NN 1 e
N TP

2
2
-
)
>
o
Q
o
a
>

Iew

MPI-3.0 Overv

Rolf Rabenseifner

Acknowledgements

 Some detailed slides are provided by the
— Ticket authors,
— Chapter authors, or
— Chapter working groups.

* Richard Graham, chair of MPI-3.0.

MPI-3.0 Overview

Goal & Scope

 Goal:
— To produce new versions of the MPI standard that better serves
the needs of the parallel computing user community
* Scope:
— Additions to the standard that are needed for better platform and
application support.

— These are to be consistent with MPI being a library providing process
group management and data exchange. This includes, but is not limited
to, issues associated with scalability (performance and robustness), multi-
core support, cluster support, and application support.

— And of course,
all needed corrections to detected bugs / ambiguities / inconsistencies

— Backwards compatibility may be maintained —
Routines may be deprecated or deleted.

MPI-3.0 Overview

Planned Schedule to MPI-3.0

e July 16-19, 2012, Chicago: Final votes for draft 2
— Some additional days for finishing the draft document
e Aug. 2,2012: mpi3.0_draft_2.pdfis released
— See http://meetings.mpi-forum.org/MPI_3.0_main_page.php
— Request for comments sent out to the public
e Subscribe to the mpi-comments mailing list
e Send mail to mpi-comments@Iists.mpi-forum.org
— Public comment period ends on Sep. 6, 2012
e Sep.7-12,2012: Late changes based on public comments
e Sep.12,2012: mpi3.0_draft_3.pdf
* MPI-3 Forum meeting, Sep. 20-21, 2012 in Vienna:
— Final chapter votes on Thursday, Sep. 20
— Final standard vote on Friday, Sep. 21 (state of this schedule: Aug. 18, 2012)

MPI-3.0 Overview

Improved Collective Communication

e Scalable sparse collectives on process topologies
— MPI_(I)Neighbor_allgather(v) / alltoall(v/w): = #258,,
— MPI _Aint displs in (I)Neighbor_alltoallw (instead of int) #299,,

* Nonblocking collectives
— Communication: MPI_lbarrier, MPI_Ibcast, ... #109,,

— MPI_Icomm_dup #168 .

Background information, see:
e https://svn.mpi-forum.org/trac/mpi-forum-web/query

* #ltemin MPI-3.0, Change-Log, Annex B.1.1 ¢, ¢y and B.1.2 ,,,
The item numbers in this document are based on MPI-3.0 Draft 2, Aug. 2, 2012:
http://meetings.mpi-forum.org/draft_standard/mpi3.0_draft_2.pdf
Final change-log item numbers may be different.

MPI-3.0 Overview

Improvements to one-sided communication support

Slides
Main ticket #27024

— Routines: MPI_Rget / Rput / Raccumulate / Get_accumulate /
Rget_accumulate / Fetch_and_op / Compare_and_swap
MPI_Win_allocate / create_dynamic / attach / detach / lock_all /
unlock_all / flush / flush_all / flush_local / flush_local_all / sync

— New operation MPI_NO_OP

— New attribute MPI_WIN_CREATE_FLAVOR = MPI_WIN_FLAVOR_CREATE
/ ALLOCATE / DYNAMIC

— New attribute MPI_WIN_MODEL = MPI_WIN_SEPARATE / UNIFIED

->Slide
e Shared memory RMA window (see also slide on “hybrid”) —H#284,,
— Routine: MPI_Win_allocate_shared, MPI_Win_shared_query
— Flavor attribute: MPI_WIN_FLAVOR_SHARED

MPI-3.0 Overview

Support for clusters of SMP nodes (hybrid support)

->Slide
* Topology aware communicator creation #287,
— MPI_Comm_split_type with split_type=MPI_COMM_TYPE_SHARED
->Slide
* Shared memory RMA window (see also slide on “one-sided” | 6)) #284,,

— Routine: MPI_Win_allocate_shared, MPI_Win_shared_query E;i%j
— Flavor attribute: MPI_WIN_FLAVOR_SHARED

