
The MPIR Process Acquisition Interface

Version 1.1 DRAFT

MPI Forum Working Group on Tools
Accepted by the Message Passing Interface Forum

(date tbd.)

Acknowledgments

Author
John DelSignore

Contributing Authors
Dong Ahn, Ralph Castain, and Jeff Squyres

Editor
Martin Schulz

Reviewers
Bronis de Supinski, William Gropp, Marc-André Hermanns, David Lecomber,

Ashley Pittman, Alexander Supalov, and Greg Watson

Contents

1 Background 1

2 Overview 2

3 Definitions 4
3.1 MPI Process Definition . 4
3.2 “Starter” Process Definition . 4

The MPI Rank 0 Process as the Starter Process 4
A Separate “mpiexec” as the Starter Process 4

3.3 MPIR Node Definitions . 5

4 Interface Requirements 6
4.1 Symbol Table Requirements . 6
4.2 Debugger-Level Process Control Requirements 6

5 Limitations 7

6 Process Acquisition Modes 8
6.1 MPIR Job Launch and Attach Modes . 8
6.2 MPI Process Synchronization . 8

7 Optional Interface Extensions 10
7.1 Tool Daemon Launch Extension . 10
7.2 Attach FIFO Extension . 11

8 Use Case 12

9 Interface Specification 15
9.1 VOLATILE . 15
9.2 MPIR_PROCDESC . 15
9.3 MPIR_being_debugged . 16
9.4 MPIR_proctable . 17
9.5 MPIR_proctable_size . 17
9.6 MPIR_debug_state . 17
9.7 MPIR_debug_abort_string . 18
9.8 MPIR_debug_gate . 18
9.9 MPIR_Breakpoint . 19
9.10 MPIR_i_am_starter . 19

ii
The interface described in this document is not part of the official MPI specification

9.11 MPIR_acquired_pre_main . 19
9.12 MPIR_force_to_main . 20
9.13 MPIR_partial_attach_ok . 20
9.14 MPIR_ignore_queues . 21
9.15 MPIR_executable_path . 21
9.16 MPIR_server_arguments . 21
9.17 MPIR_attach_fifo . 22

Bibliography 23

iii
The interface described in this document is not part of the official MPI specification

iv
The interface described in this document is not part of the official MPI specification

Chapter 1

Background

Developing, debugging, and instrumenting parallel applications, by their distributed and
multi-process nature, has always been difficult. By the mid-1990’s, at least somewhat
pushed by the completion of MPI-1.0 [4] in 1994, parallel application developers cited a
real need for comprehensive debugging and instruction tools suitable use in parallel envi-
ronments. In response, the TotalView debugger – an already mature parallel debugger for
the BBN Uniform System and Oak Ridge National Laboratory’s Parallel Virtual Machine
(PVM) – was quickly adapted to support debugging MPI applications.

In early 1995, TotalView’s Jim Cownie and Argonne National Laboratory’s Bill Gropp
and Rusty Lusk decided to join forces and develop debugging interfaces for use with MPICH,
one of the first widely available MPI implementations. Two interfaces were developed: one
for process discovery/acquisition and one for message queue extraction. Coined the “MPIR”
interfaces [1, 2], the MPI debugging interfaces eventually became de facto standards im-
plemented by various MPI providers such as Compaq, HP, IBM, Intel, LAM/MPI, MPI
Software Technologies, Open MPI, Quadrics, SCALI, SGI, Sun/Oracle and other imple-
mentations of MPI.

Even though the MPIR debugging interfaces are still widely used today by a number of
MPI implementations and tool vendors, MPIR has not yet been standardized. Bill Gropp
writes, “. . . there never was a formal MPIR spec for the process discovery — there was a hack
that was created for the first prototype implementation with MPICH and the ch_p4 device,
but this was never intended to be a standard. Unfortunately, like so many prototypes,
since there wasn’t a standard, this part of the implementation was reverse-engineered into
other implementations.” In addition to being implemented by many MPI vendors, the
MPIR Process Acquisition Interface used for process discovery has been extended by some
vendors to better suit their needs.

This document describes the current state of the field for the MPIR Process Acquisition
Interface. It describes how the MPIR Process Acquisition Interface is currently used by
several MPI implementations and tools.

Rationale. Note that this document does not introduce any improvements to the
existing de facto use of the MPIR interface. For example, this document does not
support MPI-2 [3] dynamic processes. Nor does it fix several of MPIR’s well-known
scalability issues. This document is solely intended to codify the current state of the
art. (End of rationale.)

1
The interface described in this document is not part of the official MPI specification

Chapter 2

Overview

The MPIR Process Acquisition Interface (MPAI), also known as the MPI Automatic Pro-
cess Acquisition (MPI APA) Interface, is used by tools such as debuggers and performance
analyzers to locate MPI processes that are part of an MPI job. The tool can then automat-
ically attach to the MPI processes in the job with no additional information required from
the tool user. The MPAI interface supports both launching an MPI job under the control
of a tool and attaching a tool to an already running job.

