
OMPD: An Application Programming Interface for a1

Debugger Support Library for OpenMP2

Ariel Burton1, John DelSignore1, Alexandre Eichenberger2, Ignacio Laguna3,3

John Mellor-Crummey4, Martin Schulz3, Joachim Protze5
4

1Rogue Wave Software5

2IBM T.J. Watson Research Center6

3Lawrence Livermore National Laboratory7

4Rice University8

5RWTH Aachen University9

Version 2.00010

October 30, 201511

Contents12

Acknowledgements iv13

1 Introduction 114

1.1 Design Objectives . 115

1.2 Design Scope . 116

2 OpenMP Runtime Interface 217

3 Terminology 218

3.1 OMPD Concepts . 319

3.2 OMPD Handles . 320

3.3 Debugger Contexts . 521

3.4 Operating System Thread Identifiers . 522

4 Initialization and Finalization 623

4.1 Per DLL Initialization . 624

4.2 Per Target Initialization . 725

4.3 Per Target Finalization . 726

4.4 Per DLL Finalization . 727

5 Memory Management 728

6 Thread and Signal Safety 829

7 Handle Management 830

7.1 Address Space Handles . 831

7.2 Thread Handles . 832

7.3 Parallel Region Handles . 1033

7.4 Task Handles . 1234

8 Address Space and Thread Settings 1435

9 Parallel Region Inquiries 1436

9.1 Parallel Region Settings . 1437

9.2 OMPT Parallel Region Inquiry Analogues . 1538

9.3 Parallel Function Entry Point . 1539

10 Thread Inquiries 1540

10.1 Operating System Thread Inquiry . 1541

10.2 Thread State Inquiry Analogue . 1642

11 Task Inquiries 1643

11.1 Task Function Entry Point . 1644

11.2 Task Settings . 1745

11.3 OMPT Task Inquiry Analogues . 1946

11.4 Stack Unwinding . 1947

12 Breakpoint Locations for Managing Parallel Regions and Tasks 1948

12.1 Parallel Regions . 2049

12.2 Task Regions . 2150

13 Display Control Variables 2151

14 OpenMP Runtime Requirements 2252

ii

15 OMPD Interface Type Definitions 2353

15.1 Basic Types . 2354

15.2 Operating System Thread Information . 2355

15.3 OMPD Handles . 2456

15.4 Debugger Contexts . 2457

15.5 Return Codes . 2458

15.6 OpenMP Scheduling . 2559

15.7 OpenMP Proc Binding . 2560

15.8 Primitive Types . 2561

15.9 Runtime States . 2662

15.10Type Signatures for Debugger Callbacks . 2663

16 Debugger Callback Interface 2964

iii

Acknowledgments65

A previous technical report laid down the foundation for OMPD [4] and it was used as a guide and66

inspiration to develop this document. We acknowledge and appreciate the contribution from the67

authors of that document: Alexandre Eichenberger, John Mellor-Crummey, Martin Schulz, Nawal68

Copty, John DelSignore, Robert Dietrich, Xu Liu, Eugene Loh, and Daniel Lorenz.69

We acknowledge and appreciate the input from Andreas Hindborg, Lai Wei, and from members70

of the OpenMP Tools Working Group.71

The work to write this document has been performed partially under the auspices of the U.S. De-72

partment of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344.73

74

iv

1 Introduction75

Today, it is difficult to produce high quality tools that support debugging of OpenMP programs76

without tightly integrating them with a specific OpenMP runtime implementation. To address77

this problem, this document defines OMPD, an application programming interface (API) for a78

shared-library plugin that will enable debuggers to inspect the internal execution state of OpenMP79

programs. OMPD provides third-party variants of OMPT[3], an emerging OpenMP performance80

tools application programming interface. Extending the OpenMP standard with this API will make81

it possible to contruct powerful debugging tools that will support any standard-compliant OpenMP82

implementation. OMPD will portably enable debuggers to provide OpenMP-aware stack traces,83

single-stepping in and out of parallel regions, and allow the debugger to operate on the members of84

a thread team.85

A common idiom has emerged to support the manipulation of a programming abstraction by86

debuggers: the programming abstraction provides a plugin library that the debugger loads into its87

own address space. The debugger then uses an API provided by the plugin library to inspect and88

manipulate state associated with the programming abstraction in a target. The target may be a89

live process or a core file. Such plugin libraries have been defined before to support debugging of90

threads [6] and MPI [2]. A 2003 paper describes a previous effort to define a debugging support91

library for OpenMP [1]. An earlier version of the material presented here appeared in [4].92

1.1 Design Objectives93

The design for OMPD attempts to satisfy several objectives for a debugging tool interface for94

OpenMP. These objectives are as follows:95

• The API should enable a debugger to inspect the state of a live process or a core file.96

– The API should provide the debugger with third-party versions of the OpenMP runtime97

inquiry functions.98

– The API should provide the debugger with third-party versions of the OMPT inquiry99

functions.100

• The API should facilitate interactive control of a live process in the following ways:101

– Help a debugger know where to place breakpoints to intercept the beginning and end of102

parallel regions and task regions.103

– Help a debugger identify the first program instruction that the OpenMP runtime will104

execute in a parallel region or a task region so that it can set breakpoints inside the105

regions.106

• Adding the API to an OpenMP implementation must not impose an unreasonable development107

burden on implementers.108

• The API should not impose an unreasonable development burden on tool implementers.109

An OpenMP runtime system will provide a shared library that a debugger can dynamically load110

to help interpret the state of the runtime in a live process or a core file.111

If tool support has been enabled, the OpenMP runtime system will maintain information about112

the state of each OpenMP thread. This includes support for OpenMP state, call frame, task and113

parallel region information.114

1.2 Design Scope115

The following OMPD API design is limited in scope to support OpenMP 3.1 (or earlier) programs,116

and it cannot necessarily be applied to OpenMP 4.0 (or later) programs due to the addition of target117

regions in OpenMP 4.0, which may include accelerator devices such as GPUs.118

1

However, the current OMPD API design allows for future expansion of the OMPD API to support119

OpenMP 4.0, without breaking compatibility or unnecessarily expanding its size or complexity.120

To this end, Section 3.1 and Figure 1 include OMPD concepts that will be required to support121

OpenMP 4.0 target regions in the future.122

2 OpenMP Runtime Interface123

As part of the OpenMP interface, OMPD requires that the OpenMP runtime system provides124

a public variable ompd_dll_locations, which is an argv-style vector of filename string point-125

ers that provides the pathnames(s) of any compatible OMPD plugin implementations (if any).126

ompd_dll_locations must have C linkage. The debugger uses the name verbatim, and in partic-127

ular, will not apply any name mangling before performing the look up. The pathnames may be128

relative or absolute. The variable declaration is as follows:129

const char **ompd_dll_locations;130

ompd_dll_locations shall point to a NULL-terminated vector of zero or more NULL-terminated131

pathname strings. There are no filename conventions for pathname strings. The last entry in the vec-132

tor shall be NULL. The vector of string pointers must be fully initialized before ompd_dll_locations133

is set to a non-NULL value, such that if the debugger stops execution at any point where134

ompd_dll_locations is non-NULL, then the vector of strings it points to is valid and complete.135

The programming model or architecture of the debugger (and hence that of the required OMPD)136

might not match that of the target OpenMP program. It is the responsibility of the debugger to137

interpret the contents of ompd_dll_locations to find a suitable OMPD that matches its own138

architectural characteristics. On platforms that support different programming models (e.g., 32- v.139

64-bit), OpenMP implementers are encouraged to provide OMPD implementations for all models,140

and which can handle targets of any model. Thus, for example, a 32-bit debugger should be able to141

debug a 64-bit target by loading a 32-bit OMPD that can manage a 64-bit OpenMP runtime.142

The OpenMP runtime shall notify the debugger that ompd_dll_locations is valid by calling:143

void ompd_dll_locations_valid (void);144

The debugger can receive notification of this event by planting a breakpoint in this routine.145

ompd_dll_locations_valid() has C linkage, and the debugger will not apply name mangling be-146

fore searching for this routine. In order to support debugging, the OpenMP runtime may need to147

collect and maintain information that it might otherwise not do, perhaps for performance reasons,148

or because it is not otherwise needed. The OpenMP runtime will collect whatever information is149

necessary to support OMPD debugging if:150

1. the environment variable OMP_OMPD is set to on151

2. the target calls the void omp_ompd_enable (void) function defined in the OpenMP run-152

time. This function may be called by the main executable, or any of the shared libraries the153

executable loads, and may be made in an initializer executed when a shared library is loaded154

(e.g., those in the .init section of an ELF DLL). It should be called before the target executes155

its first OMP construct.156

Rationale: In some cases it may not be possible to control a target’s environment.157

omp_ompd_enable allows a target itself to turn on data collection for OMPD. Allowing the158

function to be called from an initializer allows the call to be positioned in an otherwise empty159

DLL that the programmer can link with the target. This leaves the target code unmodified.160

3 Terminology161

We refer to the Glossary in the OpenMP standard document [5] for the terms defined there.162

2

This document refers to contexts and handles. Contexts are entities that are defined by the163

debugger, and are opaque to the OMPD implementation. Handles are entities that are defined by164

the OMPD implementation, and are opaque to the debugger. The OMPD API contains opaque165

definitions of debugger contexts (see Section 15.4) and OMPD handles (see Section 15.3).166

Data passed across the interface between the debugger and the OMPD implementation must be167

managed to prevent memory leakage. Space for data may be allocated on the stack, static data168

areas, thread local storage, or the heap. In all cases, the data will be said to have an owner which169

is responsible for deallocating them when they are no longer needed. The owner need not be—in170

fact in many cases is not—the same component that allocated the memory. Where the creating171

component and owner are different, memory will usually be allocated on the heap. The OMPD172

implementation must not access the heap directly, but instead it must use the callbacks supplied to173

it by the debugger. The specific mechanism that must be used by an owner to deallocate memory174

will depend on the entity involved. Memory management is covered in more detail in Section 5.175

All OMPD-related symbols needed by the debugger must have C linkage.176

3.1 OMPD Concepts177

Figure 1 depicts the OMPD concepts of process, address space, thread, image file, and target archi-178

tecture, which are defined as follows:179

Process A process is a collection of one or more threads and address spaces. The collection may180

be homogeneous or heterogeneous, containing, for example, threads or address spaces from host181

programs or accelerator devices. A process may be a “live” operating system process, or a core file.182

Thread A thread is an execution entity running within a specific address space within a process.183