* Thread-safe probe = new probe routine and message object

— MPI_(I)Mprobe, MPI_(1)Mrecv #38,,
— MPI_Message f2c / c2f #274,

MPI-3.0 Overview

Other Forum Activities

Slides

New Fortran bindings: mpi_f08 module 25-37) #229,. ,,

Non-collective communicator formation: MPI_Comm_create_group #286,,

— Tags are in a special tag-space.
38

— MPI_INTERCOMM _CREATE has its own tag-space #305,

->Slide

New Datatype Creation Routine: MPI_Type_create_hindexed_block| 39 R80,,

Large counts: o
iae
— type MPI_Count / INTEGER(KIND=MPI_COUNT_KIND)
— datatype MPI_COUNT

— New routines: MPI_Type_:size x/get_extent x /get true extent x,
MPI_Get_elements_x, MPI|_Status_set_elements_x

MPI_Init, MPI_Init_thread, and MPI_Finalize were clarified. #313,,

— New predefined info object MPI_INFO_ENV holds arguments from mpiexec or
MPI_COMM_SPAWN

#265, ,

MPI-3.0 Overview

New Tool Interface
*_Main ticket #266,.

1146l — MPI_T_init_thread / finalize / enum_get_info/item,

MPI_T_cvar_: get_num/info / handle_alloc/free / read / write,
MPI_T_pvar_: get_num/info / session_create/free / handle_alloc/free /
start / stop / read / write / reset / readreset,

MPI_T_category_: get_num/info/cvars/pvars/categories / changed

— MPI_T routines are callable before MPI_Init & after MPI_Finalize #266,,

— MPI_Get_library_version #204 .
— MPI_Comm_dup_with_info /set_info / get_info, MPI_Win_set/get_info
* MPI_COMM_DUP must also duplicate info hints. #271,,
 MPIR (independent document, not part of the MPI standard) #228

— “The MPIR Process Acquisition Interface”

— a commonly implemented interface
primarily used by debuggers to interface to MPI parallel programs

MPI-3.0 Overview

Deprecated functionality moved to Chapter 16. Removed Interfaces

« Removed MPI-1.1 functionality (deprecated since MPI-2.0): #303 |

— Routines: MPI_ADDRESS, MPI_ERRHANDLER_CREATE / GET / SET,
MPI_TYPE_EXTENT / HINDEXED / HVECTOR / STRUCT / LB / UB

— Datatypes: MPI_LB/ UB
— Constants MPI_COMBINER_ HINDEXED/HVECTOR/STRUCT _INTEGER

— Removing deprecated functions from the examples and definition of
MPI_TYPE_GET_EXTENT #278 |

e C++ Bindings are removed (deprecated since MPI-2.2) #281 ,
— C++ applications are supported through the MPI C language binding
— Special C++ types are supported through

additional MPI predefined datatypes #340,
 MPI_CXX_BOOL bool
* MPI_CXX_FLOAT_COMPLEX std::complex<float>
* MPI_CXX_DOUBLE_COMPLEX std::complex<double>
* MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

MPI-3.0 Overview

Minor Corrections and Clarifications

Consistent use of [] for input and output arrays #125, #126 ,
— Exception: MPIL_INIT and MPI_INIT_THREAD: char ***argv

Add const keyword to the C bindings. “IN” was clarified. #140 ,
MPI_STATUSES_IGNORE can be used in MPI_(I)(M)PROBE #229.2,
MPI_PROC_NULL behavior for MPI_PROBE and MPI_IPROBE #256,,
MPI_UNWEIGHTED should not be NULL #294 ,
MPI_Cart_map with num_dims=0 #162,,
MPI_MAX_OBJECT_NAME used in MPI_Type/win_get_name #2194
New wording in reductions:

Multi-language types MPI_AINT, MPI_OFFSET, MPI_COUNT #187

MPI_TYPE_CREATE_RESIZED should be used for “arrays of struct” #229.2,,

— The MPI alignment rule cannot guarantee to calculate the same
alignments as the compiler

MPI-3.0 Overview

Six MPI-2.2 errata items, see Change-Log Annex B.1.1

e C++ corrections were added as MPI-2.2 errata, because MPI-2.2 is the last
version that includes the MPI C++ language binding.

