ~ [=2] ot = w [V [o © oo ~ =] a - w) - [=] © oo ~ (=2} ot - w [- o

Ny
—

42

43

44

45

46

47

48

© oo ~ =] ot - w [=

[[[=~ =~ > -~ [w w w w w w w w w w [[V M [N ¥ N N [V [= = [= = = = = [=
~ =] (o)) - w N - o © oo ~ (=] ot [w N - o © oo ~ (=] o) - w N - (=] © oo ~ (=2} ot = w [V - o

'S
oo

88

MPI_FLOAT_INT, 69
MPI_GRAPH, 71
MPI_GROUP_EMPTY, 70
MPI_GROUP_NULL, 70
MPI_HOST, 2, 69
MPI_IDENT, 69
MPI_IN_PLACE, 65
MPI_INFO_NULL, 70
MPI_INT, 40, 43, 47, 51, 67
MPI_INT16_T, 67
MPI_INT32_T, 67
MPI_INT64_T, 67
MPI_INTS_T, 67
MPI_INTEGER, 68
MPI_INTEGERI, 68
MPI_INTEGER16, 68
MPI_INTEGER?2, 68
MPI_INTEGERA4, 68
MPI_INTEGERS, 68
MPI_INTEGER_KIND, 66
MPI_IO, 2, 3, 69
MPI_KEYVAL_INVALID, 65
MPI_LAND, 70
MPI_LASTUSEDCODE, 17, 72
MPI_LB, 69
MPI_LOCK_EXCLUSIVE, 65
MPI_LOCK_SHARED, 65
MPI_LOGICAL, 68
MPI_LONG, 67
MPI_LONG_DOUBLE, 67
MPI_LONG_DOUBLE_INT, 69
MPI_LONG_INT, 69
MPI_LONG_LONG, 40, 67
MPI_LONG_LONG_INT, 67
MPI_LOR, 70

MPI_LXOR, 70

MPI_MAX, 70
MPI_MAX_DATAREP_STRING, 66
MPI_MAX_ERROR_STRING, 13, 18, 66
MPI_MAX_INFO_KEY, 14, 66
MPI_MAX_INFO_VAL, 14, 66
MPI_MAX_OBJECT_NAME, 66
MPI_MAX_PORT_NAME, 66
MPI_MAX_PROCESSOR_NAME, 4, 66
MPI_MAXLOC, 70

MPI_MIN, 70

MPI_MINLOC, 70
MPI_MODE_APPEND, 72

MPI Constant and Predefined Handle Index

MPI_MODE_CREATE, 72
MPI_MODE_DELETE_ON_CLOSE, 72
MPI_MODE_EXCL, 72
MPI_MODE_NOCHECK, 72
MPI_MODE_NOPRECEDE, 72
MPI_MODE_NOPUT, 72
MPI_MODE_NOSTORE, 72
MPI_MODE_NOSUCCEED, 72
MPI_MODE_RDONLY, 72
MPI_MODE_RDWR, 72
MPI_MODE_SEQUENTIAL, 72
MPI_MODE_UNIQUE_OPEN, 72
MPI_MODE_WRONLY, 72
MPI_NULL_COPY_FN, 72
MPI_NULL_DELETE_FN, 72
MPI_OFFSET, 67, 68
MPI_OFFSET_KIND, 66
MPI_OP_NULL, 70
MPI_ORDER_C, 74
MPI_ORDER_FORTRAN, 74
MPI_PACKED, 67, 68
MPI_PROC_NULL, 2, 3, 65
MPI_PROD, 70
MPI_REAL, 68
MPI_REAL16, 68
MPI_REAL2, 68
MPI_REAL4, 68
MPI_REALS, 68
MPI_REPLACE, 70
MPI_REQUEST_NULL, 70
MPI_ROOT, 65
MPI_SEEK_CUR, 74
MPI_SEEK_END, 74
MPI_SEEK_SET, 74
MPI_SHORT, 67
MPI_SHORT_INT, 69
MPI_SIGNED_CHAR, 67
MPI_SIMILAR, 69
MPI_SOURCE, 65
MPI_STATUS_IGNORE, 74
MPI_STATUS_SIZE, 65
MPI_STATUSES_IGNORE, 74
MPI_SUBVERSION, 2, 74
MPI_SUCCESS, 13, 14, 18, 19, 36, 53, 55,
62, 63
MPI_SUM, 70
MPI_T_BIND_MPI_COMMUNICATOR, 38,
75