Address Space An address space is a collection of logical, virtual, or physical memory address184

ranges containing code, stack, and data. The memory address ranges within an address space need185

not be contiguous. An address space may be segmented, where a segmented address consists of186

a segment identifier and an address in that segment. An address space has associated with it a187

collection of image files that have been loaded into it. For example, an OpenMP program running188

on a system with GPUs may consist of multiple address spaces: one for the host program and one189

for each GPU device. In practical terms, on such systems an OpenMP device may be implemented190

as a CUDA context, which is an address space into which CUDA image files are loaded and CUDA191

kernels are launched.192

Image File An image file is an executable or shared library file that is loaded into a target address193

space. The image file provides symbolic debug information to the debugger.194

Target Architecture A target architecture is defined by the processor (CPU or GPU) and the195

Application Binary Interface (ABI) used by threads and address spaces. A process may contain196

threads and address spaces for multiple target architectures.197

For example, a process may contain a host address space and threads for an x86_64, 64-bit CPU198

architecture, along with accelerator address spaces and threads for an NVIDIA R© GPU architecture199

or for an Intel R© Xeon PhiTM architecture.200

3.2 OMPD Handles201

OMPD handles identify OpenMP entities during the execution of an OpenMP program. Handles202

are opaque to the debugger, and defined internally by the OMPD implementation. Below we define203

these handles and the conditions under which they are guaranteed to be valid.204

3

Process (OpenMP program)

Address space (host)

Thread (host)
Thread (host) Thread(s) (host)

Image file (host)
Image file (host)

Image file(s) (host)

Address space(s) (device i)

Thread(s) (device i)
Thread(s) (device i)

Image file(s) (device i)
Image file(s) (device i)

Image file(s) (device i)

Thread(s) (device i)

Figure 1: Key concepts of OMPD

Address Space Handle The address space handle identifies a portion of an instance of an205

OpenMP program that is running on a host device or a target device. The host address206

space handle is allocated and initialized with the per process or core file initialization call to207

ompd_process_initialize. A process or core file is initialized by passing the host address space §4.2, p7208

context to that function to obtain an address space handle for the process or core file. The handle209

remains valid until it is released by the debugger.210

NOTE: ilaguna: In the description of each handle we say "handle is allocated and initialized" to211

make it clear that the handles interface is callee-allocates, not caller-allocates. This seems a bit repetitive.212

Perhaps we want to make this concept clear in a central place (e.g., a subsection) instead of repeating213

it in each handle description.214

The handle is created by the OMPD implementation, which passes ownership to the debugger215

which is responsible for indicating when it no longer needs the handle. The debugger releases the216

handle when it calls ompd_release_address_space_handle. The OMPD implementation can use §7.1, p8217

the handle to cache invariant address-space-specific data (e.g., symbol addresses), and to retain a218

copy of the debugger’s address space context pointer. The handle is passed into subsequent API219

function calls. In the OMPD API, an address space handle is represented by the opaque type220

ompd_address_space_handle_t. Future versions of this API will support address space handles for221

target devices, which will be allocated and initialized by various OMPD API calls.222

Thread Handle The thread handle identifies an OpenMP thread. Thread handles are allocated223

and initialized by various OMPD API calls. A handle is valid for the life time of the correspond-224

ing system thread. Thread handles are represented by ompd_thread_handle_t, and created by225

the OMPD implementation which passes ownership to the debugger which is responsible for in-226

dicating when it no longer needs the handle. The debugger releases the thread handle by calling227

ompd_release_thread_handle. §7.2, p10228

4

Parallel Handle The parallel handle identifies an OpenMP parallel region. It is allocated and229

initialized by various OMPD API calls. The handle is valid for the life time of the parallel region.230

The handle is guaranteed to be valid if at least one thread in the parallel region is paused, or if a231

thread in a nested parallel region is paused. Parallel handles are represented by the opaque type232

ompd_parallel_handle_t, and created by the OMPD implementation which passes ownership to233

the debugger which is responsible for indicating when it no longer needs the handle. The debugger234

releases the parallel handle by calling ompd_release_parallel_handle. §7.3, p11235

Task Handle The task handle identifies an OpenMP task region. It is allocated and initialized236

by various OMPD API calls. The handle is valid for the life time of the task region. The handle237

is guaranteed to be valid if all threads in the task team are paused. Task handles are represented238

by the opaque type ompd_task_handle_t, and created by the OMPD implementation which passes239

ownership to the debugger which is responsible for indicating when it no longer needs the handle.240

The debugger releases the task handle by calling ompd_release_task_handle. §7.4, p13241

3.3 Debugger Contexts242

Debugger contexts are used to identify a process, address space, or thread object in the debugger.243

Contexts are passed from the debugger into various OMPD API calls, and then from the OMPD244

implementation back to the debugger’s callback functions. For example, symbol lookup and memory245

accesses are done in the “context” of a particular address space and possibly thread in the debugger.246

Contexts are opaque to the OMPD implementation, and defined by the debugger.247

Address Space Context The address space context identifies the debugger object for a portion248

of an instance of an OpenMP program that is running on a host or target device. An address249

space is contained within a process, and has an associated target architecture. The address space250

context must be valid for the life time of its associated address space handle. The host address space251

context is passed into the process initialization call ompd_process_initialize to associate the §4.2, p7252

host address space context with the address space handle. The OMPD implementation can assume253

that the address space context is valid until ompd_release_address_space_handle is called for the §7.1, p8254

address space context passed into the initialization routine.255

Thread Context The thread context identifies the debugger object for a thread. The debugger256

owns and initializes the thread context. The OMPD implementation obtains a thread context using257

the get_thread_context callback. This callback allows the OMPD implementation to map an258

operating system thread ID to a debugger thread context. The OMPD implementation can assume259

that the thread context is valid for as long as the debugger is holding any references to thread260

handles that may contain the thread context.261

3.4 Operating System Thread Identifiers262

An operating system thread ID, is the object that allows the debugger and OMPD implementation to263

map a thread handle to and from a thread context. That is, the OS thread ID is the common identifier264

for a thread that is visible to both the debugger and the OMPD implementation. The operating265

system-specific information is platform dependent, and therefore is not defined explicitly in this API.266

Thus the interface defines ompd_osthread_kind_t which identifies what “kind” of information an §15.2, p23267

operating system thread ID represents, such as pthread_t, lightweight process ID, or accelerator-268

specific ID. When an operating system thread ID needs to be passed across the interface, the caller269

passes the “kind” of the ID, the size of the ID in bytes, and a pointer to the operating system-specific270

information. The format of the information, such as byte ordering, is that of the target. The ID is271

owned by the caller, which is responsible for its allocation and deallocation.272

NOTE: JVD: For maximum interoperability, we may want to provide “advice to implementers” to273

always support the lowest common denominator thread ID on the platform. For example, using “LWP274

5

IDs” (gettid()) on Linux would allow support for debuggers that do not support the thread_db library,275

thus do not know the pthread_t of a thread.276

4 Initialization and Finalization277

As described in the following sections, the OMPD DLL must be initialized exactly once after it is278

leaded, and finalized exactly once before it is unloaded. Per target process or core file initialization279

and finalization are also required.280

4.1 Per DLL Initialization281

The debugger starts the initialization by calling ompd_initialize, which is defined by the OMPD282

DLL implementation. Typically this will happen after the debugger has loaded the OMPD DLL.283

Once loaded, the debugger can determine the version of the OMPD API supported by the DLL by284

calling the following function in the DLL:285

ompd_rc_t ompd_get_version (int *version);286

On success this should return ompd_rc_ok; ompd_rc_bad_input indicates that the argument is287

invalid. Other errors could be reported by ompd_rc_error. A descriptive string describing the288

OMPD implementation is returned by this function:289

ompd_rc_t ompd_get_version_string (const char **string);290

The return values are the same as ompd_get_version. The string returned by the OMPD DLL is291

‘owned’ by the DLL, and it must not be modified or released by the debugger. It is guaranteed292

to remain valid for as long as the DLL is loaded. ompd_get_version_string may be called before293

ompd_initialize (see below). Accordingly, the OMPD DLL must not use heap or stack memory294

for the string it returns to the debugger.295

The signatures of ompd_get_version and ompd_get_version_string are guaranteed not to296

change in future version of the API. In contrast, the type definitions and prototypes in the rest of297

the API do not carry the same guarantee. Therefore the debugger should check the version of the298

API of a loaded OMPD DLL before calling any other function of the API.299

The debugger must provide the OMPD library with a set of callback functions that enable300

OMPD to allocate and deallocate memory in the debugger’s address space, to lookup the sizes of301

basic primitive types in the target, to lookup symbols in the target, as well as to read and write302

memory in the target. These callback functions are provided to the OMPD library via a table—a303

list of function pointers—of type ompd_callbacks_t.304

The signature of the function is shown below:305

ompd_rc_t ompd_initialize (const ompd_callbacks_t *callbacks);306

The type ompd_callbacks_t is defined in Section 16. The argument is guaranteed to be valid for §16, p29307

the duration of the call. The OMPD library cannot assume that callbacks will remain valid after308

the call returns back to the debugger. NOTE: ilaguna: We need to be more specific here. What does309

the previous sentence mean?310

On success, ompd_initialize returns ompd_rc_ok. If the data argument is invalid,311

ompd_rc_bad_input should be returned. All other errors will be reported by ompd_rc_error.312

The above initialization is performed for each OMPD DLL that is loaded by the debugger; there313

may more than one DLL present in the debugger because it may be controlling a number of targets314

that may be using different runtimes which require different OMPD DLLs. This initialization must315

be performed exactly once before the debugger can begin operating on a target process or core file.316

