FT Working Group Ticket #276:
Run-Through Stabilization
Process Fault Tolerance

N

Postdoctoral Research Associate
Oak Ridge National Laboratory
hurseyjj@ornl.gov
http://lusers.nccs.gov/~jjhursey

Joshua Hursey

MPI Forum - July 18, 2011

f"e. U.S. DEPARTMENT OF

Jf ENERGY

Fault Tolerance Working Group

Define a set of semantics and interfaces to enable fault tolerant

applications and libraries to be portably constructed on top of MPI.
* Application/Library involved fault tolerance (not transparent)

* fail-stop process failures:

— A process failure in which the MPI process is permanently stopped,
often due to a component crash.

* Two Complementary Proposals:
— Run-Through Stabilization: Ticket #276 — Target MPI 3.0

« Continue running and using MPI even if one or more MPI processes fail

— Process Recovery: Ticket TBD — Target MPI 3.1

 Replace MPI processes in existing communicators, windows, file handles

» @&OLCFeoee | 7

Run-Through Stabilization Proposal

* Error Handlers:

— Application/Library must opt-in by:
 Replacing MPI_ERRORS_ARE_FATAL with at least MPI_ERRORS_RETURN
— MPI implementation may opt-out by:

* Returning MPI_ERR_UNSUPPORTED_OPERATION for new operations, and
* Never returning the new error class MPI_ERR_RANK_FAIL_STOP

* Error Class: MPI_ERR_RANK_FAIL_STOP
— A process in the operation is failed (fail-stop failure)

— If this error class is returned then the MPI agrees to provide the
specified semantics and interfaces defined by this proposal

* The behavior of MPI after returning other error classes
remains undefined by the standard.

3 @&OLCFeeee

Run-Through Stabilization Proposal

* Failure detector exposed to the application:

— Perfect Detector = strongly accurate & complete
* No process is reported as failed before it actually fails
« Eventually every failed process will be known to all processes

* Process failures are managed on a
per-{group, communicator, window, file handle} basis

— All such objects remain active across failures
— Object preservation is important to library development

4 &&OLCFeeoee

40 New MPI Operations

- Validation: (34) Update, access, and modify process state

/¥*¥*¥ | ocal List Scope ****/

MPI_{Group,Comm,Win,File}_validate Local
MPI_{Group,Comm,Win,File}_validate_get_num_state Local
MPI_{Group,Comm,Win,File}_validate_get_state Local
MPI_{Group,Comm,Win,File}_validate_get_state_rank Local
MPI_{Comm,Win,File}_validate_set_state_null Local

/¥*¥*¥* Global List Scope ****/

MPI_{Comm,Win,File}_validate_all Collective
MPI_{Comm,Win,File}_ivalidate_all Collective (Non-Blocking)
MPI_{Comm,Win,File}_validate_all_get_num_state Local
MPI_{Comm,Win,File}_validate_all_get_state Local
MPI_{Comm,Win,File}_validate_all_get_state_rank Local

e Other: (6

/***¥* Error Handler Comparison ****/
MPI_Errhandler_compare Local
/*¥**¥* Remote Termination ****/

MPI_Comm_kill 1 sided

/¥*¥** (Collectively Active ****/
MPI_{Comm,File}_is_collectively_active Local
/*¥*¥*¥*¥ MPI_Rank_info Language Binding ****/
MPI_Rank_info_{f2c,c2f} Local

5 «&OLCFeeoee PIDCE

MPI_Rank_info Type

- MPI_Rank_infois a semi-opaque type (like MPI_Status)

- info.MPI_RANK : Rank in the specified process group
- info.MPI_STATE : State of the rank in the process group
- info.MPI_FLAGS : Implementation specific modifiers

* Process State can be one of the following:

- MPI_RANK_STATE_OK : Normal, running state
— MPI_RANK_STATE_FAILED : Unrecognized fail-stop failure
- MPI_RANK_STATE_NULL : Recognized fail-stop failure

* Application recognized fail-stop process failures provide
MPI_PROC_NULL-like semantics.