Unofficial Draft for Comment Only

MPI Constant and Predefined Handle Index

MPI_T_BIND_MPI_DATATYPE, 38, 75
MPI_T_BIND_MPI_ERRORHANDLER, 38,
75
MPI_T_BIND_MPI_FILE, 38, 75
MPI_T_BIND_MPI_GROUP, 38, 75
MPI_T_BIND_MPI_INFO, 38, 75
MPI_T_BIND_MPI_MESSAGE, 38, 75
MPI_T_BIND_MPI_OPERATOR, 38, 75
MPI_T_BIND_MPI_REQUEST, 38, 75
MPI_T_BIND_MPI_WINDOW, 38, 75
MPI_T_BIND_NO_OBJECT, 38, 44, 45, 51,
52, 75
MPI_T_CVAR_HANDLE_NULL, 45
MPI_T_ENUM_NULL, 43, 51
MPI_T_ERR_CANTINIT, 62, 65
MPI_T_ERR_INVALIDHANDLE, 62, 65
MPI_T_ERR_INVALIDINDEX, 62, 65
MPI_T_ERR_INVALIDITEM, 62, 65
MPI_T_ERR_INVALIDSESSION, 62, 65
MPI_T_ERR_INVALIDVAR, 62, 65
MPI_T_ERR_MEMORY, 62, 65
MPI_T_ERR_NOSTARTSTOP, 53, 62, 65
MPI_T_ERR_NOTINITIALIZED, 62, 65
MPI_T_ERR_NOWRITE, 55, 62, 65
MPI_T_ERR_OUTOFHANDLES, 62, 65
MPI_T_ERR_OUTOFSESSIONS, 62, 65
MPI_T_ERR_PVAR_WRITE, 54, 55
MPI_T_ERR_SETNEVER, 46, 62, 65
MPI_T_ERR_SETNOTNOW, 46, 62, 65
MPI_T_PVAR_ALL_HANDLES, 53-55, 75
MPI_T_PVAR_CLASS_AGGREGATE, 49
MPI_T_PVAR_CLASS_COUNTER, 48
MPI_T_PVAR_CLASS_GENERIC, 49