6

4.2 Per Target Initialization317

The debugger initializes a session working on a target process or core file by calling:318

ompd_rc_t ompd_process_initialize (319

ompd_address_space_context_t *context, /* IN */320

ompd_address_space_handle_t **handle /* OUT */321

);322

The context argument is the pointer to the debugger’s host address space context object323

for the target process or core file. The OMPD implementation returns a pointer to the address324

space handle in *handle, which the debugger is responsible for releasing when it is no longer325

needed. This function must be called before any OMPD operations are performed on the tar-326

get. ompd_process_initialize gives the OMPD DLL an opportunity to confirm that it is capable327

of handling the target process or core file identified by the context. Incompatibility is signaled by a328

return value of ompd_rc_incompatible.329

On return, the handle is owned by the debugger, which must release it using330

ompd_release_address_space_handle. §7.1, p8331

4.3 Per Target Finalization332

When the debugger is finished working on the target address space for a process or core file, it calls333

ompd_release_address_space_handle to tell the OMPD implementation that it not longer needs §7.1, p8334

the address space, and to give the OMPD implementation an opportunity to release any resources335

it may have related to the handle.336

4.4 Per DLL Finalization337

When the debugger is finished with the OMPD DLL it should call:338

ompd_rc_t ompd_finalize (void);339

before unloading the DLL. This should be the last call the debugger makes to the DLL before340

unloading it. The call to ompd_finalize gives the OMPD DLL a chance to free up any remaining341

resources it may be holding.342

The OMPD DLL may implement a finalizer section. This will execute as the DLL is unloaded,343

and therefore after the debugger’s call to ompd_finalize. The OMPD DLL is allowed to use344

the callbacks (provided to it earlier by the debugger after the call to ompd_initialize) during345

finalization.346

5 Memory Management347

The OMPD DLL must not access the heap manager directly. Instead if it needs heap memory it348

should use the memory allocation and deallocation callback functions provided by the debugger to349

obtain and release heap memory. This will ensure that the DLL does not interfere with any custom350

memory management scheme the debugger may use.351

If the OMPD DLL is implemented in C++, memory management operators like new and delete352

in all their variants, must all be overloaded and implemented in terms of the callbacks provided by353

the debugger.354

In some cases the OMPD DLL will need to allocate memory to return results to the debugger.355

This memory will then be ‘owned’ by the debugger, which will be responsible for releasing it. It is356

therefore vital that the OMPD DLL and the debugger use the same memory manager.357

Handles are created by the OMPD implementation. These are opaque to the debugger, and358

depending on the specific implementation of OMPD may have complex internal structure. The359

debugger cannot know whether the handle pointers returned by the API correspond to discrete heap360

7

allocations. Consequently, the debugger must not simply deallocate a handle by passing an address361

it receives from the OMPD DLL to its own memory manager. Instead, the API includes functions362

that the debugger must use when it no longer needs a handle.363

Contexts are created by the debugger and passed to the OMPD implementation. The OMPD364

DLL does not need to release contexts; instead this will be done by the debugger after it releases365

any handles that may be referencing the contexts.366

6 Thread and Signal Safety367

The OMPD implementation does not need to be reentrant. It is the responsibility of the debugger368

to ensure that only one thread enters the OMPD DLL at a time.369

The OMPD implementation must not install signal handlers or otherwise interfere with the370

debugger’s signal configuration.371

7 Handle Management372

Each OMPD call that is dependent on some context must provide this context via a handle. There373

are handles for address spaces, threads, parallel regions, and tasks. Handles are guaranteed to be374

constant for the duration of the construct they represent. This section describes function interfaces375

for extracting handle information from the OpenMP runtime system.376

7.1 Address Space Handles377

The debugger obtains an address space handle when it initializes a session on a live process or core378

file by calling ompd_process_initialize. On return from ompd_process_initialize the address §4.2, p7379

space handle is owned by the debugger.380

When the debugger is finished with the target address space handle it should call381

ompd_release_address_space_handle to release the handle and give the OMPD implementation382

the opportunity to release any resources it may have related to the target.383

ompd_rc_t ompd_release_address_space_handle (384

ompd_address_space_handle_t *handle /* IN */385

);386

7.2 Thread Handles387

Retrieve handles for all OpenMP threads. The ompd_get_threads operation enables the388

debugger to obtain pointers to handles for all OpenMP threads associated with an address space389

handle. A successful invocation of ompd_get_threads returns a pointer to a vector of pointers to390

handles in *thread_handle_vector and returns the number of handle pointers in *num_handles.391

This call yields meaningful results only if all OpenMP threads in the target process are stopped;392

otherwise, the OpenMP runtime may be creating and/or destroying threads during or after the call,393

rendering useless the vector of handles returned.394

ompd_rc_t ompd_get_threads (395

ompd_address_space_handle_t *handle, /* IN */396

ompd_thread_handle_t ***thread_handle_vector, /* OUT */397

int *num_handles /* OUT */398

);399

The num_handles pointer argument must be valid. The thread_handle_vector pointer argu-400

ment may be NULL, in which case the number of handles that would have been returned had the401

argument not been NULL is returned in *num_handles. This allows the debugger to find out how402

8

many OpenMP threads are running in the address space when it is not interested in the handles403

themselves.404

The OMPD DLL gets the memory required for the vector of pointers to thread handles using405

the memory allocation routine in the callbacks it received during the call to ompd_initialize. If §4.1, p6406

the OMPD implementation needs to allocate heap memory for the thread handles, it must use the407

callbacks to acquire this memory. On return, the vector and the thread handles are ‘owned’ by the408

debugger, and the debugger is responsible for releasing them when they are no longer required.409

The thread handles must be released by calling ompd_release_thread_handle. The vector §7.2, p10410

was allocated by the OMPD implementation using the allocation routine in the callbacks it received411

during initialization (see ompt_initialize); the debugger must deallocate the vector in a compatible §4.1, p6412

manner.413

Retrieve handles for OpenMP threads in a parallel region. The414

ompd_get_thread_in_parallel operation enables the debugger to obtain handles for all OpenMP415

threads associated with a parallel region. A successful invocation of ompd_get_thread_in_parallel416

returns a pointer to a vector of pointers to thread handles in *thread_handle_vector, and returns417

the number of handles in *num_handles. This call yields meaningful results only if all OpenMP418

threads in the parallel region are stopped; otherwise, the OpenMP runtime may be creating and/or419

destroying threads during or after the call, rendering useless the vector of handles returned.420

ompd_rc_t ompd_get_thread_in_parallel (421

ompd_parallel_handle_t *parallel_handle, /* IN */422

ompd_thread_handle_t ***thread_handle_vector, /* OUT */423

int *num_handles /* OUT */424

);425

The num_handles pointer argument must be valid. The thread_handle_vector pointer argument426

may be NULL, in which case the number of handles that would have been returned had the argument427

not been NULL is returned in *num_handles.428

The OMPD must obtain the memory for the vector of pointers to thread handles using the429

memory allocation callback function that was passed to it during ompd_initialize. If the OMPD §4.1, p6430

implementation needs to allocate heap memory for the thread handles it must use the callbacks431

to acquire this memory. After the call the vector and the thread handles are ‘owned’ by the de-432

bugger, which is responsible for releasing them. The thread handles must be released by calling433

ompd_thread_handle. The vector was allocated by the OMPD implementation using the allocation §7.2, p10434

routine in the callbacks; the debugger must deallocate the vector in a compatible manner.435

Retrieve the handle for the OpenMP master thread in a parallel region. The436

ompd_get_master_thread_in_parallel operation enables the debugger to obtain a han-437

dle for the OpenMP master thread in a parallel region. A successful invocation of438

ompd_get_master_thread_in_parallel returns a handle for the thread that encountered the par-439

allel construct. This call yields meaningful results only if an OpenMP thread in the parallel region440

is stopped; otherwise, the parallel region is not guaranteed to be alive.441

ompd_rc_t ompd_get_master_thread_in_parallel (442

ompd_parallel_handle_t *parallel_handle, /* IN */443

ompd_thread_handle_t **thread_handle /* OUT */444

);445

On success ompd_get_master_thread_in_parallel returns ompd_rc_ok. A pointer to the446

thread handle is returned in *thread_handle. After the call the thread handle is owned by the de-447

bugger, which must release it when it is no longer required by calling ompd_release_thread_handle. §7.2, p10448

9

Release a thread handle. Thread handles are opaque to the debugger, which therefore cannot449

release them directly. Instead, when the debugger is finished with a thread handle it must pass it450

to the OMPD ompd_release_thread_handle routine for disposal.451

ompd_rc_t ompd_release_thread_handle (452

ompd_thread_handle_t *thread_handle /* IN */453

);454

Compare thread handles. The internal structure of thread handles is opaque to the debugger.455

While the debugger can easily compare pointers to thread handles, it cannot determine whether456

handles of two different addresses refer to the same underlying thread. The following function can457

be used to compare thread handles.458

ompd_rc_t ompd_thread_handle_compare (459

ompd_thread_handle_t *thread_handle_1, /* IN */460

ompd_thread_handle_t *thread_handle_2, /* IN */461

int *cmp_value /* OUT */462

);463

On success, ompd_thread_handle_compare returns in *cmp_value a signed integer value that indi-464

cates how the underlying threads compare: a value less than, equal to, or greater than 0 indicates465

that the thread corresponding to thread_handle_1 is, respectively, less than, equal to, or greater466

than that corresponding to thread_handle_2.467

NOTE: ilaguna: do we need to give intuition about what we mean by thread1 < thread2 (or vice468

versa)? Will the OMPD DLL maintain a total order or a partial order of thread handles? If thread1 <469

thread2, and thread2 < thread3, is thread1 < thread3 or can thread1 > thread3?470

For OMPD implementations that always have a single, unique, underlying thread handle for471

a given thread, this operation reduces to a simple comparison of the pointers. However, other472

implementations may take a different approach, and therefore the only reliable way of determin-473

ing whether two different pointers to thread handles refer the same or distinct threads is to use474

ompd_thread_handle_compare.475

Allowing thread handles to be compared allows the debugger to hold them in ordered collections.476

The means by which thread handles are ordered is implementation-defined.477

String id. The ompd_get_thread_handle_string_id function returns a string that contains a478

unique printable value that identifies the thread. The string should be a single sequence of al-479

phanumeric or underscore characters, and NULL terminated. NOTE: ilaguna: Why allowing only480

alphanumeric or underscore characters? As an implementer I may want to use colon or slash characters481

for more structured names.482

ompd_rc_t ompd_get_thread_handle_string_id (483

ompd_thread_handle_t *thread_handle, /* IN */484

char **string_id /* OUT */485

);486

The OMPD implementation allocates the string returned in *string_id using the allocation487

routine in the callbacks passed to it during initialization. On return the string is owned by the488

debugger, which is responsible for deallocating it.489

The contents of the strings returned for thread handles which compare as equal with490

ompd_thread_handle_compare must be the same. §7.2, p10491

7.3 Parallel Region Handles492

Retrieve the handle for the innermost parallel region for an OpenMP thread. The493

operation ompd_get_top_parallel_region enables the debugger to obtain a pointer to the parallel494