The MPAI interface is not an application programming interface (API). It is a ren-
dezvous protocol used between the tool (such as a debugger or performance analyzer) and
the MPI implementation. The MPAI interface requires that a tool reads symbol table infor-
mation and traces the starter process, including starting and stopping the process, reading
the memory and registers of the starter process, planting breakpoints, and handling events.
The MPAI defines the starter process as the process that contains information about the
location of the MPI processes. The starter process may or may not be an MPI process
itself.

The MPAI interface provides three fundamental pieces of information about each MPI
process in an MPI job, as follows:

1. The location of the process in the form of a name that is resolvable to an IP address
or node number.

2. The name of the executable the MPI process is running.

3. The process ID of the MPI process.

Collectively for each process, this information is known as the MPIR process descriptor.
The MPI job control runtime system gathers the MPIR process descriptors into a single
MPIR process descriptor table that is located in the memory of the starter process.

The MPI runtime system raises an event to the tool by setting an integer global variable
and calling a breakpoint function in the starter process. The defined set of events is limited
to MPI job spawn and abort. When the tool receives an MPI job spawn event, it reads the
MPIR process descriptor out of the starter process and attaches to the MPI processes.

Under the MPIR interface, the tool does not create the parallel job. The MPI job
control runtime system creates the job and the tool attaches to the MPI processes after the
processes have been created.

The MPIR interface also allows the MPI process to specify the path to the MPIR
Message Queue Display (MQD) shared library, which allows the tool to display the state

2
The interface described in this document is not part of the official MPI specification

of the message queues in the MPI processes. Details of the MQD are not included in this
document.

3
The interface described in this document is not part of the official MPI specification

Chapter 3

Definitions

This section contains definitions of terms used in the MPIR Process Acquisition Interface.

3.1 MPI Process Definition

An MPI process is defined to be a process that is part of the MPI application as described
in the MPI standard.

In this document, the rank of a process is assumed to be relative to MPI_COMM_-

WORLD (recall that this version of the MPIR interface does not support MPI-2 dynamic
processes). For example, the phrase “MPI rank 0 process” denotes the process that is rank
0 in MPI_COMM_WORLD.

3.2 “Starter” Process Definition

The starter process is the process that is primarily responsible for launching the MPI job.
The starter process may be a separate process that is not part of the MPI application, or
the MPI rank 0 process may act as a starter process. By definition, the starter process
contains functions, data structures, and symbol table information for the MPIR Process
Acquisition Interface.

The MPI implementation determines which launch discipline is used, as described in
the following subsections.

The MPI Rank 0 Process as the Starter Process

The MPICH-1 p4 channel is implemented such that the MPI rank 0 process launches the
remaining MPI processes of the MPI application. In the MPICH-1 p4 channel implemen-
tation, the MPI rank 0 process is the starter process.

A Separate “mpiexec” as the Starter Process

Most MPI implementations use a separate “mpiexec” process that is responsible for launch-
ing the MPI processes. In these implementations, the “mpiexec” process is the starter
process. Note that the name of the starter process executable varies by implementation;
“mpirun” is a name commonly used by several implementations, for example. Other names
include (but are not limited to) “srun” and “prun”.

4
The interface described in this document is not part of the official MPI specification

3.3 MPIR Node Definitions

For the purposes of this document, the host node is defined to be the node running the tool
process, and a target node is defined to be a node running the target application processes
the tool is controlling. A target node might be the host node, that is, the target application
processes might be running on the same node as the tool process.

5
The interface described in this document is not part of the official MPI specification

Chapter 4

Interface Requirements

The MPIR Process Acquisition Interface requires the tool to contain several capabilities
typically found in a debugger.

4.1 Symbol Table Requirements

The MPIR Process Acquisition Interface requires the starter process contain symbol table
information for the functions, data structures, and types defined by the interface. The
symbol table information must be contained within the starter process executable or a
shared library used by the starter process. If the implementation places the symbol table
information in a shared library, the shared library may either be loaded as a requirement
of the starter process executable, or dynamically loaded at runtime by the MPIR starter
process.

The symbol table requirements are as follows:

• The starter process compilation unit(s) containing the functions, data structures, and
types defined by the interface must be built with symbolic debugging information (for
example, on Linux, that typically means compiling with the -g option).

• The starter process implementation must ensure that the functions, data structures,
types, and symbol table information are not discarded as a result of compiler or linker
optimizations.

• The packaging, distribution, and installation procedures for the starter process imple-
mentation must ensure that the symbol table information is not stripped, separated
or otherwise discarded.

