
3.1 UMT and OMPT

UMT versions prior to 2013 uses a Python script as its main program. To study the performance of UMT,
we used library preloading to add Rice University’s HPCToolkit package for sampling-based performance
monitoring into the address space as the Python script for UMT was launched. Python dynamically loads
a native shared library libTeton.so, which containing the UMT core, into the process address space and
invokes an entry point in that library. Eventually, the library code encounters an OpenMP parallel construct
and initializes OpenMP. As part of the OMPT design, when an OpenMP is initialized, it must invoke a
tool-supplied copy of the function ompt_initialize, if one is present.

When HPCToolkit received a callback to ompt_initialize to initialize its support for OMPT, we were
surprised to find that HPCToolkit’s code could not call the OMPT routine ompt_set_callback—an entry
point point in an OMPT-augmented implementation of Intel’s OpenMP runtime that we had developed.
Because of the strange visibility rules for dynamically loaded libraries, ompt_set_callback isn’t visible
to our preloaded library even though the OpenMP library is loaded into the address space and is calling
ompt_initialize in our tool. Since the OpenMP library is loaded by UMT’s libTeton.so, the global

15



symbols exported by the OpenMP library are visible only inside libTeton.so but not a pre-loaded library,
such as HPCToolkit’s measurement infrastructure.

This experience left with the question: how do we adjust the design of OMPT so that OMPT tools are
insensitive to this symbol visibility problem?

3.2 An Improved Design for OMPT Tool Initialization

The limited visibility of OpenMP global symbols, e.g., ompt_set_callback, from a pre-loaded tool library
caused us to rethink the design of the OMPT interface for tool initialization. Fortunately, a simple solution
enabled us to avoid the problem. Rather than have tools rely on the dynamic linker to resolve symbols
for OMPT API functions such as ompt_set_callback when they are invoked by a tool, we designed a new
interface for the ompt_initialize function that enables us to have the OMPT implementation itself resolve
symbols directly.

Specifically, we changed the interface to ompt_initialize to the following:

extern "C" {
int ompt_initialize(ompt_function_lookup_t lookup,

const char *runtime_version,
unsigned int ompt_version);

}

The first argument to ompt_initialize is lookup—a callback that tools must use to interrogate the
runtime system to obtain pointers to OMPT interface functions. The type signature for lookup is:

ompt_interface_fn_t lookup(const char *interface_function_name);

Within a tool, one uses lookup to obtain function pointers to each OMPT inquiry function. For example,
to obtain a function pointer to ompt_get_thread_id, one invokes lookup as follows:

ompt_set_callback_t ompt_set_callback =
(ompt_set_callback_t) lookup("ompt_set_callback");

If a named callback is not available in an OpenMP runtime’s implementation of OMPT, lookup will return
NULL.

This new design for ompt_initialize, motivated by our experiences with UMT, has been accepted by
the OpenMP tools committee as part of the emerging OMPT interface.

16


	I Introduction
	Report Overview

	II Tool Development
	Extending HPCToolkit to Support Data-centric Analysis on NUMA Platforms
	NUMA-aware program design
	Motivation for Tool Development
	Address sampling
	NUMA metrics
	Identifying remote accesses and imbalanced requests
	NUMA latency per instruction

	Metric attribution
	Code- and data-centric attribution
	Address-centric attribution

	Pinpointing first touches
	Tool implementation
	Online profiler
	Offline analyzer and viewer

	Summary

	Enhancing Tool Support for OpenMP
	UMT and OMPT
	An Improved Design for OMPT Tool Initialization


	III Application Studies
	A Scaling Study of ALE3D
	Introduction
	Scaling Loss during Initialization
	Scaling Loss in the Solve Phase
	Scaling Loss in the Final Phase
	Summary

	Data-centric Analysis of Node Performance on NUMA Architectures
	Introduction
	LULESH
	AMG2006
	UMT2013
	Summary

	Performance Analysis of UMT 2013
	Introduction
	General Overview

	OpenMP Idleness Study
	Simultaneous Multithreading (SMT) Study
	Memory Locality Study
	Node-level Performance Study: snswp3d.F90
	Loop at Line 187-204
	Loop at Line 113–133
	Loop at Line 230–233
	Statement at Line 222

	Summary

	Performance Analysis of MCB (Monte Carlo Benchmark)
	Overview
	Analysis Platform
	MCB Particulars
	Methodology
	HPCToolkit OpenMP Idleness Analysis
	Simple-minded Strong Scaling
	NUMA, SMT, and Thread Affinity
	Deeper Analysis of the SMT Effect
	Summary