10

handle for the innermost, or topmost, parallel region associated with an OpenMP thread. This call495

is meaningful only if the thread whose handle is provided is stopped.496

ompd_rc_t ompd_get_top_parallel_region (497

ompd_thread_handle_t *thread_handle, /* IN */498

ompd_parallel_handle_t **parallel_handle /* OUT */499

);500

The parallel handle must be released by calling ompd_release_parallel_handle. §7.3, p11501

Retrieve the handle for an enclosing parallel region. The502

ompd_get_enclosing_parallel_handle operation enables the debugger to obtain a pointer to the503

parallel handle for the parallel region enclosing the parallel region specified by parallel_handle.504

This call is meaningful only if at least one thread in the parallel region is stopped.505

ompd_rc_t ompd_get_enclosing_parallel_handle (506

ompd_parallel_handle_t *parallel_handle, /* IN */507

ompd_parallel_handle_t **enclosing_parallel_handle /* OUT */508

);509

On success ompd_get_enclosing_parallel_handle returns ompd_rc_ok. A pointer to the par-510

allel handle for the enclosing region is returned in *enclosing_parallel_handle. After the call511

the handle is owned by the debugger, which must release it when it is no longer required by calling512

ompd_release_parallel_handle. §7.3, p11513

Retrieve the handle for the parallel region enclosing a task. The514

ompd_get_task_parallel_handle operation enables the debugger to obtain a pointer to the515

parallel handle for the parallel region enclosing the task region specified by task_handle. This call516

is meaningful only if at least one thread in the parallel region is stopped.517

ompd_rc_t ompd_get_task_parallel_handle (518

ompd_task_handle_t *task_handle, /* IN */519

ompd_parallel_handle_t **task_parallel_handle /* OUT */520

);521

On success ompd_get_task_parallel_handle returns ompd_rc_ok. A pointer to the parallel regions522

handle is returned in *task_parallel_handle. The parallel handle is owned by the debugger, which523

must release it by calling ompd_release_parallel_handle. §7.3, p11524

Release a parallel region handle. Parallel region handles are opaque to the debugger, which525

therefore cannot release them directly. Instead, when the debugger is finished with a parallel region526

handle it must must pass it to the OMPD ompd_release_parallel_handle routine for disposal.527

ompd_rc_t ompd_release_parallel_handle (528

ompd_parallel_handle_t *parallel_handle /* IN */529

);530

Compare parallel region handles. The internal structure of parallel region handles is opaque to531

the debugger. While the debugger can easily compare pointers to parallel region handles, it cannot532

determine whether handles at two different addresses refer to the same underlying parallel region.533

ompd_rc_t ompd_parallel_handle_compare (534

ompd_parallel_handle_t *parallel_handle_1, /* IN */535

ompd_parallel_handle_t *parallel_handle_2, /* IN */536

int *cmp_value /* OUT */537

);538

11

On success, ompd_parallel_handle_compare returns in *cmp_value a signed integer value that539

indicates how the underlying parallel regions compare: a value less than, equal to, or greater than 0540

indicates that the region corresponding to parallel_handle_1 is, respectively, less than, equal to,541

or greater than that corresponding to parallel_handle_2.542

For OMPD implementations that always have a single, unique, underlying parallel region handle543

for a given parallel region, this operation reduces to a simple comparison of the pointers. However,544

other implementations may take a different approach, and therefore the only reliable way of deter-545

mining whether two different pointers to parallel regions handles refer the same or distinct parallel546

regions is to use ompd_parallel_handle_compare.547

Allowing parallel region handles to be compared allows the debugger to hold them in ordered548

collections. The means by which parallel region handles are ordered is implementation-defined.549

String id. The ompd_get_parallel_handle_string_id function returns a string that contains a550

unique printable value that identifies the parallel region. The string should be a single sequence of551

alphanumeric or underscore characters, and NULL terminated. NOTE: ilaguna: Why allowing only552

alphanumeric or underscore characters? As an implementer I may want to use colon or slash characters553

for more structured names.554

ompd_rc_t ompd_get_parallel_handle_string_id (555

ompd_parallel_handle_t *parallel_handle, /* IN */556

char **string_id /* OUT */557

);558

The OMPD implementation allocates the string returned in *string_id using the allocation559

routine in the callbacks passed to it during initialization. On return the string is owned by the560

debugger, which is responsible for deallocating it.561

The contents of the strings returned for parallel regions handles which compare as equal with562

ompd_parallel_handle_compare must be the same. §7.3, p12563

7.4 Task Handles564

Retrieve the handle for the innermost task for an OpenMP thread. The debugger uses565

the operation ompd_get_top_task_region to obtain a pointer to the task handle for the innermost,566

or topmost, task region associated with an OpenMP thread. This call is meaningful only if the567

thread whose handle is provided is stopped.568

ompd_rc_t ompd_get_top_task_region (569

ompd_thread_handle_t *thread_handle, /* IN */570

ompd_task_handle_t **task_handle /* OUT */571

);572

The task handle must be released by calling ompd_release_task_handle. §7.4, p13573

Retrieve the handle for an enclosing task. The debugger uses574

ompd_get_ancestor_task_region to obtain a pointer to the task handle for the task region575

enclosing the task region specified by task_handle. This call is meaningful only if the thread576

executing the task specified by task_handle is stopped.577

ompd_rc_t ompd_get_ancestor_task_region (578

ompd_task_handle_t *task_handle, /* IN */579

ompd_task_handle_t **parent_task_handle /* OUT */580

);581

The task handle must be released by calling ompd_release_task_handle. §7.4, p13582

12

Retrieve implicit task handle for a parallel region. The583

ompd_get_implicit_task_in_parallel operation enables the debugger to obtain a vector584

of pointers to task handles for all implicit tasks associated with a parallel region. This call is585

meaningful only if all threads associated with the parallel region are stopped.586

ompd_rc_t ompd_get_implicit_task_in_parallel (587

ompd_parallel_handle_t *parallel_handle, /* IN */588

ompd_task_handle_t ***task_handle_vector, /* OUT */589

int *num_handles /* OUT */590

);591

The OMPD must use the memory allocation callback to obtain the memory for the vector of pointers592

to task handles returned by the operation. If the OMPD implementation needs to allocate heap593

memory for the task handles it returns, it must use the callbacks to acquire this memory. After594

the call the vector and the task handles are ‘owned’ by the debugger, which is responsible for595

deallocating them. The task handles must be released calling ompd_release_task_handle. The §7.4, p13596

vector was allocated by the OMPD implementation using the allocation routine passed to it during597

the call to ompd_initialize. The debugger itself must deallocate the vector in a compatible manner. §4.1, p6598

Release a task handle. Task handles are opaque to the debugger, which therefore cannot release599

them directly. Instead, when the debugger is finished with a task handle it must pass it to the600

OMPD ompd_release_task_handle routine for disposal.601

ompd_rc_t ompd_release_task_handle (602

ompd_task_handle_t *task_handle /* IN */603

);604

Compare task handles. The internal structure of task handles is opaque to the debugger. While605

the debugger can easily compare pointers to task handles, it cannot determine whether handles at606

two different addresses refer to the same underlying task.607

ompd_rc_t ompd_task_handle_compare (608

ompd_task_handle_t *task_handle_1, /* IN */609

ompd_task_handle_t *task_handle_2, /* IN */610

int *cmp_value /* OUT */611

);612

On success, ompd_task_handle_compare returns in *cmp_value a signed integer value that indicates613

how the underlying tasks compare: a value less than, equal to, or greater than 0 indicates that the614

task corresponding to task_handle_1 is, respectively, less than, equal to, or greater than that615

corresponding to task_handle_2.616

For OMPD implementations that always have a single, unique, underlying task handle for a given617

task, this operation reduces to a simple comparison of the pointers. However, other implementations618

may take a different approach, and therefore the only reliable way of determining whether two dif-619

ferent pointers to task handles refer the same or distinct task is to use ompd_task_handle_compare.620

Allowing task handles to be compared allows the debugger to hold them in ordered collections.621

The means by which task handles are ordered is implementation-defined.622

String id. The ompd_get_task_handle_string_id function returns a string that contains a623

unique printable value that identifies the task. The string should be a single sequence of alphanumeric624

or underscore characters, and NULL terminated. NOTE: ilaguna: Why allowing only alphanumeric625

or underscore characters? As an implementer I may want to use colon or slash characters for more626

structured names.627

13

ompd_rc_t ompd_get_task_handle_string_id (628

ompd_task_handle_t *task_handle, /* IN */629

char **string_id /* OUT */630

);631

The OMPD implementation allocates the string returned in *string_id using the allocation632

routine in the callbacks passed to it during initialization. On return the string is owned by the633

debugger, which is responsible for deallocating it.634

The contents of the strings returned for task handles which compare as equal with635

ompd_task_handle_compare must be the same. §7.4, p13636

8 Address Space and Thread Settings637

The functions ompd_get_num_procs and ompd_get_thread_limit are third-party versions of the638

OpenMP runtime functions omp_get_num_procs and omp_get_thread_limit.639

ompd_rc_t ompd_get_num_procs (640

ompd_address_space_handle_t *handle, /* IN */641

ompd_tword_t *val /* OUT */642

);643

644

ompd_rc_t ompd_get_thread_limit (645

ompd_address_space_handle_t *handle, /* IN */646

ompd_tword_t *val /* OUT */647

);648

The ompd_get_num_procs function returns the number of processors available to the device649

associated with the address space handle in *val.650

The ompd_get_thread_limit function returns the maximum number of OpenMP threads avail-651

able on the device associated with the address space handle in *val.652

9 Parallel Region Inquiries653

We describe OMPD functions to perform inquiries about parallel regions.654

9.1 Parallel Region Settings655

Determine the number of threads associated with a parallel region.656

ompd_rc_t ompd_get_num_threads (657

ompd_parallel_handle_t *parallel_handle, /* IN */658

ompd_tword_t *val /* OUT */659

);660

Determine the nesting depth of a particular parallel region.661

ompd_rc_t ompd_get_level (662

ompd_task_handle_t *task_handle, /* IN */663

ompd_tword_t *val /* OUT */664

);665

14

Determine the number of enclosing parallel regions. ompd_get_active_level returns the666

number of nested, active parallel regions enclosing the parallel region specified by its handle.667

ompd_rc_t ompd_get_active_level (668

ompd_task_handle_t *task_handle, /* IN */669

ompd_tword_t *val /* OUT */670

);671

9.2 OMPT Parallel Region Inquiry Analogues672

The function ompd_get_parallel_id is a third-party variant of ompt_get_parallel_id. The673

ompd_parallel_id_t for a parallel region is unique across all parallel regions. A parallel region is674

assigned a unique ID when the region is created. Tools should not assume that ompd_parallel_id_t675

values for adjacent regions are consecutive. The value 0 is reserved to indicate an invalid parallel id.676

ompd_rc_t ompd_get_parallel_id (677

ompd_parallel_handle_t *parallel_handle, /* IN */678

ompd_parallel_id_t *id /* OUT */679

);680

9.3 Parallel Function Entry Point681

The ompd_get_parallel_function returns the entry point of the code that corresponds to the body682

of the parallel construct.683

ompd_rd_t ompd_get_parallel_function (684

ompd_parallel_handle_t *parallel_handle, /* IN */685

ompd_address_t *entry_point /* OUT */686

);687

10 Thread Inquiries688

We describe OMPD functions to perform inquiries about threads.689

10.1 Operating System Thread Inquiry690

Mapping an operating system thread to an OMPD thread handle. OMPD provides the691

function ompd_get_thread_handle to inquire whether an operating system thread is an OpenMP692

thread or not. If the function returns ompd_rc_ok, then the operating system thread is an OpenMP693

thread and *thread_handle will be initialized to a pointer to the thread handle for the OpenMP694

thread.695

ompd_rc_t ompd_get_thread_handle (696

ompd_address_space_handle_t *handle, /* IN */697

ompd_osthread_kind_t kind, /* IN */698

ompd_size_t sizeof_osthread, /* IN */699

const void *osthread, /* IN */700

ompd_thread_handle_t **thread_handle /* OUT */701

);702

15

The operating system ID *osthread is guaranteed to be valid for the duration of the call. If the703