— Item 1: MPI_CXX_BOOL and #340.,
MPI_CXX_ FLOAT/DOUBLE/LONG_DOUBLE _COMPLEX
are added to the list of predefined datatype handles (in C and Fortran)

— The nonstandard C++ types Complex<...> were substituted by the
standard types std::complex<...>. #340,,

— Items 3, 5, 6: minor corrections #192., #166.. #202,,
* MPI_C_COMPLEX was added to the Complex reduction group (Item 2) #340,,
e The MPI_C_BOOL "external32" representation is 1-byte (Item 4) #171,

The MPI-3.0 Change-Log, Annex B.1.2 has two parts:
— Iltems 1-25 (1-26 in final 3.0): General changes
— Times 26-33 (27-34 in final 3.0): Changes related to Fortran

MPI-3.0 Overview

Details about most & important topics an

Slide 14:
Slide 15:

Slides 17-21:
Slides 22-23:

Slide 24:

Slides 25-37:

Slide 38:
Slide 39:
Slide 40:

Slides 41-46:

Slide 47:

Background information, see: —

Sparse and scalable irregular collectives #ltem in MPI-3.0, Change-Log, B.1.2 ; 4,
The item numbers in this document are

. . based on MPI-3.0 Draft 2, Aug. 2, 2012.
Nonblocklng collectives http://meetings.mpi-forum.org/

draft_standard/mpi3.0_draft_2.pdf
One-sided communication — enhancements |[2l change-log item numbers may be

Shared memory extensions (on clusters of SMP nodes)
Mprobe for hybrid programming on clusters of SMP nodes
Fortran interface

Group-Collective Communicator Creation
MP|_TYPE_CREATE_HINDEXED BLOCK

Large Counts

New tools interface

Removing C++ bindings from the Standard

MPI-3.0 Overview

Sparse Collective Operations on Process Topologies 21

 MPI process topologies (Cartesian and (distributed) graph) usable for
communication

— MPI_NEIGHBOR_ALLGATHER(V)
— MPI_NEIGHBOR_ALLTOALL(V,W)
— Also nonblocking variants

— Accepted for MPI-3 in Sept. 2011
— Reference implementation exists

* |f the topology is the full graph, then neighbor routine is identical to full
collective communication routine

— Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint
* Allow for optimized communication scheduling and scalable resource binding

Courtesy of Torsten Hoefler and Richard Graham

MPI-3.0 Overview

Nonblocking Collective Communication and MPlI_ICOMM _DUP 1315

* I|dea
— Collective initiation and completion separated
— Offers opportunity to overlap computation and communication

— Each blocking collective operation has a corresponding nonblocking
operation

— May have multiple outstanding collective communications on the same
communicator

— Ordered initialization

 Voted into the MPI-3.0 draft standard in June 2009,
— Reference Implementation (LibNBC) stable
— Several implementations pending

* Parallel MPI I/O: The split collective interface may be substituted in the next
version of MPI

Courtesy of Torsten Hoefler and Richard Graham

MPI-3.0 Overview

MPI One-Sided Communication Interface 24

Courtesy of the MPI-3 One-sided working group

MPI-3.0 Overview

Background of MPI-2 One-Sided Communication

* MPI-2’s one-sided communication provides a programming model for
put/get/update programming that can be implemented on a wide variety of
systems

* The “public/private” memory model is suitable for systems without local

memory coherence (e.g., special memory in the network; separate, non-
coherent caches between actors working together to implement MPI One-

Sided)

 The MPI-2 interface, however, does not support some other common one-
sided programming models well, which needs to be fixed

* Good features of the MPI-2 one-sided interface should be preserved, such as

— Nonblocking RMA operations to allow for overlap of communication with other
operations

— Support for non-cache-coherent and heterogeneous environments
— Transfers of noncontiguous data, including strided (vector) and scatter/gather