¢ @&GOLCFeeoee®

Quick Overview of Semantics

« Communication Object Creation:
— Uniformly created across collective group

e Point-to-Point

— Isolation of failures:
Proc. A can communicate with Proc. B, even if Proc. C has failed

e Collectives

— Must be at least Fault-Aware:
Cannot 'hang' in the presence of process failure, but do not need to
return the same return code everywhere

— May be Fault-Tolerant.
Fault-Aware and provides uniform return codes at all processes

7 @&OLCFeeoeoe

Performance Notes: Open MPI Prototype

* NetPIPE: Shared Memory

— Latency: 0.84 to 0.85 microseconds (1.2%)
— Bandwidth: 8957 to 8920 Mbps (0.4%)

* Collectives: Fault-Aware

— MPI_Barrier:
Within 1% of fault-unaware, regardless of # failures

Hursey, J., Graham, R., “Preserving Collective Performance Across Process Failure for
a Fault Tolerant MPI,” HIPS Workshop @ IPDPS, 2011.

— MPI_Comm_validate_all:
Within 3% of MPI_Allreduce() collective, log-scaling

Hursey, J., Naughton, T., Valle, G., Graham, R., “A Log-Scaling Fault Tolerant
Agreement Algorithm for a Fault Tolerant MPI,” EuroMPI, 2011 (to appear).

8 @@&GOLCFeeoee

MPI1_Barrier:
fault-aware collective, binomial tree

900

Reroute =imim: - @
& 700 - No Lookup sssssss s P
§ 600 _ Rebalanced o
3 Failure Free o
& 500 S -
§ 400 “/')J
£ o
o 300 s
i: 200) ’/(’ e al
100 | "
0=
: 8 16 32 64 128 256
Job Size

3500 ‘ | |
Fault Unaware = === JR—
3000 - Reroute =imim: ¢
%7 No Lookup =sssss:
i 5 Rebalanced
IU Odin Cluster g 2500 - .
64 of 128 nodes & 00| Failure Full
Dual AMD Dual-Core Opteron £ 1500
4 GB RAM/node é’
Shared memory + TCP 1000 o
500
1 2 4
Num Failures
Hursey, J., Graham, R., “Preserving Collective Performance Across Process Failure for *——

9 «@OLCF® ®®® ,r.itTolerant MPI” HIPS Workshop @ IPDPS, 2011.

MPI_Comm_validate_all:
2-phase commit protocol, binomial tree

16000

14000

12000
10000
8000
6000
4000
2000
0

Time (microseconds)

ORNL Smoky Cluster

32 of 80 nodes

32 GB RAM/node

Shared memory + TCP

Allreduce === ==
Linear svissss 3
= Log a
Failure Fre :
/At worst 3% of Allreduce
i At worst 6% of Allreduce
2 8 16 32 64 128 256 512
Number of Processes 5000 Allreduce === = =
4500 | L
3 4000 - Rebalanced A
2 4sgp | Unbalanced
8 : 2.0X -
© 3000 ‘
S 2500 .
Four AMD Quad-Core Opteron £ 2000 pssm—rrrrrrrrTie e oo Crrrr
o 1500 g
£ 1000 \\
500 - Failure Ful \
0
8 16 32 64 128 256 512

Number of Process Failures
Hursey, J., Naughton, T., Valle, G., Graham, R., “A Log-Scaling Fault Tolerant
2 «OLCFeeee Agreement Algorithm for a Fault Tolerant MPI,” EuroMPI, 2011 (to appear).

Application Example: (NOAA)

Weather Forecasting

3 @&G0OLCFeeoe e

NOAA’ s Primary Use Case

Operational case

Fault-tolerance, not fault-recovery - upon a failure,
permit surviving ensemble members to complete
Deadline processing not real-time processing

Must be able to set max timeout for ensemble member failure
detection/declaration

Prune and continue

@l RA NOAA Earth System Research Laboratory - Boulder, Colorado June 12, 2011 Page 14 Vm

How It Might Work

Until recently, each ensemble member was a separate “binary”,
separate but simultaneous launch. With MPI3 a single binary with
separate communicators for each ensemble member would be used.

Only one MPI task per ensemble member would perform the fault-
tolerant rendezvous process.

Any ensemble member failure takes out the entire ensemble member.

Only one ensemble member at a time is the “master” to focus the
rendezvous (first ensemble member first, simple/direct succession in
case of failure).

A parameter value will set the maximum time to wait for an ensemble
member to rendezvous.