OMPD implementation needs to retain the operating system-specific thread identifier it must copy704

it.705

The thread handle *thread_handle returned by the OMP implementation is ‘owned’ by706

the debugger, which must release it by calling ompd_release_thread_handle. If os_thread §7.2, p10707

does not refer to an OpenMP thread, ompd_get_thread_handle returns ompd_rc_bad_input and708

*thread_handle is also set to NULL.709

Mapping an OMPD thread handle to an operating system thread. ompd_get_osthread710

performs the mapping between an OMPD thread handle and an operating system-specific thread711

identifier.712

ompd_rc_t ompd_get_osthread (713

ompd_thread_handle_t *thread_handle, /* IN */714

ompd_osthread_kind_t kind, /* IN */715

ompd_size_t sizeof_osthread, /* IN */716

void *osthread /* OUT */717

);718

The caller indicates what kind of operating system-specific thread identifier it wants by setting719

the kind ‘in’ parameter. It also passes a pointer to the buffer into which the OMPD implementation §15.2, p23720

writes the operating system-specific thread identifier, and the size of the buffer, to the OMPD721

implementation. The buffer is owned by the debugger.722

On success ompd_get_osthread returns rc_ok, and returns the operating system-specific thread723

identifier in *osthread. If the operation fails, the OMPD implementation returns the appropriate724

value from ompd_rc_t. Note that the operation should fail if the OMPD implementation is unable §15.5, p24725

to return an operating system-specific identifier of the requested ‘kind’ or size.726

10.2 Thread State Inquiry Analogue727

The function ompd_get_state is a third-party version of ompt_get_state. The only difference728

between the OMPD and OMPT counterparts is that the OMPD version must supply a thread729

handle to provide a context for this inquiry.730

ompd_rc_t ompd_get_state (731

ompd_thread_handle_t *thread_handle, /* IN */732

ompd_state_t *state, /* OUT */733

ompd_wait_id_t *wait_id /* OUT */734

);735

11 Task Inquiries736

We describe OMPD functions to perform inquiries about tasks.737

11.1 Task Function Entry Point738

The ompd_get_task_function returns the entry point of the code that corresponds to the body of739

code executed by the task:740

ompd_rc_t ompd_get_task_function (741

ompd_task_handle_t *task_handle, /* IN */742

ompd_address_t *entry_point /* OUT */743

);744

16

11.2 Task Settings745

Here we describe functions to retrieve information from OpenMP tasks, including the values of some746

Internal Control Variables (ICVs). A target is able to get the information defined here directly from747

the runtime. For this reason, these inquiry functions have no counterparts in the OMPT interface.748

The only difference between the OMPD inquiry operations and their counterparts in the OpenMP749

runtime is that the OMPD version must supply a task handle to provide a context for each inquiry.750

Values are returned through the ‘out’ parameter val.751

The ompd_get_max_threads function returns the value of the target’s nthreads-var ICV (§2.3.1752

of [5]), and corresponds to the omp_get_max_threads function in the OpenMP runtime API. This753

returns an upper bound on the number threads that could be used to form a new team if a parallel754

construct without a num_threads clause were encountered.755

ompd_rc_t ompd_get_max_threads (756

const ompd_task_handle_t *task_handle, /* IN */757

ompd_tword_t *val /* OUT */758

);759

The nthreads-var ICV is defined in OpenMP as a list (§2.3.2 of [5]). Like omp_get_max_threads,760

ompd_get_max_threads returns the first element of the list. NOTE: ilaguna: why the first element761

if the function is named ’max’? This could confuse readers.762

ompd_rc_t ompd_get_thread_num (763

const ompd_thread_handle_t *thread_handle, /* IN */764

ompd_tword_t *val /* OUT */765

);766

ompd_get_thread_num corresponds to the omp_get_thread_num routine in the OpenMP runtime,767

and returns the thread’s logical thread number in the team.768

ompd_in_parallel returns logical true (i.e., *val != 0) if active-levels-var ICV (§2.3.1 of [5])769

is greater than 0, and false (0) otherwise. The routine corresponds to omp_in_parallel in the770

OpenMP runtime.771

ompd_rc_t ompd_in_parallel (772

const ompd_task_handle_t *task_handle, /* IN */773

ompd_tword_t *val /* OUT */774

);775

ompd_in_final corresponds to omp_in_final and returns logical true if the task is a final task.776

ompd_rc_t ompd_in_final (777

const ompd_task_handle_t *task_handle, /* IN */778

ompd_tword_t *val /* OUT */779

);780

ompd_get_dynamic returns the value of the dyn-var ICV (§2.3.1 of [5]), and corresponds to the781

omp_get_dynamic member of the OpenMPI API.782

ompd_rc_t ompd_get_dynamic (783

const ompd_task_handle_t *task_handle, /* IN */784

ompd_tword_t *val /* OUT */785

);786

dyn-var determines whether dynamic adjustment of the number of threads is enabled or disabled.787

ompd_get_nested corresponds to omp_get_nested, and returns the value of the nest-var ICV788

(§2.3.1 of [5]).789

17

ompd_rc_t ompd_get_nested (790

const ompd_task_handle_t *task_handle, /* IN */791

ompd_tword_t *val /* OUT */792

);793

nest-var determines if nested parallelism is enabled; a logical true value indicates that it is, false794

that it is not.795

The maximum number of nested levels parallelism is returned by get_max_active_levels.796

ompd_rc_t ompd_get_max_active_levels (797

const ompd_thread_handle_t *thread_handle, /* IN */798

ompd_tword_t *val /* OUT */799

);800

This operation corresponds to the OpenMP routine omp_get_max_active_levels and the ICV801

max-active-levels-var (§2.3.1 of [5]).802

NOTE: Ariel: I think this may need a little attention. What is the scope of this operation? The803

OpenMP4 docment refers to a device.804

John: The OpenMP spec leaves “device” kind of vague. The glossary says: “An implementation805

defined logical execution engine. COMMENT: A device could have one or more processors.” And to806

a certain extent, I’m not sure it matters to OMPD. “3.2.16 omp_get_max_active_levels” in the807

OpenMP spec implies that a thread is required, which is all I think OMPD needs to care about.808

Ariel: I suppose that the thread has a device associated with it.809

ompd_get_schedule returns information about the schedule that is applied when runtime810

scheduling is used. This information is represented in the target by the run-sched-var ICV (§3.2.1811

of [5]).812

ompd_rc_t ompd_get_schedule (813

ompd_task_handle_t *task_handle, /* IN */814

ompd_sched_t *kind, /* OUT */815

ompd_tword_t *modifier /* OUT */816

);817

OpenMP defines a minimum set of values in the enumeration type omp_sched_t (§3.2.12 of [5]).818

The OMPD API defines ompd_sched_t, which contains the corresponding OpenMP enumeration §15.6, p25819

values and “lo” and “hi” values for the range of implementation-specific scheduling values that can820

be represented by the OMPD API. The scheduling kind is returned in *kind. The interpretation of821

*modifier depends on the value of *kind. See §3.2.12 and §3.2.13 of [5] for further details.822

ompd_get_proc_bind returns the value of the task’s bind-var ICV (§2.3.1 of [5]), which “controls823

the binding of the OpenMP threads to places,” or “default thread affinity policies.”824

ompd_rc_t ompd_get_proc_bind (825

ompd_task_handle_t *task_handle, /* IN */826

ompd_proc_bind_t *bind /* OUT */827

);828

The OMPD API defines ompd_proc_bind_t, which contains the corresponding OpenMP enumera- §15.7, p25829

tion values. The binding is returned in *bind. See §3.2.22 of [5] for further details.830

ompd_is_implicit returns logical true (i.e., *val != 0) if a task is implicit, and false (0) oth-831

erwise. The routine has no corresponding call in the OpenMP runtime.832

ompd_rc_t ompd_is_implicit (833

ompd_task_handle_t *task_handle, /* IN */834

ompd_tword_t *val /* OUT */835

);836

18

11.3 OMPT Task Inquiry Analogues837

The functions ompd_get_task_frame and ompd_get_task_id are third-party versions of838

ompt_get_task_frame and ompt_get_task_id, respectively. The ompd_task_id_t for a task region839

is unique across all task regions. A task region is assigned a unique ID when the region is created.840

Tools should not assume that ompd_task_id_t values for adjacent task regions are consecutive. The841

value 0 is reserved to indicate an invalid task id. ompd_get_task_frame is discussed under Stack842