89

MPI_T_VERBOSITY_MPIDEV_ALL, 37,
75

MPI_T_VERBOSITY_MPIDEV_BASIC, 37,
75

MPI_T_VERBOSITY_MPIDEV_DETAIL,
37, 75

MPI_T_VERBOSITY_TUNER_ALL, 37, 75

MPI_T_VERBOSITY_TUNER_BASIC, 37,
75

MPI_T_VERBOSITY_TUNER_DETAIL, 37,
75

MPI_T_VERBOSITY_USER_ALL, 37, 75

MPI_T_VERBOSITY _USER_BASIC, 37, 75

MPI_T_VERBOSITY_USER_DETAIL, 37,
75

MPI_TAG, 65

MPI_TAG_UB, 2, 69

MPI_THREAD_FUNNELED, 73

MPI_THREAD_MULTIPLE, 73

MPI_THREAD_SERIALIZED, 73

MPI_THREAD_SINGLE, 73

MPI_TYPECLASS_COMPLEX, 74

MPI_TYPECLASS_INTEGER, 74

MPI_TYPECLASS_REAL, 74

MPI_UB, 69

MPI_UINT16_T, 67

MPI_UINT32_T, 67

MPI_UINT64_T, 67

MPI_UINTS_T, 67

MPI_UNDEFINED, 65

MPI_UNEQUAL, 69

MPI_UNIVERSE_SIZE, 72

MPI_UNSIGNED, 67

MPI_T_PVAR_CLASS_HIGHWATERMARK,MPI_UNSIGNED_CHAR, 67

48
MPI_T_PVAR_CLASS_LEVEL, 48

MPI_UNSIGNED_LONG, 67
MPI_UNSIGNED_LONG_LONG, 67

MPI_T_PVAR_CLASS_LOWWATERMARK, MPI_UNSIGNED_SHORT, 67

48
MPI_T_PVAR_CLASS_PERCENTAGE, 48
MPI_T_PVAR_CLASS_SIZE, 48
MPI_T_PVAR_CLASS_STATE, 47
MPI_T_PVAR_CLASS_TIMER, 49
MPI_T_PVAR_HANDLE_NULL, 52
MPI_T_PVAR_SESSION_NULL, 52
MPI_T_SCOPE_GLOBAL, 44, 75
MPI_T_SCOPE_LOCAL, 44, 75
MPI_T_SCOPE_READONLY, 44, 75

MPI_UNWEIGHTED, 74
MPI_VERSION, 2, 74

MPI_WCHAR, 67

MPI_WIN_BASE, 72
MPI_WIN_DISP_UNIT, 72
MPI_WIN_NULL, 70

MPI_WIN_SIZE, 72
MPI_WTIME_IS_GLOBAL, 2, 3, 20, 69
MPIT_UMQ_LENGTH, 55

Unofficial Draft for Comment Only

© oo ~ =] t - w [V =

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Declarations Index

This index refers to declarations needed in C/C++, such as address kind integers, handles,
etc. The underlined page numbers is the “main” reference (sometimes there are more than
one when key concepts are discussed in multiple areas).

MPI::Aint, 76 MPI_T _Pvar_session, 51
MPI::Cartcomm, 76 MPI_Win, 10, 11, 18, 70, 76
MPI::Comm, 76
MPI::Datatype, 76
MPI::Distgraphcomm, 76
MPI::Errhandler, 8, 9-12, 76
MPI::Exception, 76
MPI::File, 11, 12, 19, 76
MPI::Graphcomm, 76
MPI::Grequest, 76
MPI::Group, 76

MPI::Info, 4, 76
MPTI::Intercomm, 76
MPI::Intracomm, 76
MPI::Offset, 76

MPI::Op, 76

MPI::Prequest, 76
MPTI::Request, 76
MPI::Status, 76

MPI::Win, 10, 11, 18, 76
MPI_Aint, 75

MPI_Comm, 69, 70, 75
MPI_Datatype, 67-70, 76
MPI_Errhandler, 8, 9-12, 66, 70, 76
MPI_File, 11, 12, 19, 70, 76
MPI_Fint, 74, 75
MPI_Group, 70, 76
MPI_Info, 4, 70, 76
MPI_Offset, 75

MPI_Op, 70, 76
MPI_Request, 70, 76
MPI_Status, 74, 75
MPI_T_Cvar_handle, 44
MPI_T_Enum, 40

MPI_T _Pvar_handle, 52

Unofficial Draft for Comment Only 90

MPI Callback Function Prototype

Index

This index lists the C typedef names for callback routines, such as those used with attribute
caching or user-defined reduction operations. C++ names for these typedefs and Fortran
example prototypes are given near the text of the C name.

MPI_Comm_copy_attr_function, 71, 77
MPI_Comm_delete_attr_function, 71, 77
MPI_Comm_errhandler_function, 8, 77
MPI_Copy_function, 72, 80
MPI_Datarep_conversion_function, 77
MPI_Datarep_extent_function, 77
MPI_Delete_function, 72, 80
MPI_File_errhandler_function, 11, 77
MPI_Grequest_cancel _function, 77
MPI_Grequest_free_function, 77
MPI_Grequest_query_function, 77
MPI_Handler_function, 80
MPI_Type_copy_attr_function, 71, 77
MPI_Type_delete_attr_function, 71, 77
MPI_User_function, 76
MPI_Win_copy_attr_function, 71, 77
MPI_Win_delete_attr_function, 71, 77
MPI_Win_errhandler_function, 10, 77