— Scalable completion (a single call for a group of processes)

MPI-3.0 Overview

Goals for the MPI-3 One-Sided Interface

 Address the limitations of MPI-2 RMA by supporting the following features:

— In order to support RMA to arbitrary locations, no constraints on memory,
such as symmetric allocation or collective window creation, should be
required

— RMA operations that are imprecise (such as access to overlapping storage)
must be permitted, even if the behavior is undefined

— The required level of consistency, atomicity, and completeness should be
flexible

— Read-modify-write and compare-and-swap operations are needed for
efficient algorithms

MPI-3.0 Overview

Major New Features in the MPI-3 One-sided Interface

 New types of windows

— MPI_Win_allocate — returns memory allocated by MPI; permits symmetric
allocation

— MPI_Win_create_dynamic — allows any memory to be attached to the
window dynamically as needed

— MPI_Win_allocate _shared — creates a window of shared memory that
enables direct load/store accesses with RMA semantics to other processes
in the same shared memory domain (e.g., the same node)

* New atomic read-modify-write operations

— MPI_Get_accumulate, MPI_Fetch_and_op, MPI_Compare_and_swap
* New synchronization and completion calls, including:

— Wait and test on request-based one-sided operations

— Completion of pending RMA operations within passive target access
epochs (MPl_Win_flush and variants)

MPI-3.0 Overview

Major New Features — cont’d

 Query for new attribute to allow applications to tune for cache-coherent
architectures

— Attribute MPI_WIN_MODEL with values
e MPI_WIN_UNIFIED on cache-coherent systems
« MPI_WIN_SEPARATE otherwise

* Relaxed rules for certain access patterns

— Results undefined rather than erroneous; matches other shared-memory
and RDMA approaches

* Ordering of Accumulate operations
— Change: ordering provided by default
— Can be turned off for performance, using a new info key

MPI-3.0 Overview

Status of the MPI-3 One-sided Interface
* Passed final 2" (final) vote at the January 2012 meeting

 Example implementation on top of Portals-4 available
— thanks to Brian Barrett of Sandia National Labs
e Other implementations in progress

MPI-3.0 Overview

Shared Memory Extensions to MPI

17
* Step 1: Topology-aware communicator creation

— Allows you to create a communicator whose processes can create a
shared memory region

— MPI_Comm_split_type(comm, comm_type, key, info, split_comm)

— More generally: it splits a communicator into subcommunicators
split_comm of a certain type:

e MPI_COMM _TYPE_SHARED: shared memory capability

* Other implementation specific types are possible: rack, switch, etc.
— But not yet standardized.

MPI-3.0 Overview

Shared Memory Extensions to MPI — Cont’d 2

e Step 2: Creation and manipulation of shared memory (based on MPI RMA
semantics)
e MPI_WIN_ALLOCATE_SHARED(size, info, split_comm, baseptr, win)

— Collective call that allocates memory of least size bytes that is shared
among all processes in comm

— Returns locally allocated region pointed to by baseptr that can be used for
load/store access on the calling process

— Consistent view of shared memory can be created in the RMA unified

memory model by using window synchronization functions or by calling
MPI_WIN_FLUSH()

MPI-3.0 Overview

Thread-safe probe: MPI_(I)MPROBE & MPI_(I)MRECV 11

e MPI_PROBE & MPI_RECV together are not thread-safe:

— Within one MPI process, thread A may call MPI_PROBE

— Another tread B may steal the probed message

— Thread A calls MPI_RECV, but may not receive the probed message
 New thread-safe interface:

— MPI_IMPROBE(source, tag, comm, flag, message, status) or

— MPI_MPROBE(source, tag, comm, message, status) Message handle,
together with l e.g., stored in a thread-

—__local variable
— MPI_MRECV(buf, count, datatype, message, status) or

— MPI_IMRECV(buf, count, datatype, message, request)

MPI-3.0 Overview

MPI 3.0 Fortran Bindings 26-42

* A high-level summary for non-Fortran programmers
e Details for Fortran programmers