Unwinding in Section 11.4.843

ompd_rc_t ompd_get_task_frame (844

ompd_task_handle_t *task_handle, /* IN */845

ompd_address_t *exit_runtime_addr, /* OUT */846

ompd_address_t *reenter_runtime_addr /* OUT */847

);848

ompd_rc_t ompd_get_task_id (849

ompd_task_handle_t *task_handle, /* IN */850

ompd_task_id_t *task_id /* OUT */851

);852

11.4 Stack Unwinding853

NOTE: JVD: This section needs careful review by the OpenMP Tools Working Group to ensure its854

correctness. It depends on whether or not John Mellor-Crummey’s 07/16/15 email proposal to omp-855

tools@openmp.org to change the semantics of the reenter_runtime_addr field is adopted. What we856

decide, OMPD and OMPT should be consistent.857

The ompd_get_task_frame function returns stack frame information about the target thread as-858

sociated with the task. This routine corresponds to ompt_get_task_frame in the OMPT API,859

and the approach for stack inspection is similar to that described in Appendix B of [3]. The860

exit_runtime_addr gives the address of the frame at which the thread left the OpenMP runtime861

to execute the user code associated with the task. The reenter_runtime_addr is the address of the862

frame that called the OpenMP runtime. NOTE: JVD: Follows John Mellor-Crummey’s 07/16/15863

email proposal to omp-tools@openmp.org to change the semantics of the reenter_runtime_addr864

field.) The debugger can unwind a thread’s logical stack by getting the thread’s current task using865

ompd_get_top_task_region. NOTE: JVD: This assumes that the thread is “bound” to the task han- §7.4, p12866

dle. Is that correct? Using the task handle, the debugger can find the thread’s exit and reentry stack867

frame addresses using ompd_get_task_frame. It can then use ompd_get_ancestor_task_region to §7.4, p12868

find the task’s parent region, and then call ompd_get_task_frame for the parent task. The frames869

between the parent task’s reenter address and the top task’s exit address are frames in which the870

thread is executing OpenMP runtime code. NOTE: JVD: Is this still accurate given John M-C’s871

proposed new semantics? I think with the new semantics, the addresses are always for user frames, not872

OpenMP runtime frames, so “between” means exclusive of the frame addresses. This process can be873

repeated to allow all frames in the thread’s backtrace that correspond to execution in the OpenMP874

runtime to be identified. The position within the stack frame where the runtime addresses point is875

implementation defined.876

12 Breakpoint Locations for Managing Parallel Regions and877

Tasks878

Neither a debugger nor an OpenMP runtime system know what application code a program will879

launch as parallel regions or tasks until the program invokes the runtime system and provides a880

code address as an argument. To help a debugger control the execution of an OpenMP program881

19

launching parallel regions or tasks, the OpenMP runtime must define a number of routines in which882

the debugger may plant breakpoints to receive notification of particular events. The runtime is883

expected to call these routines when these events occur and data collection for OMPD is enabled884

(see §2).885

Advice to implementors The debugger needs to be able to detect the beginning of OpenMP886

runtime code. Especially inline generated runtime code should be built without source line informa-887

tion.888

NOTE: Ariel: What does this last sentence mean?889

John: I think the intention here was to reflect that if the OpenMP is built with line number information890

then a “step into” operation in the debugger might step into the OpenMP runtime function instead of891

“step over” the function. Like with other runtime library functions, “step into” should act like “step892

over” for the OpenMP runtime. In essence, we need a way to let the debugger know that the OpenMP893

runtime is not part of the user’s source code, and one way of doing that is to not generate line number894

information for the OpenMP runtime code. However, I’m not sure that’s the best way of doing it.895

Ariel: What’s the use case? If we’ve hit the enter breakpoint we can find out what user code is going896

to be executed by getting the function for the region. The debugger can plant a breakpoint there and897

let the target run.898

Or is the case that the user is stepping through his code and steps into a function call that is part of899

the OpenMP runtime, and we want to know that to zoom past that to the user code? I.e., the problem900

is knowing what code is OpenMP code? If the user continues stepping far enough the frame information901

for the thread should indicate whether the routine is OpenMP code.902

Is the stack exit/reentry information set up for all entries to OpenMP, or only for those entries that903

result in executing user code? E.g., if the user’s code call omp_get_thread_num, is the stack exit/reentry904

information set up? Or is it only for things like handle a parallel region construct?905

So what OpenMP code are we wanting to identify?906

Another thought: if the user is stepping by source line, then if the OpenMP code is inlined, where907

would we expect the debugger to advance to? Is this is what Joachim is getting at by suggesting that908

there be no line numbers for the generated code? If the inlined code includes a call, can we detect that909

the destination of the call is OpenMP? Well, we may be able to answer that is the branch is to what we910

know is the OpenMP runtime library.911

Bottom line: what we want to do about this ‘Advice to implementors’?912

12.1 Parallel Regions913

The OpenMP runtime must call ompd_bp_parallel_begin when a new parallel region is launched.914

The call should occur after a task encounters a parallel construct, but before any implicit task starts915

to execute the parallel region’s work. The type signature for ompd_bp_parallel_begin is:916

void ompd_bp_parallel_begin (void);917

When the debugger gains control when the breakpoint is triggered, the debugger can map the918

the operating system thread to an OpenMP thread handle using ompd_get_thread_handle. At this §10.1, p16919

point the handle returned by ompd_get_top_parallel_region is that of the new parallel region. §7.3, p11920

The debugger can find the entry point of the user code that the new parallel region will execute by921

passing the parallel handle region to get_parallel_function. The actual number of threads, rather §9.3, p15922

than the requested number of threads, in the team is returned by ompd_get_num_threads. The task §9.1, p14923

handle returned by ompd_get_top_task_region will be that of the task encountering the parallel §7.4, p12924

construct. The ‘reenter runtime’ address in the information returned by ompd_get_task_frame will §11.3, p19925

be that of the stack frame where the thread entered the OpenMP runtime to handle the parallel926

construct. The ‘exit runtime’ address will be for the stack frame where the thread left the OpenMP927

runtime to execute the user code that encountered the parallel construct.928

When a parallel region finishes, the OpenMP runtime will call the ompd_bp_parallel_end rou-929

tine:930

20

void ompd_bp_parallel_end (void);931

At this point the debugger can map the operating system thread that hit the breakpoint to an932

OpenMP thread handle using ompd_get_thread_handle. ompd_get_top_parallel_region returns §10.1, p16
§7.3, p11

933

the handle of the terminating parallel region. ompd_get_top_task_region returns the handle of the
§7.4, p12

934

task that encountered the parallel construct that initiated the parallel region just terminating. The935

‘reenter runtime’ address in the frame information returned by ompd_get_task_frame will be that §11.3, p19936

for the stack frame in which the thread entered the OpenMP runtime to start the parallel construct937

just terminating. The ‘exit runtime’ address will refer to the stack frame where the thread left the938

OpenMP runtime to execute the user code that invoked the parallel construct just terminating.939

Both the begin and end events are raised once per region, and not once for each thread per940

region.941

12.2 Task Regions942

When starting a new task region, the OpenMP runtime system calls ompd_bp_task_begin:943

void ompd_bp_task_begin (void);944

The OpenMP runtime system will call this routine after the task construct is encountered, but before945

the new explicit task starts. When the breakpoint is triggered the debugger can map the operat-946

ing thread to an OpenMP handle using ompd_get_thread_handle. ompd_get_top_task_region §10.1, p16
§7.4, p12

947

returns the handle of the new task region. The entry point of the user code to be executed by the948

new task from returned from ompd_get_task_function. §11.1, p16949

When a task region completes, the OpenMP runtime system calls the ompd_bp_task_end func-950

tion:951

void ompd_bp_task_end (void);952

As above, when the breakpoint is hit the debugger can use ompd_get_thread_handle to map the §10.1, p16953

triggering operating system thread to the corresponding OpenMP thread handle. At this point954

ompd_get_top_task_region returns the handle for the terminating task. §7.4, p12955

13 Display Control Variables956

Using the ompd_get_display_control_vars function, the debugger can extract a NULL-terminated957

vector of strings of name/value pairs of control variables whose settings are (a) user controllable,958

and (b) important to the operation or performance of an OpenMP runtime system. The control959

variables exposed through this interface will include all of the OMP environment variables, settings960

that may come from vendor or platform-specific environment variables (e.g., the IBM XL compiler961

has an environment variable that controls spinning vs. blocking behavior), and other settings that962

affect the operation or functioning of an OpenMP runtime system (e.g., numactl settings that cause963

threads to be bound to cores).964

ompd_rc_t ompd_get_display_control_vars (965

ompd_address_space_handle_t *handle, /* IN */966

const char * const * *control_var_values /* OUT */967

);968

The format of the strings is:969

name=a string

The debugger must not modify the vector or strings (i.e., they are both const). The strings are970

NULL terminated. The vector is NULL terminated.971

After returning from the call, the vector and strings are ‘owned’ by the debugger. Providing the972

termination constraints are satisfied, the OMPD implementation is free to use static or dynamic973

21

memory for the vector and/or the strings, and to arrange them in memory as it pleases. If dynamic974

memory is used, then the OMPD implementation must use the allocate callback it received in the975

call to ompd_initialize. As the debugger cannot make any assumptions about how the memory §4.1, p6976

used for the vector and strings, it cannot release the display control variables directly when they are977

no longer needed, and instead it must use the ompd_release_display_control_vars function:978

ompd_rc_t ompd_release_display_control_vars (979

const char * const * control_var_values /* IN */980

);981

14 OpenMP Runtime Requirements982

Most of the debugger’s OpenMP-related activities on a target will be performed through the OMPD983

interface. However, supporting OMPD introduces some requirements of the OpenMP runtime.984

Some of these have been discussed earlier. Here we summarize these requirements and collect them985

together for easy reference.986

1. The OpenMP must define ompd_dll_locations; §2, p2987

2. The OpenMP must define ompd_dll_locations_valid () and call it once §2, p2988

ompd_dll_locations is ready to be read by the debugger;989

3. In order to support debugging, the OpenMP may need to collect and maintain information990

about a target’s execution that, perhaps for performance reasons, it would not otherwise not991

do. The OpenMP runtime must support the following mechanisms for indicating that it should992

collect whatever information is necessary to support OMPD:993

(a) the environment variable OMP_OMPD is set to on;994

(b) the target calls omp_ompd_enable () NOTE: ilaguna: should OMPD support any of the §2, p2995

previous mechanisms or both of them? From the text it’s not clear.996

4. The OpenMP must define the following routines and call them at the times described in997

Section 12:998

ompd_bp_parallel_begin999

ompd_bp_parallel_end1000

ompd_bp_task_begin1001

ompd_bp_task_end1002

5. Any OMPD-related symbols needed by the debugger must have C linkage.1003

22

15 OMPD Interface Type Definitions1004

The ompd.h file contains declarations and definitions for OMPD API types, structures, and func-1005

tions.1006

15.1 Basic Types1007

1008

typedef uint64_t ompd_taddr_t; /* unsigned integer large enough */1009

/* to hold a target address or a */1010

/* target segment value */1011

typedef int64_t ompd_tword_t; /* signed version of ompd_addr_t */1012

typedef uint64_t ompd_parallel_id_t; /* parallel region instance ID */1013

typedef uint64_t ompd_task_id_t; /* task region instance ID */1014

typedef uint64_t ompd_wait_id_t; /* identifies what a thread is */1015

/* waiting for */1016

typedef struct {1017

ompd_taddr_t segment; /* target architecture specific */1018

/* segment value */1019

ompd_taddr_t address; /* target address in the segment */1020

} ompd_address_t;1021

1022

#define OMPD_SEGMENT_UNSPECIFIED ((ompd_taddr_t) 0)1023

#define OMPD_SEGMENT_TEXT ((ompd_taddr_t) 1)1024

#define OMPD_SEGMENT_DATA ((ompd_taddr_t) 2)1025

An ompd_address_t is a structure that OMPD uses to specify target addresses, which may or1026

may not be segmented. The following rules apply:1027

• If the target architecture is not segmented, the OMPD implementation should use1028