Unofficial Draft for Comment Only

91

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© oo ~ =] ot - w [-

[[[e~ =~ > - [w w w w w w w w w w [[V M [~ N) N N [V [= = [= = = [[[=
~ =] (o)) - w N - o © oo ~ [=2] ot [w N - o © oo ~ =] o - w %) - (=] © oo ~ (=2} ot = w [- o

'S
oo

MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_ABORT, 6, 22, 25, 39
MPI_ADD_ERROR_CLASS, 16, 16
MPI_ADD_ERROR_CODE, 17
MPI_ADD_ERROR_STRING, 17, 18
MPI_ALLOC_MEM, 4, 5, 14
MPI_BSEND, 4, 23
MPI_BUFFER_DETACH, 23
MPI_COMM_CALL_ERRHANDLER, 18,
19
MPI_COMM_CONNECT, 14
MPI_COMM_CREATE_ERRHANDLER, 7,
8,9, 78
MPI_COMM_CREATE_KEYVAL, 77
MPI_COMM_DUP_FN, 71
MPI_COMM_FREE, 26
MPI_COMM_GET_ATTR, 2
MPI_COMM_GET_ERRHANDLER, 7, 9
MPI_COMM_GROUP, 7
MPI_COMM_NULL_COPY_FN, 71
MPI_COMM_NULL_DELETE_FN, 71
MPI_COMM_SET_ERRHANDLER, 7, 9
MPI_COMM_SPAWN, 27, 28
MPI_COMM_SPAWN_MULTIPLE, 27
MPI_ERRHANDLER_CREATE, 8
MPI_ERRHANDLER_FREE, 7, 12
MPI_ERRHANDLER_GET, 7, 9
MPI_ERRHANDLER_SET, 9
MPI_ERROR_CLASS, 13, 15, 15, 16
MPI_ERROR_STRING, 13, 13, 16, 18
MPI_FILE_CALL_ERRHANDLER, 19, 19
MPI_FILE_CREATE_ERRHANDLER, 7, 11,
12, 79
MPI_FILE_GET_ERRHANDLER, 7, 12
MPI_FILE_OPEN, 15
MPI_FILE_SET_ERRHANDLER, 7, 12
MPI_FILE_SET_VIEW, 15
MPI_FINALIZE, 2, 21, 22-26, 36, 45