MPI-3.0 Overview

Brief overview of the requirements for new MPI 3.0 Fortran bindings

* Requirements

— comply with Fortran standard (for the first time)

— enhance type safety @

— suppress argument cheing for choice buffers

— guarantee of correct asynchronous operations]gb

— for user convenience
e provide users with convenient migration path @
* allow some optional arguments (e.g., ierror) @
e support sub-arrays @

— for vendor convenience
* allow vendors to take advantage of the C interoperability standard

Slide: Courtesy of Jeff Squyres and Craig Rasmussen

MPI-3.0 Overview

Three methods of Fortran support

. USE mpi_fOSﬁ&{\;@ %
— This is the only Fortran support method that is consistent with the Fortran standard

(Fortran 2008 + TR 29113 and later).
— This method is highly recommended for all MPI applications.
— Mandatory compile-time argument checking & uniqgue MPI handle types.
— Convenient migration path.
* USE mpi
— This Fortran support method is inconsistent with the Fortran standard, and its use is
therefore not recommended.
— It exists only for backwards compatibility.
% Mandatory compile-time argument checking (but all handles match with INTEGER). 39
 INCLUDE ‘mpif.h’
— The use of the include file mpif.h is strongly discouraged starting with MPI-3.0. 40
— Does not guarantees compile-time argument checking.
— Does not solve the optimization problems with nonblocking calls,
— and is therefore inconsistent with the Fortran standard.
— It exists only for backwards compatibility with legacy MPI applications.

MPI-3.0 Overview

The mpi f08 Module % Mainly for implementer’s
— reasons.

 Example: Not relevant for users.

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) BIND(C)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buff

ortran compatible buffer) 28
INTEGER, INTENT(IN) :: count, source, tag declaration allows correct

compiler optimizations
TYPE(MPI_Datatype), INTENT(IN) :: datatype _ —
TYPE(MPI_Comm), INTENT(IN) :: comm {J”'q“e handle types allow | -

_~
best compile-time
TYPE(MPI_Request), INTENT(OUT) :: request

argument checking r
INTEGER, OPTIONAL, |NTENT(0UT)WTENT - Compiler-based | 35

optimizations & checking |

MPI_Wait(request, status, ierror) BIND(C) Status isnowa)
TYPE(MPI_Request), INTENT(INOUT) :: reques Fortran structure, i.e., 30
a Fortran derived type
TYPE(MPI_Status) :: status —_
: OPTIONAL ierror:
INTEGER, OPTIONAL, INTENT(OUT) :: mrror%\m:>I ‘outine can be called |2

without ierror argument

MPI-3.0 Overview

Major changes

e Support method: % 26

USE mpi or INCLUDE ‘mpif.h’ - USE mpi_f08
* Status 30

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
—> TYPE(MPI_Status) :: status

status(MPI_SOURCE) - status%MPI_SOURCE

status(MPIl_TAG) - status%MPI_TAG

status(MPI_ERROR) - status%MPI_ERROR
/

Additional routines and declarations are provided for the
language interoperability of the status information between
- C,
— Fortran mpi_f08, and
— Fortran mpi & mpif.h

MPI-3.0 Overview

Major changes, continued

TYPE, BIND(C) :: MPI_Comm
INTEGER :: MPI_VAL

. END TYPE MPI_Comm
 Unique handle types, e.g., % 27
— INTEGER new_comm - TYPE(MPI_Comm) :: new_comm
e Handle comparisons, e.g., No change through overloaded operator |
— req.EQ. MPI_REQUEST NULL > req.EQ MPI_REQUEST NULL
e Conversion in mixed applications:)
— Both modules (mpi & mpi_f08) contain the declarations for all handles.
SUBROUTINE a SUBROUTINE a
USE mpi USE mpi_f08
INTEGER :: splitcomm TYPE(MPI_Comm) :: splitcomm
CALLMPI_ COMM SPLIT(..., splitcomm) CALL MPI_Comm_split(..., splitcomm)
CALL b(splitcomm) CALL b(splitcomm)
END END
SUBROUTINE b(splitcomm) SUBROUTINE b(splitcomm)
USE mpi_f08 USE mpi
INTEGER :: splitcomm TYPE(MPI_Comm) :: splitcomm
TYPE(MPI_Comm) :: splitcomm_f08 INTEGER :: splitcomm_old
CALL MPI Send(..., MPI_Comm(splitcomm)) CALL MPI SEND(..., splitcomm%MPI_VAL)
lor lor
splitcomm_f08%MPI_VAL = splitcomm splitcomm_old = splitcomm%MPI_VAL
CALL MPI Send(..., splitcomm_f08) CALL MPI_SEND(..., splitcomm_old)
_ END END _J

