MPI Debugger Requirements for MPI
Implementors

Chris January, Allinea Software Ltd.

February 2016



Contents

[2 Taking Control of a Job|

I Eovi Variables

[6Staging Of Debugger Daemon Files On The Compute Nodes|




Chapter 1

Introduction

The MPIR Process Acquisition Interface [2] (hereafter called MPIR for short)
documents the interface commonly used by MPI debuggers to take control of
MPT jobs. The document is descriptive rather than normative.

This document outlines the high level requirements of the Allinea DDT MPI
debugger, and shows how these requirements are met by MPIR. It also gives
consideration to some issues not originally envisaged when MPIR was written.

We assume a model where MPI jobs are started by a separate mpiexec pro-
cess which may variously be called mpirun, poe, etc., known as the job starter.
This is the Separate "mpiexzec” as the Starter Process model given in section 3.2
of MPIR. Where an alternative PMI-compliant job starter, such as SLURM’s
srun, is used in preference to the MPI implementation’s own job starter the al-
ternative PMI-compliant job starter must also implement the interfaces required
by the MPI debugger.



Chapter 2

Taking Control of a Job

An MPI debugger may either be used to take control of a job at job launch time
or may be used to attach to an already running job.

2.1 Job Launch Mode

When taking control of a job at launch time it is important the job does not
make progress beyond MPI initialization (i.e. MPI_Init) before the debugger
takes control. This is accompolished in MPIR by having the MPI processes
form a barrier with the starter process (section 6.2). The debugger requires:

1. the job starter to signal the debugger when all the MPI processes are
started and waiting at the barrier (MPIR_Breakpoint in sections 6.2 and
9.9 of MPIR).

2. the job starter to provide an interface for the debugger to retrieve a list of
MPT processes (MPIR_Proctable in chapter 8 and section 9.4 of MPIR).

3. a mechanism for the debugger to launch its daemons on the compute nodes
(discussed in [chapter 3)).

4. a mechanism for the debugger to signal the job starter to release the
MPI processes from the barrier (in the MPIR model this occurs when the
debugger resumes the starter process after it breaks at MPIR Breakpoint).

2.2 Attach Mode

The debugger requires:

1. the job starter to provide an interface for the debugger to retrieve a list of
MPI processes (MPIR_Proctable in chapter 8 and section 9.4 of MPIR).

2. a mechanism for the debugger to launch its daemons on the compute nodes

(discussed in [chapter 3)).



2.3 Scalable Attaching

Attaching to a job requires MPIR_Proctable to be populated. Populating it at
startup may be costly for large jobs, and the penalty will be incurred even if no
debugger is ever attached to the job. An MPI implementation may, therefore,
choose to delay initialization of MPIR Proctable until MPIR being debugged
is set to 1 in the job starter process. After setting MPIR being debugger the
debugger will poll MPIR _Proctable_size until it has a non-zero value.

Allinea DDT does not implement the optional attach FIFO extension from
section 7.2 of MPIR.



Chapter 3

Scalable Daemon Launch

After an MPI debugger obtains the list of MPI processes making up an MPI
job (the host :pid pairs from MPIR Proctable) it must launch its daemons on
all the compute nodes taking part in the job in order to take control of the MPI
processes.

When the number of compute nodes used by an MPI job is small it is feasible
to programatically use SSH to login to each compute node to start the daemons.
For larger jobs, however, this becomes infeasible.

Allinea DDT uses one of a number of different solutions to launch its dae-
mons, depending on the MPI implementation. These are outlined below, in
order of preference, so that our preferred mechanism comes first.

3.1 Environment

However the daemons are launched they should have the same general environ-
ment (environment variables, root filesystem, etc.) as the MPI processes. A
minimal environment for tools (e.g. just a few environment variables, no HOME
set, etc.) as seen on Blue Gene/Q is neither required nor desirable, neither is
running the tools in a chroot environment.