OMPD_SEGMENT_UNSPECIFIED for the segment value.1029

• If the target architecture uses simple “text” and “data” segments, which is common on some1030

systems, the OMPD implementation should use OMPD_SEGMENT_TEXT for the text segment1031

value, and OMPD_SEGMENT_DATA for the data segment value.1032

• The segment value for the NVIDIA R© GPU target architecture should use a ptxStorageKind1033

enumeration value as defined by the CUDA Debugger API. This enumeration is defined by the1034

cudadebugger.h header file contained within a CUDA SDK package.1035

• Otherwise, the segment value is target architecture specific.1036

15.2 Operating System Thread Information1037

An OpenMP runtime may be implemented on different threading substrates. OMPD uses the1038

ompd_osthread_kind_t type to describe an operating system thread upon which an OpenMP thread1039

is overlaid.1040

typedef enum {1041

ompd_osthread_pthread,1042

ompd_osthread_lwp,1043

ompd_osthread_winthread1044

} ompd_osthread_kind_t;1045

The operating system-specific information can vary in size and format, and therefore is not1046

explicitly represented in this API. Operating system-specific thread identifiers are passed across the1047

23

interface by reference, that is, by a pointer to where the information can be found. In addition, the1048

‘kind’ and size of the information are also passed.1049

When operating system-specific thread identifiers are passed as either ‘in’ or ‘out’ parameters,1050

they are allocated and owned by the caller, which is responsible for their eventual disposal.1051

15.3 OMPD Handles1052

Each OMPD interface operation that applies to a particular address space, thread, parallel region,1053

or task must explicitly specify the target entity for the operation using a handle. OMPD employs1054

handles for address spaces (for a host or target device), threads, parallel regions, and tasks. A1055

handle for an entity is constant while the entity itself is live. Handles are defined by the OMPD1056

implementation, and are opaque to the debugger. This is how the ompd.h header file defines these1057

types:1058

typedef struct _ompd_address_space_handle_s ompd_address_space_handle_t;1059

typedef struct _ompd_thread_handle_s ompd_thread_handle_t;1060

typedef struct _ompd_parallel_handle_s ompd_parallel_handle_t;1061

typedef struct _ompd_task_handle_s ompd_task_handle_t;1062

Defining the externally visible type names in this way introduces an element of type safety to the1063

interface, and will help to catch instances where incorrect handles are passed by the debugger to the1064

OMPD implementation. The structs do not need to be defined at all. The OMPD implementation1065

would need to cast incoming (pointers to) handles to the appropriate internal, private types.1066

15.4 Debugger Contexts1067

The debugger contexts are opaque to the OMPD, and are defined in the ompd.h header file as follows:1068

typedef struct _ompd_address_space_context_s ompd_address_space_context_t;1069

typedef struct _ompd_thread_context_s ompd_thread_context_t;1070

15.5 Return Codes1071

Each OMPD interface operation has a return code. The purpose of the each return code is explained1072

by the comments in the definition below.1073

typedef enum {1074

ompd_rc_ok = 0, /* operation was successful */1075

ompd_rc_unavailable = 1, /* info is not available (in this context) */1076

ompd_rc_stale_handle = 2, /* handle is no longer valid */1077

ompd_rc_bad_input = 3, /* bad input parameters (other than handle) */1078

ompd_rc_error = 4, /* error */1079

ompd_rc_unsupported = 5, /* operation is not supported */1080

ompd_rc_needs_state_tracking = 6,1081

/* needs runtime state tracking enabled */1082

ompd_rc_incompatible = 7, /* target is not compatible with this OMPD */1083

ompd_rc_target_read_error = 8,1084

/* error reading from the target */1085

ompd_rc_target_write_error = 9,1086

/* error writing from the target */1087

ompd_rc_nomem = 10, /* unable to allocate memory */1088

} ompd_rc_t;1089

24

15.6 OpenMP Scheduling1090

This enumeration defines ompd_sched_t, which is the OMPD API definition corresponding1091

to the OpenMP enumeration type omp_sched_t (§3.2.12 of [5]). ompd_sched_t also defines1092

ompd_sched_vendor_lo and ompd_sched_vendor_hi to define the range of implementation-specific1093

omp_sched_t values than can be handle by the OMPD API.1094

typedef enum {1095

ompd_sched_static = 1,1096

ompd_sched_dynamic = 2,1097

ompd_sched_guided = 3,1098

ompd_sched_auto = 4,1099

ompd_sched_vendor_lo = 5,1100

ompd_sched_vendor_hi = 0x7fffffff1101

} ompd_sched_t;1102

15.7 OpenMP Proc Binding1103

This enumeration defines ompd_proc_bind_t, which is the OMPD API definition corresponding to1104

the OpenMP enumeration type omp_proc_bind_t (§3.2.22 of [5]).1105

typedef enum {1106

ompd_proc_bind_false = 0,1107

ompd_proc_bind_true = 1,1108

ompd_proc_bind_master = 2,1109

ompd_proc_bind_close = 3,1110

ompd_proc_bind_spread = 41111

} ompd_proc_bind_t;1112

15.8 Primitive Types1113

This structure contains members that the OMPD implementation can use to interrogate the debugger1114

about the “sizeof” of primitive types in the target address space.1115

typedef struct {1116

int sizeof_char;1117

int sizeof_short;1118

int sizeof_int;1119

int sizeof_long;1120

int sizeof_long_long;1121

int sizeof_pointer;1122

} ompd_target_type_sizes_t;1123

This enumeration of primitive types is used by OMPD to express the primitive type of data for1124

target to host conversion.1125

typedef enum {1126

ompd_type_char = 0,1127

ompd_type_short = 1,1128

ompd_type_int = 2,1129

ompd_type_long = 3,1130

ompd_type_long_long = 4,1131

ompd_type_pointer = 51132

} ompd_target_prim_types_t;1133

25

15.9 Runtime States1134

The OMPD runtime states mirror those in OMPT (see Appendix A of [3]).1135

typedef enum {1136

/* work states (0..15) */1137

ompd_state_work_serial = 0x00, /* working outside parallel */1138

ompd_state_work_paralle l = 0x01, /* working within parallel */1139

ompd_state_work_reduction = 0x02, /* performing a reduction */1140

1141

/* idle (16..31) */1142

ompd_state_idle = 0x10, /* waiting for work */1143

1144

/* overhead states (32..63) */1145

ompd_state_overhead = 0x20, /* non-wait overhead */1146

1147

/* barrier wait states (64..79) */1148

ompd_state_wait_barrier = 0x40, /* generic barrier */1149

ompd_state_wait_barrier_implicit = 0x41, /* implicit barrier */1150

ompd_state_wait_barrier_explicit = 0x42, /* explicit barrier */1151

1152

/* task wait states (80..95) */1153

ompd_state_wait_taskwait = 0x50, /* waiting at a taskwait */1154

ompd_state_wait_taskgroup = 0x51, /* waiting at a taskgroup */1155

1156

/* mutex wait states (96..111) */1157

ompd_state_wait_lock = 0x60, /* waiting for lock */1158

ompd_state_wait_nest_lock = 0x61, /* waiting for nest lock */1159

ompd_state_wait_critical = 0x62, /* waiting for critical */1160

ompd_state_wait_atomic = 0x63, /* waiting for atomic */1161

ompd_state_wait_ordered = 0x64, /* waiting for ordered */1162

1163

/* misc (112..127) */1164

ompd_state_undefined = 0x70, /* undefined thread state */1165

ompd_state_first = 0x71, /* initial enumeration state */1166

} ompd_state_t;1167

15.10 Type Signatures for Debugger Callbacks1168

For OMPD to provide information about the internal state of the OpenMP runtime system in a1169

target process or core file, it must have a means to extract information from the target. A target1170

“process” may be a “live” process or a core file. A target thread may be a “live” thread in a process,1171

or a thread in a core file. To enable OMPD to extract state information from a target process or1172

core file, a debugger supplies OMPD with callback functions to inquire about the size of primitive1173

types in the target, look up the addresses of symbols, as well as read and write memory in the target.1174

OMPD then uses these callbacks to implement its interface operations. Signatures for the debugger1175

callbacks used by OMPD are given below.1176

Memory management. The callback signatures below are used to allocate and free memory1177

in the debugger’s address space. The OMPD DLL must obtain and release heap memory only1178

using the callbacks provided to it by the debugger. It must not call the heap manager directly1179

using malloc. For C++ implementations this means the OMPD implementation must overload the1180

functions new, new(throw), new[], delete, delete(throw), and delete[] in all their variants and1181

use the debugger-provided callback functions to implement them.1182

26

typedef ompd_rc_t (*ompd_dmemory_alloc_fn_t) (1183

ompd_size_t bytes, /* IN: the number of bytes to allocate */1184

void **ptr /* OUT: on success, a pointer to the allocated memory here */1185

);1186

1187

typedef ompd_rc_t (*ompd_dmemory_free_fn_t) (1188

void *ptr /* IN: the address of the memory to be deallocated */1189

);1190

Context management. The callback signature below is used to map an operating system thread1191

handle to a debugger thread context. The OMPD implementation can use this thread context to1192

access thread local storage (TLS).1193

typedef ompd_rc_t (*ompd_get_thread_context_for_osthread_fn_t) (1194

ompd_address_space_context_t *address_space_context, /* IN */1195

ompd_osthread_kind_t kind, /* IN */1196

ompd_size_t sizeof_osthread, /* IN */1197

const void *osthread, /* IN */1198

ompd_thread_context_t **thread_context /* OUT */1199

);1200

On success, the ompd_thread_context_t corresponding to the operating system thread identifier1201