MPI-3.0 Overview

Major changes, continued

i

« SEQUENCE and BIND(C) derived application types can be used as buffers in MPI
operations.

e Alignment calculation of basic datatypes:
— In MPI-2.2, it was undefined in which environment the alignments are taken.
— There is no sentence in the standard.
— It may depend on compilation options!
— In MPI-3.0, still undefined, but recommended to use a BIND(C) environment.
— Implication (for C and Fortran!):

* If an array of structures (in C/C++) or derived types (in Fortran) should
be communicated, it is recommended that

* the user creates a portable datatype handle and
* applies additionally MPI_TYPE_CREATE_RESIZED to this datatype handle.

MPI-3.0 Overview

Other enhancements

* Unused ierror

INCLUDE ‘mpif.h’

I wrong call:

CALL MPI_SEND(...., MPI_COMM_WORLD)

| = terrible implications because ierror=0 is written somewhere to the memory
* With the new module

USE mpi_f08

| Correct call, because ierror is optional:

CALL MPI_SEND(...., MPI_COMM_WORLD)

MPI-3.0 Overview

29

Other enhancements, continued

 With the mpi & mpi_f0O8 module:

— Positional and keyword-based argument lists 33
e CALL MPI_SEND(sndbuf, 5, MPI_REAL, right, 33, MPI_COMM_WORLD)

e CALL MPI_SEND(buf=sndbuf, count=5, datatype=MPI_REAL,
dest=right, tag=33, comm=MP|_COMM_WORLD)

The keywords are defined in the language bindings.
Same keywords for both modules.

— Remark: Some keywords are changed since MPI-2.2 33
 For consistency reasons, or
* To prohibit conflicts with Fortran keywords, e.g., type, function.

MPI-3.0 Overview

Major enhancement with a full MPI-3.0 implementation

* The following features require Fortran 2003 + TR 29113
— Subarrays may be passed to nonblocking routines 28
* This feature is available if the LOGICAL compile-time constant
MPI_SUBARRAYS SUPPORTED == .TRUE.

E E QE Correct handling of buffers passed to nonblocking routines, 37

* if the application has declared the buffer as ASYNCHRONOUS within
the scope from which the nonblocking MPI routine and its
MPI_Wait/Test is called,

e and the LOGICAL compile-time constant
MPI1_ASYNC_PROTECTS_NONBLOCKING == .TRUE.

— These features must be available in MPI-3.0 if the target compiler is
Fortran 2003+TR 29113 compliant.

* For the mpi module and mpif.h, it is a question of the quality of the
MPI library.

MPI-3.0 Overview

Minor changes

MPI_ALLOC_MEM, MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED 35
and MPI_WIN_SHARED QUERY return a base_addr.

— In MPI-2.2, it is declared as INTEGER(KIND=MPI_ADDRESS KIND)
and may be usable for non-standard Cray-pointer,
see Example 8.2 of the use of MPI_ALLOC_MEM

— In MPI-3.0 in the mpi_f08 & mpi module, these routines are overloaded with
a routine that returns a TYPE(C_PTR) pointer,
see Example 8.1

The buffer_addr argumet in MPI_BUFFER_DETACH is incorrectly defined 31
and therefore unused.