4.2 Debugger-Level Process Control Requirements

The debugger-level process-control requirement is as follows:

• The MPIR Process Acquisition Interface requires that the tool be able to exercise
debugger-level control over the starter process. The tool is required to be able con-
trol the execution, read and write the address space, plant breakpoints, and handle
breakpoint events in the starter process.

6
The interface described in this document is not part of the official MPI specification

Chapter 5

Limitations

The MPIR Process Acquisition Interface has the following limitation:

• The MPIR Process Acquisition Interface does not support the dynamic process cre-
ation or communication facilities of MPI-2, such as MPI_COMM_SPAWN[
_MULTIPLE], MPI_COMM_ACCEPT, MPI_COMM_CONNECT, or MPI_COMM_JOIN.

7
The interface described in this document is not part of the official MPI specification

Chapter 6

Process Acquisition Modes

The MPIR Process Acquisition Interface supports several process acquisition and synchro-
nization modes to accommodate various MPI implementations and tools deployment sce-
narios, as described in the following subsections.

6.1 MPIR Job Launch and Attach Modes

The MPIR Process Acquisition Interface supports both launching an MPI application under
the control of the tool, and attaching the tool to an already running MPI application.

Under the MPIR job launch mode, the tool is invoked on the starter process executable,
which in turn starts the MPI application. Consider the following example command, where
tool is the tool executable, mpiexec is the starter process executable, and mpiapp is the
MPI application executable:

$ tool <tool-args> mpiexec <mpiexec-args> mpiapp

$

Under the MPIR job attach mode, the MPI job is already running when the tool is
attached to the starter process, as shown in the following example commands:

$ mpiexec <mpiexec-args> mpiapp &

[Shell prints the process ID of the background mpiexec process]

$

Some amount of time elapses, and the tool is attached to the mpiexec process (perhaps
because the job is hung), as follows:

$ tool <tool-args> --pid <pid from above> mpiexec

$

6.2 MPI Process Synchronization

Under the job launch mode the MPI implementation must ensure that the MPI processes
do not return from MPI_INIT. This requirement guarantees that the tool can acquire the
MPI processes early in their lifetime.

8
The interface described in this document is not part of the official MPI specification

The MPIR Process Acquisition Interface provides an optional interface (see the de-
scription of MPIR debug gate variable named MPIR_debug_gate in Section 9.8) that allows
the tool to synchronize with the start up of the MPI processes. The goal of the MPIR debug
gate is to prevent the MPI processes from “running away” before the tool has a chance to
attach to them.

An MPI implementation is not required to use the MPIR_debug_gate variable for syn-
chronization. In fact, implementations are encouraged to use a synchronization technique
that does not involve the use of MPIR_debug_gate in the MPI processes. Other synchro-
nization techniques include the following:

• The MPI processes form a barrier with the starter process. During startup, the MPI
processes are created and allowed to run to barrier. The starter process joins the
barrier, but only after it has set MPIR_debug_state (Section 9.8) to MPIR_DEBUG_-

SPAWNED (Section 9.8) and called the MPIR_Breakpoint (Section 9.9) function to
notify the tool of the job spawn event.

• The starter process arranges for the MPI processes to be created in a stopped state,
before they have executed any user-mode instructions. For example, on Posix-like
systems, the MPI processes may be stopped on exit from execve. After the starter
process has set MPIR_debug_state to MPIR_DEBUG_SPAWNED and called the MPIR_-
Breakpoint function to notify the tool of the job spawn event, the MPI processes are
continued.

When an implementation uses a synchronization technique that does not require the
tool to set MPIR_debug_gate, and does not require the tool to attach to and continue the
MPI process, it should define the symbol MPIR_partial_attach_ok (Section 9.13) in the
starter process. If possible, an MPI implementation that does not require the tool to set
MPIR_debug_gate should avoid defining MPIR_debug_gate in the MPI processes.

9
The interface described in this document is not part of the official MPI specification

Chapter 7

Optional Interface Extensions

MPIR has been extended by some vendors, as described in the following subsections.

7.1 Tool Daemon Launch Extension

The original MPIR Process Acquisition Interface does not specify how the tool launches
helper daemons (if required), nor does it support tool daemon launch. The original MPIR
interface was extended on IBM Blue Gene systems to support tool daemon launch; that
extension has also been implemented in Open MPI. The extension provides support only for
tool daemon launch – it does not support communication between the tool and its daemons.
The tool is responsible for establishing its own communication channels.

The tool daemon launch extension adds two character array variables to the MPIR in-
terface that are named MPIR_executable_path (Section 9.15) and MPIR_server_arguments

(Section 9.16). They are used as follows:

1. Immediately after launching or attaching to the starter process, the tool writes the
path name of its tool daemons executable file to the MPIR_executable_path variable,
and writes the tool daemons command line arguments to the MPIR_server_arguments
variable.