3.2 start_tool

This mechanism follows the design of the Blue Gene/Q start_tool command|[I]
p. 9.

A separate command (or, alternatively, shared library function) is supplied to
start the daemons on the compute nodes called, for example, start_tool. The
start_tool command takes an argument to identify the MPI job in question.
The job starter process must provide a mechanism to obtain this identifier. For
example it may expose a MPIR_job_id global variable containing the MPI job
identifier. Alternatively the process ID of the job starter may be used as the
MPI job identifier, although this is less desirable as it prevents attaching to
a job from a different login / MOM node to the one running the job starter
process.

It is not necessary for the start_tool command to provide the MPIR in-
terface (MPIR_Proctable, etc.) but doing so makes it possible attach to a job



from a different login / MOM node to the one running the job starter process.

3.3 Tool Daemon Launch Extension

MPIR defines an optional extension knows as the Tool Daemon Launch FEz-
tenstion. In this extension MPIR_executable_path and MPIR_server_arguments
are defined as character array variables containing the executable path to the
daemons, and arguments to pass to them, respectively.

In order to allow enough space for the arguments required by Allinea DDT’s
daemons, MPI implementations should ensure the MPIR_server_arguments ar-
ray is at least 2048 characters long.

This mechanism has one main drawback: it is unclear how the tool argu-
ments will be split and therefore how to quote them if they need quoting.

3.4 Job Starter Argument

With this mechanism an extra argument is injected into the job starter command
line before it is launched by the debugger. For example:

mpirun -n 65536 myprogram argl arg2

becomes:

mpirun --tool /opt/allinea/forge/bin/ddt-debugger --tool-arguments
"..." -n 65536 myprogram argl arg2

This mechanism has some drawbacks:

1. it is unclear how the tool arguments will be split and therefore how to
quote them if they need quoting

2. it requires manipulating the job starter command line

3. it only works when the debugger is starting the MPI job and launching
the job starter command itself

4. it does not support attaching



Chapter 4

Environment Variables

Allinea MAP requires the ability to set the LD_PRELOAD and LD_LIBRARY_PATH
in the environment of the MPI processes, but not in the environment of any
MPI daemons, the debugger daemons, etc.

Many MPI implementations provide control over the environment of the
MPI processes through their job starter command. If this is not the case MAP
requires some alternative facility to control the environment of the MPI pro-
cesses.

It is preferable to be able to inject arguments at the start of the job starter
command line to set environment variables in all MPI processes, even if multiple
executables (MPMD) are used, rather than requiring the same environment
variables to specified for each MPMD executable.



Chapter 5

Staging Of Debugger
Daemon Files On The
Compute Nodes

The total size of the files used by Allinea DDT’s daemons may total several
hundred megabytes (although the working set is not as large). Many network
filesystems struggle to cope with thousands of compute nodes requesting the
daemons’ library and data files simultaneously. For this reason we optionally
stage the files on the compute nodes. This requires the compute nodes to have a
local well known temporary filesystem (such as /tmp) with sufficient free space
(>~ 1GB). Staging the files on the local compute node filesystems in this way
can significantly improve startup times, at the expense of the memory overhead
on the compute nodes (assuming the filesystem is RAM-based, e.g. tmpfs).



Bibliography

[1] John Attinella, Sam Miller, and Gary Lakner. IBM System Blue Gene
Solution: Blue Gene/Q) Code Development and Tools Interface. IBM, may
2013.

[2] John DelSignore. The mpir process acquisition interface version 1.0. Tech-
nical report, MPI Forum Working Group on Tools, 2010.



	Introduction
	Taking Control of a Job
	Job Launch Mode
	Attach Mode
	Scalable Attaching

	Scalable Daemon Launch
	Environment
	start_tool
	Tool Daemon Launch Extension
	Job Starter Argument

	Environment Variables
	Staging Of Debugger Daemon Files On The Compute Nodes