Callbacks are defined with explicit interfaces PROCEDURE(MPI_...) BIND(C) 41+42

A clarification about comm_copy_attr_fn callback, 34
see MPI_COMM_CREATE_KEYVAL:

— Returned flag in Fortran must be LOGICAL, i.e., .TRUE. or .FLASE.

MPI-3.0 Overview

Detailed description of problems, mainly with the old support 37
methods, or if the compiler does not support TR 29113:

— 17.1.8 Additional Support for Fortran Register-Memory-Synchronization
— 17.1.10 Problems With Fortran Bindings for MPI
— 17.1.11 Problems Due to Strong Typing
— 17.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets
— 17.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts
— 17.1.14 Special Constants
— 17.1.15 Fortran Derived Types
— 17.1.16 Optimization Problems, an Overview
— 17.1.17 Problems with Code Movement and Register Optimization
* Nonblocking Operations
* One-sided Communication
* MPI_BOTTOM and Combining Independent Variables in Datatypes
e Solutions
* The Fortran ASYNCHRONOUS Attribute
* Calling MPI_F_SYNC_REG (new routine, defined in Section 17.1.7) %
* A User Defined Routine Instead of MPI_F_SYNC_REG
* Module Variables and COMMON Blocks
* The (Poorly Performing) Fortran VOLATILE Attribute
* The Fortran TARGET Attribute
— 17.1.18 Temporary Data Movement and Temporary Memory Modication
— 17.1.19 Permanent Data Movement
— 17.1.20 Comparison with C

MPI-3.0 Overview

* Passed final 2" (final) vote at the March 2012 meeting
e Status of reference implementation

— aninitial implementation of the MPI 3.0 Fortran bindings are available in
Open MPI

— a full implementation will not be available until compilers implement new
Fortran syntax added specifically to support MPI

 need ASYNCHRONOUS attribute for nonblocking routines
* need TYPE(*), DIMENSION(..) syntax to support subarrays
— e.g. MPI_Irecv(Array(3:13:2), ...)

MPI-3.0 Overview

Group-Collective Communicator Creation 16

— Lower overhead when creating small communicators

 MPI-2: Comm. creation is collective
 MPI-3: New group-collective creation

— Collective only on members of new comm.
* Avoid unnecessary synchronization

— Enable asynchronous multi-level parallelism
 Reduce overhead

* Recover from failures
— Failed processes in parent communicator can’t participate
* Enable compatibility with Global Arrays
— In the past: GA collectives implemented on top of MPI Send/Recv

Courtesy of Jim Dinan and Richard Graham

MPI-3.0 Overview

MPI_TYPE_CREATE_HINDEXED BLOCK "

MP|_TYPE_CREATE_HINDEXED BLOCK is identical to
MP|_TYPE_CREATE_INDEXED_ BLOCK,

except that block displacements in array_of _displacements are specied in bytes,
rather than in multiples of the oldtype extent:

MPI_TYPE_CREATE_HINDEXED_BLOCK(count, blocklength, array_of displacements,
oldtype, newtype)

IN count length of array of displacements
(non-negative integer)

IN blocklength size of block (non-negative integer)

IN array_of _displacements byte displacement of each block
(array of integer)

IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

MPI-3.0 Overview

Large Counts

* MPI-2.2
— All counts are int / INTEGER
— Producing longer messages through derived datatypes may cause problems

* MPI-3.0

— New type to store long counts: 6
* MPI_Count / INTEGER(KIND=MPI_COUNT _KIND)

— Additional routines to handle “long” derived datatypes:
* MPI_Type_size_x, MPI_Type_get _extent_x, MPI_Type_get true_extent x

— “long” count information within a status:
« MPI_Get_elements_x, MPI_Status_set_elements_x

— Communication routines are not changed !!! 8

— Well-defined overflow-behavior in existing MPI-2.2 query routines:

e count in MPI_GET_COUNT, MPI_GET_ELEMENTS, and
size in MPI_PACK_SIZE and MPI_TYPE_SIZE
is set to MPI_UNDEFINED when that argument would overflow.