2. The tool then sets MPIR_being_debugged (Section 9.3) to a non-zero value, and con-
tinues the starter process.

3. The starter process notices that the value of MPIR_being_debugged changed to a
non-zero value, and launches the executable named by the MPIR_executable_path

variable and passes the command line arguments contained in the MPIR_server_-

arguments variable.

4. Under the MPIR job launch mode, the starter process also arranges for the MPI
processes to be created when the tool daemon processes are created. The MPI job
control runtime system must prevent the created MPI processes from running beyond
the return from the applications call to MPI_INIT. On Blue Gene, the MPI processes
are created in a stopped state, and do not begin execution until after the starter
process is continued from the job spawn event (Section 9.6).

5. The starter process raises the job spawn event.

10
The interface described in this document is not part of the official MPI specification

6. It is then the responsibility of the tool and its daemon to establish communications,
and attach to the MPI processes.

See the description of the MPIR_executable_path and MPIR_server_arguments vari-
ables for more information.

7.2 Attach FIFO Extension

To support the MPIR attach mode of the tool daemon launch extension (Section 7.1),
the starter process of MPI job control runtime systems periodically polls MPIR_being_-

debugged (Section 9.3). While this scheme works well for the systems that run their starter
on a dedicated node, it can significantly affect the MPI job’s performance and scalability
for others that co-locate their starter with the MPI processes. To minimize such effects,
Open MPI added the MPIR_attach_fifo (Section 9.17) extension. This extension is used
as follows:

1. When the starter launches an MPI job, it locally opens a FIFO (named pipe) that is
owned and writable by its owner, writes the FIFO’s path to the MPIR_attach_fifo

variable, and waits for a byte to arrive through the channel (e.g., one of the starter’s
threads posts a blocking read on the channel).

2. Then, when the tool attaches to the starter, the tool sets MPIR_being_debugged to a
non-zero value, reads the path stored in MPIR_attach_fifo, opens and writes a byte
with a certain value into the FIFO.

3. In response, the starter wakes up, checks the value of the received byte, and performs
a predefined task associated with the value. If the value is 1, it reads the MPIR_-

being_debugged variable and reacts accordingly (see Section 7.1). The value of 0
is reserved for a no-op. 2-127 are reserved for MPIR future use and 128-255 are for
vendor-defined use.

The MPI job control runtime system is responsible for resetting the FIFO when the
tool finishes attaching from the MPI job and also for cleaning up the FIFO when the starter
terminates. The control system should also provide an option (e.g., a command line option
of the starter or a system configuration parameter) that allows the starter to fall back and
periodically poll the MPIR_being_debugged variable so as to ensure backward compatibility
with the tools that only support the original tool daemon launch interface (Section 7.1).
Given such an option, the starter should disable MPIR_attach_fifo support.

See the description of the MPIR_attach_fifo variable for more information (Sec-
tion 9.17).

11
The interface described in this document is not part of the official MPI specification

Chapter 8

Use Case

Figure 8.1 shows a collaboration diagram of a typical MPI session under the control of a
tool using the MPIR Process Acquisition Interface. Note that the interface can be used in
several different ways, thus there are several different possible relationships. The collabo-
ration diagram depicts one of the possible (and most common) relationships for an MPI
implementation that uses a separate starter executable named mpiexec to launch a set of
MPI tasks running an executable named “a.out”.

Startup processing:

1. The tool is started on the mpiexec executable.

2. The debugging subsystem of the tool reads the symbol table information from the
executable, and any shared libraries used by the executable.

3. The tool discovers the executable is a starter program by querying the symbol table
for the MPIR_Breakpoint symbol. If the symbol exists, then the tool should consider
this a starter program.

4. The tool spawns or attaches to the starter process, and arranges for the starter process
to remain stopped after the spawn or attach operation completes.

5. The tool reads the value of MPIR_proctable_size (Section 9.5) out of the starter
process to determine the number of MPI processes already created by the starter
process. If the tool spawned the starter process, then this value is expected to be 0.
However, if the tool attached to the starter process, then this value could be greater
than zero.

6. If MPIR_proctable_size is greater than zero, then the tool should attach to any
additional MPI processes that might exist. If the symbol MPIR_i_am_starter is not
defined in the starter process, then the starter process is the MPI rank 0 process, thus
the tool is already controlling the MPI rank 0 process.

7. The tool sets MPIR_being_debugged to 1 to inform the starter process that the de-
bugger is present.

8. The tool plants a breakpoint at MPIR_Breakpoint to receive MPIR events (defined
below). The tool may then continue the starter process.

12
The interface described in this document is not part of the official MPI specification

MPI Starter Process

MPIR_PROCDESC *MPIR_proctable;

int MPIR_proctable_size;

void MPIR_Breakpoint() {}

char *host_name;
char *executable_name;

int pid;

rank[0]

char *host_name;
char *executable_name;

int pid;

rank[n-1]

…

MPIR Process Acquisition Interface

int MPIR_debug_state;

MPI Starter “mpiexec”

Executable or Shared Library

(contains symbol information)

Tool Process

Debugging Subsystem

Symbol Table

Information

(ELF, DWARF,

etc).