MPI_FINALIZED, 21, 24, 26, 26

MPI_FREE_MEM, 5, 5, 14

MPI_GET_PROCESSOR_NAME, 3, 4

MPI_GET_VERSION, 1, 2, 21, 24

MPI_GREQUEST_START, 79

MPI_GROUP_FREE, 7

MPI_INFO_DELETE, 14

MPI_INIT, 2, 21, 21, 24-26, 32, 36, 39, 40,
45, 55

MPI_Init, 40

MPI_INIT_THREAD, 21, 26, 39

MPI_INITIALIZED, 21, 24, 24, 25, 26

MPI_ISEND, 22

MPI_KEYVAL_CREATE, 80

MPI_LOOKUP_NAME, 14

MPI_OP_CREATE, 77

MPI_PCONTROL, 31, 32, 32, 33

MPI_RECV, 55

MPI_REGISTER_DATAREP, 15, 79

MPI_REQUEST_FREE, 22

MPI_SEND, 33

MPI_T, 21, 24

MPI_T_CATEGORY _CHANGED, 60

MPI_T_CATEGORY _GET_CATEGORIES,
60, 60

MPI_T_CATEGORY _GET_CVARS, 59, 59,
60

MPI_T_CATEGORY _GET_INFO, 58, 60

MPI_T_CATEGORY _GET_NUM, 58

MPI_T_CATEGORY_GET_PVARS, 59, 59,
60

MPI_T_CVAR_GET_INFO, 40, 42, 43, 43,
44-46, 60

MPI_T_CVAR_GET_NUM, 42, 45

MPI_T_CVAR_HANDLE_ALLOC, 45

MPI_T_CVAR_HANDLE_FREE, 45, 45

MPI_T_CVAR_READ, 46, 46

Unofficial Draft for Comment Only 92

MPI Function Index

MPI_T_CVAR_WRITE, 46, 46
MPI_T_ENUM_GET_INFO, 40, 41
MPI_T_ENUM_GET_ITEM, 41, 41
MPI_T_FINALIZE, 39, 39, 40
MPI_T_INIT_THREAD, 39, 39, 40
MPI_T_MPI_T_ENUMITEM, 62
MPI_T_PVAR_GET_INFO, 40, 50, 50, 52,
54, 60
MPI_T_PVAR_GET_NUM, 49, 52
MPI_T_PVAR_HANDLE_ALLOC, 52
MPI_T_PVAR_HANDLE_FREE, 52, 52
MPI_T_PVAR_READ, 54, 54, 55
MPI_T_PVAR_READRESET, 55, 55
MPI_T_PVAR_RESET, 55, 55, 62
MPI_T_PVAR_SESSION_CREATE, 51
MPI_T_PVAR_SESSION_FREE, 51
MPI_T_PVAR_START, 53, 62
MPI_T_PVAR_STOP, 53, 62
MPI_T_PVAR_WRITE, 54, 54, 62
MPI_TEST, 22
MPI_TYPE_CREATE_KEYVAL, 78
MPI_TYPE_DUP_FN, 71
MPI_TYPE_NULL_COPY_FN, 71
MPI_TYPE_NULL_DELETE_FN, 71
MPI_TYPE_SIZE, 33
MPI_UNPUBLISH_NAME, 14
MPI_WAIT, 22
MPI_WIN_CALL_ERRHANDLER, 18, 19

MPI_WIN_CREATE_ERRHANDLER, 7, 10,

10, 78
MPI_WIN_CREATE_KEYVAL, 78
MPI_WIN_DUP_FN, 71
MPI_WIN_GET_ERRHANDLER, 7, 11
MPI_WIN_LOCK, 4
MPI_WIN_NULL_COPY_FN, 71
MPI_WIN_NULL_DELETE_FN, 71
MPI_WIN_SET_ERRHANDLER, 7, 10
MPI_WIN_UNLOCK, 4
MPI_WTICK, 20, 20
MPI_WTIME, 3, 20, 20, 33, 49
mpiexec, 21, 25, 27, 27
mpirun, 27

PMPI_, 30

Unofficial Draft for Comment Only

93

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	MPI Environmental Management
	Implementation Information
	Version Inquiries
	Environmental Inquiries
	Tag Values
	Host Rank
	IO Rank
	Clock Synchronization

	Memory Allocation
	Error Handling
	Error Handlers for Communicators
	Error Handlers for Windows
	Error Handlers for Files
	Freeing Errorhandlers and Retrieving Error Strings

	Error Codes and Classes
	Error Classes, Error Codes, and Error Handlers
	Timers and Synchronization
	Startup
	Allowing User Functions at Process Termination
	Determining Whether MPI Has Finished

	Portable MPI Process Startup

	Tool Interfaces
	Introduction
	Profiling Interface
	Requirements
	Discussion
	Logic of the Design
	Miscellaneous Control of Profiling

	Profiler Implementation Example
	MPI Library Implementation Example
	Systems with Weak Symbols
	Systems Without Weak Symbols

	Complications
	Multiple Counting
	Linker Oddities

	Multiple Levels of Interception

	MPI_T Tool Information Interface
	Verbosity Levels
	Binding of MPI_T Variables to MPI Objects
	Convention for Returning Strings
	Initialization and Finalization
	Datatype System
	Control Variables
	Control Variable Query Functions
	Example: Printing All Control Variables
	Handle Allocation and Deallocation
	Control Variable Access Functions
	Example: Reading the Value of a Control Variable

	Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Handle Allocation and Deallocation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions
	Example: Tool to Detect Receives with Long Unexpected Message Queues

	Variable Categorization
	MPI_T Return Codes
	Profiling Interface

	Language Bindings Summary
	Defined Values and Handles
	Defined Constants
	Types
	Prototype Definitions
	Deprecated Prototype Definitions
	Info Keys
	Info Values

	Bibliography
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index