MPI-3.0 Overview

Tool Interfaces for MPI-3 25

» Goals of the tools working group
» Extend tool support in MPI-3 beyond the PMPI interface
» Document state of the art for de-facto standard APIs

Courtesy of the MPI-3 Tools working group

MPI-3.0 Overview

The MPI Performance Interface (MPI_T)

e Goal: provide tools with access to MPI internal information

— Access to configuration/control and performance variables

— MPIl implementation agnostic: tools query available information
* Information provided as a set of variables

— Performance variables (design similar to PAPI counters)
Query internal state of the MPI library at runtime

— Configuration/control variables
List, query, and (if available) set configuration settings

Examples of Performance Vars. Examples for Control Vars.
» Number of packets sent » Parameters like Eager Limit
» Time spent blocking » Startup control
» Memory allocated » Buffer sizes and management

 Complimentary to the existing PMPI Interface

MPI-3.0 Overview

Granularity of PMPI Information

MPI_Recv gQ ﬁo

MPI Function

+ Information is the same for all MPI implementations
— MPI implementation is a black box

MPI-3.0 Overview

Granularity of MPI_T Information
Example: MVAPICH2

MPI_Recv
MPI| Function
Polling Counter, ADI'3 Layel‘
Queue Length &
Time, ... CH3 Layer DCMFD

MRAIL PSM NEMESIS

Time in
Layer PSM
Counter

MPI-3.0 Overview

v

%}9

Memory
Consumption

Some of MPI_T’s Concepts

e Query API for all MPI_T variables / 2 phase approach
— Setup: Query all variables and select from them
— Measurement: allocate handles and read variables

: e tart top
Variables it ' Counter @S Counter 1‘

Measurement

— Other features and properties
 Ability to access variables before MPI_Init and after MPI_Finalize
» Optional scoping of variables to individual MPI objects, e.g., communicator
e Optional categorization of variables

MPI-3.0 Overview

Status and Next Steps for the Tools WG

e Status of the MPI Tool Information Interface
— Complete proposal published (MPI ticket #266)
— Passed final 2" (final) vote at the January 2012 meeting
— Two prototypes (MVAPICH2 and MPICH2)
— Next step: integration into tools (in progress)
* Possible next topics for the MPI-3 Tools WG
— Low-level tracing options in MPI_T
— Extended version of MPI_Pcontrol
— Piggybacking (in collaboration with the FT group)
— Companion document to describe the message queue interface
— Standardization of a more scalable process acquisition API

e Other suggestions/contributions welcome!

— Documents, Minutes, Discussion on WG Wiki:
http://svn.mpi-forum.org/ —=> MPI 3.0, Tools Workgroup

MPI-3.0 Overview

Removing C++ bindings from the Standard

* Technical aspects of deprecated in MPI 2.2:

Supports MPl namespace
Support for exception handling
Not what most C++ programmers expect

* Decision in MPI-3.0:

Remove the C++ support from the standard
Use the C bindings — what most C++ developers do today

Preserve/add additional MPI predefined datatype handles in C and Fortran
to support C++ types that are not provided by C

Preserve the MPI:: namespace and names with the meaning as defined in
MPI-2.2 + MPI-2.2 errata, see MPI-3.0 Annex B.1.1

Perhaps provide the current bindings as a standalone library sitting on top
of MPI,

or as part of MPI-3.0 libraries.

MPI-3.0 Overview

Further information

e www.mpi-forum.org

e https://svn.mpi-forum.org/
— View tickets (see headline boxes) = Custom query (right below headline boxes)

* https://svn.mpi-forum.org/trac/mpi-forum-web/query
—> Filter = Version = MPI-3.0 or MPI-2.2-errata

e http://meetings.mpi-forum.org/
— Ataglance = All meeting information
* http://meetings.mpi-forum.org/Meeting_details.php
— MPI-3.0 Wiki
* http://meetings.mpi-forum.org/MPIl_3.0_main_page.php

e Chapter Working groups:
http://meetings.mpi-forum.org/mpi3.0 chapter wgs.php

Thank you for your interest

MPI-3.0 Overview