Process Control

(ptrace, /proc,

etc.)

Tool Daemon Process

int MPIR_being_debugged;

MPI “rank[0]” Process

MPIR Process

Acquisition Interface

int MPIR_debug_gate;

char MPIR_dll_name[];

MPI “rank[n-1]” Process

MPIR Process

Acquisition Interface

int MPIR_debug_gate;

char MPIR_dll_name[]; …

Symbol reading
Spawn/attach

MPI Daemon

Process

MPI Daemon

Process

Spawn Spawn

MPI job control

Tool Daemon Process

Tool daemon launch/protocol

…

MPI process “a.out”

Executable(s) & DLLs

Attach Attach

Process Control

(ptrace, /proc, etc.)

Process Control

(ptrace, /proc, etc.)

1

2

3

4

5, 6, 10

7

8

9

Read/write memory

11

12

13

14

15

16
17

R/W

18

int MPIR_i_am_starter;

Figure 8.1: Example collaboration diagram for MPIR Process Acquisition Interface

Event processing:

9. If the starter process hits the breakpoint at MPIR_Breakpoint then by definition this
raises an “MPIR event”. The tool then reads the value of the MPIR_debug_state

variable out of the starter process, and performs an action based on the variables
value, which typically results in the tool attaching to the MPI processes listed in the
process descriptor table. See the description of MPIR_debug_state in Section 9.6 for
more information on MPIR events.

Process descriptor table processing:

10. The tool reads the value of MPIR_proctable_size variable out of the starter process
to determine the number of MPI processes already created by the starter process. If
this value is not greater than zero, then the table is empty.

11. The tool determines the size and member layout of the MPIR_PROCDESC (Section 9.2)
process descriptor structure by reading the type information from symbol table of the
starter process. The tool can find the process descriptor structure type information
either using a lookup on the type name, or by looking up the MPIR_proctable (Sec-
tion 9.4) variable and dereferencing the variables type. The latter approach is more

13
The interface described in this document is not part of the official MPI specification

reliable because the name MPIR_PROCDESC is a typedef, which may not be available
for by-name lookup.

12. The tool reads the value of the MPIR_proctable pointer variable out of the starter
process. The pointer is the base address of the process descriptor table.

13. The tool reads the process descriptor table out of the starter process, starting at the
MPIR_proctable pointer variable value. The length in bytes of the process descriptor
table is the size of the MPIR_PROCDESC process descriptor structure in bytes multiplied
by the value of MPIR_proctable_size variable.

14. The tool iterates over the process descriptor table information to identify the node
name or IP address, executable path name, and process ID of each of the MPI pro-
cesses.

15. The tool launches its tool daemons, if necessary, on the set of nodes being used by
the MPI processes.

16. The tool attaches to the MPI processes.

17. The tool reads the symbol table information of the MPI processes.

MPI process attach:

18. If the symbol MPIR_partial_attach_ok is defined in the starter process, then this
informs the tool that the initial startup barrier is implemented by the MPI system,
and it is not necessary to set the MPIR_debug_gate variable in any of MPI processes.
However, if the symbol MPIR_partial_attach_ok is not defined in the starter process,
the tool must attach and set the MPIR_debug_gate variable to 1 in each MPI processes
to release them from the gate, even if the tool user has instructed the tool to not attach
to all of the MPI processes.

14
The interface described in this document is not part of the official MPI specification

Chapter 9

Interface Specification

The MPIR Process Acquisition Interface is specified as a set of C-language definitions.
The following sections enumerate those definitions. Each subsection covers one definition,
specifies if the definition belongs in the starter process or the MPI processes, states whether
or not the definition is required, and describes how the definition is used.

9.1 VOLATILE

Macro definition:

#ifndef VOLATILE

#if defined(__STDC__) || defined(__cplusplus)

#define VOLATILE volatile

#else

#define VOLATILE

#endif

#endif

Definition is required.
Definition is used by the starter process and MPI processes.

The VOLATILE macro is defined to the volatile keyword for C++ and ANSI C. Declaring
a variable volatile informs the compiler that the variable could be modified by an external
entity and that its value can change at any time. VOLATILE is used with MPIR variables
defined in the starter and MPI processes but are set by the tool.

9.2 MPIR_PROCDESC

Type definition:

typedef struct {

char *host_name;

char *executable_name;

int pid;

} MPIR_PROCDESC;

15
The interface described in this document is not part of the official MPI specification

Definition is required.
Definition is contained within the symbol table of the starter process.