All communication from “clients” to “master” will include an
acknowledge (ack) back to the client containing information
regarding the result of the rendezvous.

“Master” and “Client” are really identical, just minor execution
differences. All ensemble members capable of becoming “Master”.

@l RA NOAA Earth System Research Laboratory - Boulder, Colorado June 12, 2011 Page 16 @

Future - Failure Result

> Disk
L Post Processing

une 12, 2011 Page 17 Vw

Application Example: (LLNL/ORNL)
HFODD - Nuclear Physics

» &OLCFeeee

Application Example: (LLNL/ORNL)
HFODD

* Solves the Hartree-Fock Bogoliubov equations in
deformed, Cartesian harmonic oscillator coordinates

 Systematic calculations involve
— Thousands of nuclei
— Hundreds of possible parameters’f

Stable nuclei

K d’f’%
now (/Q@
Terr:‘
l) incognita
28
20
.
2 . e Neutrons Dobaczewski, J., et. al., "Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in
& the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.40h): a new version

of the program", Computer Physics Communications, 2009. ORI T
23 @OLCF ® @ @ ® /5w fuw.edu.pl/~dobaczew/hfodd/hfodd. html

Application Example: (LLNL/ORNL)
HFODD Run Characterization (Current)

Master
(Reads input and distributes
nuclei and parameters Q20,
Q30 using MPI)

o R Worker Fails
Worker Worker Worker Worker [N (unphysical
(Q20,Q30) (Q20,Q30) (Q20,Q30) (Q20,Qs50) OUtEUt)
Worker Worker Worker Worker All Workers
(Q20,Q30) (Q20,Q30) (Q20,Q30) (Q20,Q30) Fail
(wasted CPU &
human hours)

24 @&@OLCF ® @ @ ® /W fuw.edu.pl/~dobaczew/hfodd/hfodd. html

Application Example: (LLNL/ORNL)
HFODD Run Characterization (Desired)

Master

(Reads input and distributes If worker fails
nuclei and parameters Q20,

Q30 using MPI)

Then worker
gets new (Q20,

Q30) from Tribe

Master

-- and/or ---
Worker Worker Worker Worker _)lf critical # of
(Q20,Q3) (Q20,Q3) (Q20,Q3) (Q20,Q30) workers fail
Worker Worker Worker Worker Then Tribe
(Q20,Q3) (Q20,Q3) (Q20,Q30) (Q20,Q30) Master kills all

workers and

begin

calculations on

22 OAK

25 @OLCF ® @ @ ® /5w fuw.edu.pli~dobaczew/hfodd/hfodd.htm

Application Example: (A Sampling of Others)
General Algorithm Based Fault Tolerance

* Rob T. Aulwes, "Integrating Fault Tolerance into the Monte Carlo Application Toolkit," Resilience
Summit @ LACSS, 2010.

« T. Davies, C. Karlsson, H. Liu, C. Ding and Z. Chen, "High Performance Linpack Benchmark: A Fault
Tolerant Implementation without Checkpointing,” International Conference on Supercomputing, 2011.

« D. Hakkarinen and Z. Chen, "Algorithmic Cholesky factorization fault recovery," In Proceedings of the
24th IEEE International Parallel and Distributed Processing Symposium, 2010.

- Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-stop failures,” IEEE Transactions on
Parallel and Distributed Systems, 2008.

» H. Ltaief, E. Gabriel, and M. Garbey, “Fault tolerant algorithms for heat transfer problems,” Journal of
Parallel and Distributed Computing, 2008.

* Y. Du, P. Wang, H. Fu, J. Jia, H. Zhou, and X. Yang, “Building single fault survivable parallel
algorithms for matrix operations using redundant parallel computation,” International Conference on
Computer and Information Technology, 2007.

- J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery patterns for iterative methods in a parallel
unstable environment,” SIAM Journal of Scientific Computing, 2007.

« C. Engelmann and A. Geist, “Super-scalable algorithms for computing on 100,000 processors,” in
Proceedings of International Conference on Computational Science, 2005.

« K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,” IEEE
Transactions on Computers, 1984.

» B. Randell, “System structure for software fault tolerance,” in Proceedings of the international
conference on reliable software, 1975.

26 &GOLCFe oo o0