*osthread of type kind and size sizeof_osthread is returned in *thread_context. The thread1202

context is created, and remains owned, by the debugger. The OMPD implementation can assume1203

that the thread context is valid for as long as the debugger is holding any references to thread1204

handles that may contain the thread context.1205

Context navigation. The following callback signature is used to “navigate” address space and1206

thread object relationships.1207

Thread context to address space context. Given a thread context, get the address space1208

context for the thread and return it in *address_space_context. If thread_context refers to a1209

host device thread, this function returns the context for the host address space. If thread_context1210

refers to a target device thread, this function returns the context for the target device’s address1211

space.1212

typedef ompd_rc_t (*ompd_get_address_space_context_for_thread_fn_t) (1213

ompd_thread_context_t *thread_context, /* IN */1214

ompd_address_space_context_t **address_space_context /* OUT */1215

);1216

Primitive type size. The callback signature below is used to look up the sizes of primitive types1217

in the target address space.1218

typedef ompd_rc_t (*ompd_tsizeof_prim_fn_t) (1219

ompd_address_space_context_t *context, /* IN */1220

ompd_target_type_sizes_t *sizes /* OUT: returned type sizes */1221

);1222

Symbol lookup. The callback signature below is used to look up the address of a global symbol1223

in the target. The argument thread_context is optional for global memory access and is NULL in1224

this case. If the thread_context argument is not NULL, this will give the thread specific context1225

for the symbol lookup, for the purpose of calculating thread local storage (TLS) addresses.1226

27

typedef ompd_rc_t (*ompd_tsymbol_addr_fn_t) (1227

ompd_address_space_context_t *address_space_context, /* IN */1228

ompd_thread_context_t *thread_context, /* IN: TLS thread or NULL */1229

const char *symbol_name, /* IN: global symbol name */1230

ompd_address_t *symbol_addr /* OUT: on success, */1231

/* the symbol address */1232

);1233

The symbol name supplied by the OMPD implementation is used verbatim by the debugger, and in1234

particular, no name mangling is performed prior to the lookup.1235

Memory access. The callback signatures below are used to read or write memory in the target.1236

Data transfers are of unstructured bytes; it is the responsibility of the OMPD implementation to1237

arrange for any byte swapping as necessary. The argument thread_context is optional for global1238

memory access and is NULL in this case. If the argument is not NULL, it identifies the thread1239

specific context for the memory access, for the purpose of accessing thread local storage (TLS)1240

memory. The buffer is allocated and owned by the OMPD implementation.1241

typedef ompd_rc_t (*ompd_tmemory_read_fn_t) (1242

ompd_address_space_context_t *address_space_context, /* IN */1243

ompd_thread_context_t *thread_context, /* IN: TLS thread or NULL */1244

const ompd_address_t *addr, /* IN: address in the target */1245

ompd_tword_t nbytes, /* IN: number of bytes to be */1246

/* transferred */1247

void *buffer /* OUT: buffer for data read from */1248

/* the target */1249

);1250

1251

typedef ompd_rc_t (*ompd_tmemory_write_fn_t) (1252

ompd_address_space_context_t *address_space_context, /* IN */1253

ompd_thread_context_t *thread_context, /* IN: TLS thread or NULL */1254

const ompd_address_t *addr, /* IN: address in the target */1255

ompd_tword_t nbytes, /* IN: number of bytes to be */1256

/* transferred */1257

const void *buffer /* IN: buffer for date written to */1258

/* the target */1259

);1260

Data format conversion. The callback signature below is used to convert data from the target1261

address space byte ordering to the host (OMPD implementation) byte ordering, and vice versa.1262

typedef ompd_rc_t (*ompd_target_host_fn_t) (1263

ompd_address_space_context_t *address_space_context, /* IN */1264

const void *input, /* IN */1265

int unit_size, /* IN */1266

int count, /* IN: number of primitive type */1267

/* items to process */1268

void *output /* OUT */1269

);1270

The input and output buffers are allocated and owned by the OMPD implementation, and it is its1271

responsibility to ensure that the buffers are the correct size.1272

28

Print string. The callback signature below is used by OMPD to have the debugger print a string.1273

OMPD should not print directly.1274

typedef ompd_rc_t (*ompd_print_string_fn_t) (1275

const char *string1276

);1277

16 Debugger Callback Interface1278

OMPD must interact with both the debugger and an OpenMP target process or core file. OMPD1279

must interact with the debugger to allocate or free memory in address space that OMPD shares1280

with the debugger. OMPD needs the debugger to access the target on its behalf to inquire about1281

the sizes of primitive types in the target, look up the address of symbols in the target, as well as1282

read and write memory in the target.1283

OMPD interacts with the debugger and the target through a callback interface. The callback1284

interface is defined by the ompd_callbacks_t structure. The debugger supplies ompd_callbacks_t1285

to OMPD by filling it out in the ompd_initialize callback.1286

typedef struct {1287

/*---*/1288

/* debugger interface */1289

/*---*/1290

1291

/* interface for ompd to allocate/free memory in the debugger’s address space */1292

ompd_dmemory_alloc_fn_t d_alloc_memory; /* allocate memory in the debugger */1293

ompd_dmemory_free_fn_t d_free_memory; /* free memory in the debugger */1294

1295

/* printing */1296

ompd_print_string_fn_t print_string; /* have the debugger print a string for OMPD */1297

1298

/*---*/1299

/* target interface */1300

/*---*/1301

1302

/* obtain information about the size of primitive types in the target */1303

ompd_tsizeof_prim_fn_t t_sizeof_prim_type; /* return the size of a primitive type */1304

1305

/* obtain information about symbols in the target */1306

ompd_tsymbol_addr_fn_t t_symbol_addr_lookup; /* look up the address of a symbol */1307

1308

1309

/* access data in the target */1310

ompd_tmemory_read_fn_t t_read_memory; /* read from target address into buffer */1311

ompd_tmemory_write_fn_t t_write_memory; /* write from buffer to target address */1312

1313

/* convert byte ordering */1314

ompd_target_host_fn_t target_to_host;1315

ompd_target_host_fn_t host_to_target;1316

1317

/*---*/1318

/* context management */1319

/*---*/1320

1321

ompd_get_thread_context_for_osthread_fn_t get_thread_context_for_osthread;1322

1323

/*---*/1324

/* context navigation */1325

/*---*/1326

1327

ompd_get_address_space_context_for_thread_fn_t1328

get_address_space_context_for_thread;1329

1330

} ompd_callbacks_t;1331

29

References1332

[1] J. Cownie, J. DelSignore, B. R. de Supinski, and K. Warren. DMPL: an OpenMP DLL debugging1333

interface. In Proceedings of the OpenMP applications and tools 2003 international conference on1334

OpenMP shared memory parallel programming, WOMPAT’03, pages 137–146, Berlin, Heidelberg,1335

2003. Springer-Verlag.1336

[2] J. Cownie and W. Gropp. A standard interface for debugger access to message queue informa-1337

tion in MPI. In Proceedings of PVMMPI’99, pages 51–58, 1999. http://www.mcs.anl.gov/1338

research/projects/mpi/mpi-debug/eurompi-paper.ps.gz.1339

[3] A. Eichenberger, J. Mellor-Crummey, M. Schulz, N. Copty, J. Cownie, R. Dietrich, X. Liu,1340

E. Loh, D. Lorenz, and other members of the OpenMP Tools Working Group. OMPT: An1341

OpenMP tools application programming interface for performance analysis. Technical Report1342

TR2, The OpenMP Architecture Review Board, March 2014.1343

[4] A. Eichenberger, J. Mellor-Crummey, M. Schulz, N. Copty, J. DelSignore, R. Dietrich, X. Liu,1344

E. Loh, D. Lorenz, and other members of the OpenMP Tools Working Group. OMPT and1345

OMPD: OpenMP tools application programming interfaces for performance analysis and debug-1346

ging. Technical report, The OpenMP Architecture Review Board, April 2013. (This document1347

was superseded by TR2 [3]).1348

[5] OpenMP Architecture Review Board. OpenMP Application Program Interface, version 4.0 edi-1349

tion, July 2013.1350

[6] Sun Microsystems. Man pages section 3: Threads and realtime library functions:1351

libthread_db(3THR), 1998. http://docs.oracle.com/cd/E19455-01/806-0630/6j9vkb8dk/1352

index.html.1353

30

http://www.mcs.anl.gov/research/projects/mpi/mpi-debug/eurompi-paper.ps.gz
http://www.mcs.anl.gov/research/projects/mpi/mpi-debug/eurompi-paper.ps.gz
http://www.mcs.anl.gov/research/projects/mpi/mpi-debug/eurompi-paper.ps.gz
http://docs.oracle.com/cd/E19455-01/806-0630/6j9vkb8dk/index.html
http://docs.oracle.com/cd/E19455-01/806-0630/6j9vkb8dk/index.html
http://docs.oracle.com/cd/E19455-01/806-0630/6j9vkb8dk/index.html

	Acknowledgements
	Introduction
	Design Objectives
	Design Scope

	OpenMP Runtime Interface
	Terminology
	OMPD Concepts
	OMPD Handles
	Debugger Contexts
	Operating System Thread Identifiers

	Initialization and Finalization
	Per DLL Initialization
	Per Target Initialization
	Per Target Finalization
	Per DLL Finalization

	Memory Management
	Thread and Signal Safety
	Handle Management
	Address Space Handles
	Thread Handles
	Parallel Region Handles
	Task Handles

	Address Space and Thread Settings
	Parallel Region Inquiries
	Parallel Region Settings
	OMPT Parallel Region Inquiry Analogues
	Parallel Function Entry Point

	Thread Inquiries
	Operating System Thread Inquiry
	Thread State Inquiry Analogue

	Task Inquiries
	Task Function Entry Point
	Task Settings
	OMPT Task Inquiry Analogues
	Stack Unwinding

	Breakpoint Locations for Managing Parallel Regions and Tasks
	Parallel Regions
	Task Regions

	Display Control Variables
	OpenMP Runtime Requirements
	OMPD Interface Type Definitions
	Basic Types
	Operating System Thread Information
	OMPD Handles
	Debugger Contexts
	Return Codes
	OpenMP Scheduling
	OpenMP Proc Binding
	Primitive Types
	Runtime States
	Type Signatures for Debugger Callbacks

	Debugger Callback Interface