MPIR_PROCDESC is a typedef name for an anonymous structure that holds process de-
scriptor information for a single MPI process. The structure must contain three members
with the same names and types as specified above. The tool must use the symbol table
information to determine the overall size of the structure, and offset and size of each of the
structures members.

The host_name member is a pointer to a null-terminated character string in the address
space of the starter process that specifies the target node location of the MPI process in the
form of a host name or IP address string that must be translatable to an IP address. On
Beowulf Distributed Process Space (BProc) systems, the string is an integer node number
(e.g., “42”).

The executable_name member is a pointer to a null-terminated character string in
the address space of the starter process that specifies the name of the executable the MPI
process is running. The string should be the full path name to the executable, which may
be relative to the host node or target node.

The pid member is the integer process identifier of the MPI process. Note that histor-
ically pid was defined as a C language int, which is an integer of an unknown size, which
might be smaller than the size of a process identifier for the target system. Implementations
should define pid as an integer size that is large enough to hold a process identifier for the
target system. For example, implementations should use pid_t as the type of pid provided
that pid_t is an integer type.

The MPI implementation should share the host and executable name character strings
across multiple process descriptor entries whenever possible. For example, if all of the MPI
processes are executing “/path/a.out”, then the executable name field in each process
descriptor should point to the same null-terminated character string. Sharing the strings
enhances the tools scalability by allowing it to cache data from the starter process and avoid
reading redundant character strings.

9.3 MPIR_being_debugged

Global variable definition:

VOLATILE int MPIR_being_debugged;

Definition is not required.
Definition is contained within the address space of the starter process
and the MPI processes.
Variable is written by the tool, and read by the starter process
and the MPI processes.

MPIR_being_debugged is an integer variable that is set or cleared by the tool to notify
the starter process that a tool is present.

The tool sets the variable to 1 immediately after spawning or attaching to a process.
The tool sets the variable to 0 immediately before detaching from a process.

The starter process and the MPI processes may monitor the state of the variable and
perform certain operations differently. For example, this variable might control whether or
not the starter process forces the MPI processes to wait for the MPIR_debug_gate to be set.

16
The interface described in this document is not part of the official MPI specification

9.4 MPIR_proctable

Global variable definition:

MPIR_PROCDESC *MPIR_proctable;

Definition is required.
Definition is contained within the address space of the starter process.
Variable is written by the starter process, and read by the tool.

MPIR_proctable is a pointer variable set by the starter process that points to an array
of MPIR_PROCDESC structures containing MPIR_proctable_size elements. This array of
structures is the process descriptor table.

The index position in the process descriptor table is the rank of the process in MPI_-

COMM_WORLD. For example, index 0 in the table specifies rank 0 in MPI_COMM_WORLD,
index 1 in the table specifies rank 1 in MPI_COMM_WORLD, and so forth.

9.5 MPIR_proctable_size

Global variable definition:

int MPIR_proctable_size;

Definition is required.
Definition is contained within the address space of the starter process.
Variable is written by the starter process, and read by the tool.

MPIR_proctable_size is an integer variable set by the starter process that specifies
the number of elements in the procedure descriptor table pointed to by the MPIR_proctable
variable.

9.6 MPIR_debug_state

Macro definitions:

#define MPIR_NULL 0

#define MPIR_DEBUG_SPAWNED 1

#define MPIR_DEBUG_ABORTING 2

Global variable definition:

VOLATILE int MPIR_debug_state;

Definition is required.
Definition is contained within the address space of the starter process.
Variable is written by the starter process, and read by the tool.
Variables initial value should be 0 (MPIR_NULL).

MPIR_debug_state is an integer value set in the starter process that specifies the state
of the MPI job at the point where the starter process calls the MPIR_Breakpoint function.

17
The interface described in this document is not part of the official MPI specification

The starter process can raise an MPIR event in the tool by setting MPIR_debug_state and
calling the MPIR_Breakpoint function.

The tool must set a breakpoint at the MPIR_Breakpoint function and read the value
of the MPIR_debug_state variable to process an MPIR event. The following events are
defined:

• If the value is MPIR_NULL (0), then the tool should ignore the event and continue the
starter process.

• If the value is MPIR_DEBUG_SPAWNED (1), then the starter process has spawned the
MPI processes and filled in the process descriptor table. The tool can attach to any
additional MPI processes that have appeared in the process descriptor table. This is
known as a “job spawn event”.

• If the value is MPIR_DEBUG_ABORTING (2), then the MPI job has aborted and the
tool can notify the user of the abort condition. The tool can read the reason for
aborting the job by reading the character string out of the starter process, which is
pointed to by the MPIR_debug_abort_string variable in the starter process.

The tool may continue or leave the starter process stopped after processing the event.
The tool decides when to continue the starter process. For example, a debugger may al-
low the user to control the execution of the starter process in conjunction with controlling
the execution of the MPI processes. However, a performance analyzer might automatically
continue the starter process after processing the MPIR event. Note that some MPI imple-
mentations may require that the starter process be running while one or more of the MPI
processes are running. Therefore, the tool may be required to implicitly continue the starter
process when any of the MPI processes are continued.

9.7 MPIR_debug_abort_string

Global variable definition:

char *MPIR_debug_abort_string;

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is written by the starter process, and read by the tool.

MPIR_debug_abort_string is a pointer to a null-terminated character string set by
the starter process when MPI job has aborted. When an MPIR_DEBUG_ABORTING event is
reported, the tool can read the reason for aborting the job by reading the character string
out of the starter process. The abort reason string can then be reported to the user, and is
intended to be a human readable string.

9.8 MPIR_debug_gate

Global variable definition:

VOLATILE int MPIR_debug_gate;

18
The interface described in this document is not part of the official MPI specification

Definition is not required.
Definition is contained within the address space of the MPI processes.
Variable is written by the tool, and read by the MPI processes.

MPIR_debug_gate is an integer variable that is set to 1 by the tool to notify the MPI
processes that the debugger has attached. An MPI process may use this variable as a
synchronization mechanism to prevent it from running away before the tool has time to
attach to the process.

An MPI implementation is not required to use the MPIR_debug_gate variable for syn-
chronization. However, the MPI job control runtime system must prevent the created MPI
processes from running beyond the return from the applications call to MPI_INIT.

9.9 MPIR_Breakpoint

Global subroutine definition:

void MPIR_Breakpoint() {}

Definition is required.
Definition is contained within the address space of the starter process.

MPIR_Breakpoint is the subroutine called by the starter process to notify the tool that
an MPIR event has occurred. The starter process must set the MPIR_debug_state variable
to an appropriate value before calling this subroutine. The tool must set a breakpoint
at the MPIR_Breakpoint function, and when a thread running the starter process hits the
breakpoint, the tool must read the value of the MPIR_debug_state variable to process an
MPIR event.

9.10 MPIR_i_am_starter

Global variable definition:

int MPIR_i_am_starter;

Definition is required when the MPIR starter process is not also an MPI process.
This symbol must not be defined if the process is an MPI process.
Definition is contained within the address space of the starter process.
Variable is neither read nor written.

MPIR_i_am_starter is a symbol of any type (preferably int) that marks the process
containing the symbol definition as a starter process that is not also an MPI process. This
symbol serves as a flag to mark the process as a separate starter process or an MPI rank 0
process.

If MPI rank process 0 is the starter process, this symbol must not be defined.

9.11 MPIR_acquired_pre_main

Global variable definition:

int MPIR_acquired_pre_main;

19
The interface described in this document is not part of the official MPI specification

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is neither read nor written.

MPIR_acquired_pre_main is a symbol of any type (preferably int) that informs the
tool that under the MPI job launch mode the MPI processes are stalled or stopped before
entering the main subprogram (main in the C language).

If the symbol is defined, the tool may assume that the MPI processes to which it is
attaching are stopped upon creation (for example, on exit from the execve system call or
inside a shared librarys init section code) and have not yet entered the main subprogram.

The presence or absence of this symbol may cause the tool to behave differently. For
example, if this symbol is present, a debugger may choose to the display the source code of
the main subprogram after acquiring the MPI processes during an MPI job launch startup.
If the symbol is absent, then a normal display showing the place at which the code was
executing may be shown.

9.12 MPIR_force_to_main

Global variable definition:

int MPIR_force_to_main;

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is neither read nor written.

MPIR_force_to_main is a symbol of any type (preferably int) that informs the tool
that it should display the source code of the main subprogram after acquiring the MPI
processes. The presence of the symbol MPIR_force_to_main does not imply that the MPI
processes have been stopped before dynamic linking has occurred.

9.13 MPIR_partial_attach_ok

Global variable definition:

int MPIR_partial_attach_ok;

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is neither read nor written.

MPIR_partial_attach_ok is a symbol of any type (preferably int) that informs the
tool that the MPI implementation supports attaching to a subset of the MPI processes.

If the symbol MPIR_partial_attach_ok is present, then this informs the tool that the
initial startup synchronization is implemented in such a way that the tool need not attach
nor continue MPI processes that the user is not interested in controlling. For example,
the MPI implementation synchronization startup may be implemented as a barrier, rather
than by having each of the MPI processes hang in a loop waiting for the MPIR_debug_gate

variable to be set by the tool.

20
The interface described in this document is not part of the official MPI specification

Thus, the tool needs only to release the starter process to release the whole MPI job,
which can therefore be run without requiring the tool to acquire all of the MPI processes
included in the MPI job. This is useful in tools that include the possibility of attaching
to processes later in the tool session (for example, by selecting only processes in a specific
communicator, or a specific process in MPI_COMM_WORLD). This method of operation is
preferred because operating on a subset of processes is a valuable feature on high-scale
systems.

The tool may choose to ignore the presence of the MPIR_partial_attach_ok symbol
and acquire all MPI processes. The presence of this symbol does not prevent the tool from
setting the MPIR_debug_gate variable (if defined), which should have no effect.

The type or value of this symbol is not tested by the tool. The presence or absence of
this symbol is all that is tested.

9.14 MPIR_ignore_queues

Global variable definition:

int MPIR_ignore_queues;

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is neither read nor written.

MPIR_ignore_queues is a symbol of any type (preferably int) that informs the tool
that MPI message queues support should be suppressed. This is useful when the MPIR
Process Acquisition Interface is being used in a non-MPI environment.

9.15 MPIR_executable_path

Global variable definition:

char MPIR_executable_path[256];

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is written by the tool, and read by the starter process.

MPIR_executable_path is a null-terminated character string that is written by the
tool into the address space of the starter process. The string is the path name of the tool
daemons executable file on the target node.

When the tool then sets MPIR_being_debugged to a non-zero value and continues the
starter process, the starter process notices that the value of MPIR_being_debugged changed
to a non-zero value, and launches the executable named by the MPIR_executable_path

variable and passes the arguments contained in the MPIR_server_arguments variable.

9.16 MPIR_server_arguments

Global variable definition:

21
The interface described in this document is not part of the official MPI specification

char MPIR_server_arguments[1024];

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is written by the tool, and read by the starter process.

MPIR_server_arguments is a sequence of zero or more null-terminated character strings
followed by a null character that is written by the tool into the address space of the starter
process. Each null-terminated character string is passed as a single argument to the tool
daemon. A null character terminates the list. It is not possible to pass the empty string
(“”) as an argument.

For example, the following C string contains four arguments:

"-callback\010.0.0.10\0-name\0has spaces and\ttabs\0\0"

The starter process should split the above string into an argv-style vector as follows:

argv[0] = "-callback"

argv[1] = "10.0.0.10"

argv[2] = "-name"

argv[3] = "has spaces and \ttabs"

argv[4] = 0

When the tool then sets MPIR_being_debugged to a non-zero value and continues the
starter process, the starter process notices that the value of MPIR_being_debugged changed
to a non-zero value, and launches the executable named by the MPIR_executable_path

variable and passes the arguments contained in the MPIR_server_arguments variable.

9.17 MPIR_attach_fifo

char MPIR_attach_fifo[256];

Definition is not required.
Definition is contained within the address space of the starter process.
Variable is written by the starter, and read by the tool.

MPIR_attach_fifo is a null-terminated character string that is written by the starter.
The tool reads it from the address space of the starter. The string is the path name of a
FIFO (named pipe) that is owned and writable by the owner of the starter process. The
FIFO resides on the node where the starter is running. The tool writes a byte with a value
into this FIFO, causing the starter to respond as follows:

0: NOP
1: Causing the starter to read the value of MPIR_being_debugged
2 – 127: Reserved by the MPIR interface for future use
128 – 255: Reserved for vendor-defined use

22
The interface described in this document is not part of the official MPI specification

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mcs.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Message
Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pages 51–58, Barcelona, Spain, September 1999.

[3] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,
William Saphir, Tony Skjellum, and Marc Snir. MPI-2: Extending the Message-Passing
Interface. In Luc Bouge, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors,
Euro-Par ’96 Parallel Processing, number 1123 in Lecture Notes in Computer Science,
pages 128–135. Springer Verlag, 1996.

[4] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of
Supercomputing, pages 878–883. IEEE Computer Society Press, Nov 1993.

23
The interface described in this document is not part of the official MPI specification

	Contents
	Background
	Overview
	Definitions
	MPI Process Definition
	``Starter'' Process Definition
	The MPI Rank 0 Process as the Starter Process
	A Separate ``mpiexec'' as the Starter Process

	MPIR Node Definitions

	Interface Requirements
	Symbol Table Requirements
	Debugger-Level Process Control Requirements

	Limitations
	Process Acquisition Modes
	MPIR Job Launch and Attach Modes
	MPI Process Synchronization

	Optional Interface Extensions
	Tool Daemon Launch Extension
	Attach FIFO Extension

	Use Case
	Interface Specification
	VOLATILE
	MPIR_PROCDESC
	MPIR_being_debugged
	MPIR_proctable
	MPIR_proctable_size
	MPIR_debug_state
	MPIR_debug_abort_string
	MPIR_debug_gate
	MPIR_Breakpoint
	MPIR_i_am_starter
	MPIR_acquired_pre_main
	MPIR_force_to_main
	MPIR_partial_attach_ok
	MPIR_ignore_queues
	MPIR_executable_path
	MPIR_server_arguments
	MPIR_attach_fifo

	Bibliography

