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Chapter 14

Tool Support

14.1 Introduction

This chapter discusses interfaces that allow debuggers, performance analyzers, and other
tools to extract information about the operation of MPI processes. Specifically, this chapter
defines both the MPI profiling interface (Section 14.2), which supports the transparent inter-
ception and inspection of MPI calls, and the MPI tool information interface (Section 14.3),
which supports the inspection and manipulation of MPI control and performance variables.
The interfaces described in this chapter are all defined in the context of an MPI process,
i.e., are callable from the same code that invokes other MPI functions.

14.2 Profiling Interface

14.2.1 Requirements

To meet the requirements for the MPI profiling interface, an implementation of the MPI
functions must

1. provide a mechanism through which all of the MPI defined functions, except those
allowed as macros (See Section 2.6.4), may be accessed with a name shift. This
requires, in C and Fortran, an alternate entry point name, with the prefix PMPI_ for
each MPI function in each provided language binding and language support method.
For routines implemented as macros, it is still required that the PMPI_ version be
supplied and work as expected, but it is not possible to replace at link time the MPI_
version with a user-defined version.

For Fortran, the different support methods cause several linker names. Therefore,
several profiling routines (with these linker names) are needed for each Fortran MPI
routine, as described in Section 17.1.5 on page 605.

2. ensure that those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether
she must implement the profile interface for each binding, or can economize by imple-
menting it only for the lowest level routines.
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2 CHAPTER 14. TOOL SUPPORT

4. where the implementation of different language bindings is done through a layered
approach (e.g., the Fortran binding is a set of “wrapper” functions that call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This separability is necessary to allow a separate profiling library to be correctly
implemented, since (at least with Unix linker semantics) the profiling library must
contain these wrapper functions if it is to perform as expected. This requirement
allows the person who builds the profiling library to extract these functions from the
original MPI library and add them into the profiling library without bringing along
any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

14.2.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors
of profiling (and other similar) tools to interface their codes to MPI implementations on
different machines.

Since MPI is a machine independent standard with many different implementations,
it is unreasonable to expect that the authors of profiling tools for MPI will have access to
the source code that implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this section is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to
meet the requirements on a Unix system (there are doubtless others that would be equally
valid).

14.2.3 Logic of the Design

Provided that an MPI implementation meets the requirements above, it is possible for
the implementor of the profiling system to intercept the MPI calls that are made by the
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14.2. PROFILING INTERFACE 3

user program. She can then collect whatever information she requires before calling the
underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

14.2.4 Miscellaneous Control of Profiling

There is a clear requirement for the user code to be able to control the profiler dynamically
at run time. This capability is normally used for (at least) the purposes of

• Enabling and disabling profiling depending on the state of the calculation.

• Flushing trace buffers at non-critical points in the calculation.

• Adding user events to a trace file.

These requirements are met by use of MPI_PCONTROL.

MPI_PCONTROL(level, . . . )

IN level Profiling level (integer)

int MPI_Pcontrol(const int level, ...)
ticket-248T.

MPI_Pcontrol(level) BIND(C)

INTEGER, INTENT(IN) :: level

MPI_PCONTROL(LEVEL)

INTEGER LEVEL

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are flushed, which may be a no-op in some profilers.

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e., as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and to obtain profile
output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library supports the
collection of more detailed profiling information with source code that can still link against
the standard MPI library.
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4 CHAPTER 14. TOOL SUPPORT

14.2.5 Profiler Implementation Example

A profiler can accumulate the total amount of data sent by the MPI_SEND function, along
with the total elapsed time spent in the function as the following example shows:

Example 14.1

static int totalBytes = 0;

static double totalTime = 0.0;

int MPI_Send(const void* buffer, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

{

double tstart = MPI_Wtime(); /* Pass on all arguments */

int extent;

int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

totalTime += MPI_Wtime() - tstart; /* and time */

MPI_Type_size(datatype, &extent); /* Compute size */

totalBytes += count*extent;

return result;

}

14.2.6 MPI Library Implementation Example

If the MPI library is implemented in C on a Unix system, then there are various options,
including the two presented here, for supporting the name-shift requirement. The choice
between these two options depends partly on whether the linker and compiler support weak
symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols (e.g., Solaris 2.x, other System
V.4 machines), then only a single library is required as the following example shows:

Example 14.2

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)

{

/* Useful content */

}

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library); however if no other definition exists, then the
linker will use the weak definition.
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14.2. PROFILING INTERFACE 5

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
preprocessor as the following example shows:

Example 14.3

#ifdef PROFILELIB

# ifdef __STDC__

# define FUNCTION(name) P##name

# else

# define FUNCTION(name) P/**/name

# endif

#else

# define FUNCTION(name) name

#endif

Each of the user visible functions in the library would then be declared thus

int FUNCTION(MPI_Example)(/* appropriate args */)

{

/* Useful content */

}

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions that intercept some of the MPI func-
tions, libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the
normal definitions of the MPI functions.

14.2.7 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions (e.g., a portable implementation of the collective operations implemented using point
to point communications), there is potential for profiling functions to be called from within
an MPI function that was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances (e.g., it might allow one to answer the question “How much time
is spent in the point to point routines when they are called from collective functions?”), we
have decided not to enforce any restrictions on the author of the MPI library that would
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6 CHAPTER 14. TOOL SUPPORT

overcome this. Therefore the author of the profiling library should be aware of this problem,
and guard against it. In a single-threaded world this is easily achieved through use of a
static variable in the profiling code that remembers if you are already inside a profiling
routine. It becomes more complex in a multi-threaded environment (as does the meaning
of the times recorded).

Linker Oddities

The Unix linker traditionally operates in one pass: the effect of this is that functions from
libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can
cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be copied out of
the base library and into the profiling one using a tool such as ar.

Fortran Support Methods

The different Fortran support methods and possible options for the support of subarrays
(depending on whether the compiler can support TYPE(*), DIMENSION(..) choice buffers)
imply different linker names for the same Fortran MPI routine. The rules and implications
for the profiling interface are described in Section 17.1.5 on page 605.

14.2.8 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation that would allow multiple levels of call interception, however we were
unable to construct an implementation of this that did not have the following disadvantages

• assuming a particular implementation language,

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
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14.3. THE MPI TOOL INFORMATION INTERFACE 7

before calling the underlying MPI function. This capability has been demonstrated in the
PNMPI tool infrastructure [?].

14.3 The MPI Tool Information Interface

MPI implementations often use internal variables to control their operation and perfor-
mance. Understanding and manipulating these variables can provide a more efficient exe-
cution environment or improve performance for many applications. This section describes
the MPI tool information interface, which provides a mechanism for MPI implementors
to expose variables, each of which represents a particular property, setting, or performance
measurement from within the MPI implementation. The interface is split into two parts: the
first part provides information about and supports the setting of control variables through
which the MPI implementation tunes its configuration. The second part provides access to
performance variables that can provide insight into internal performance information of the
MPI implementation.

To avoid restrictions on the MPI implementation, the MPI tool information interface
allows the implementation to specify which control and performance variables exist. Ad-
ditionally, the user of the MPI tool information interface can obtain metadata about each
available variable, such as its datatype, and a textual description. The MPI tool information
interface provides the necessary routines to find all variables that exist in a particular MPI
implementation, to query their properties, to retrieve descriptions about their meaning, and
to access and, if appropriate, to alter their values.

The MPI tool information interface can be used independently from the MPI com-
munication functionality. In particular, the routines of this interface can be called before
MPI_INIT (or equivalent) and after MPI_FINALIZE. In order to support this behavior cleanly,
the MPI tool information interface uses separate initialization and finalization routines. All
identifiers used in the MPI tool information interface have the prefix MPI_T_.

On success, all MPI tool information interface routines return MPI_SUCCESS, otherwise
they return an appropriate and unique return code indicating the reason why the call was
not successfully completed. Details on return codes can be found in Section 14.3.9. However,
unsuccessful calls to the MPI tool information interface are not fatal and do not impact the
execution of subsequent MPI routines.

Since the MPI tool information interface primarily focuses on tools and support li-
braries, MPI implementations are only required to provide C bindings for functions and ticket354.
constants introduced in this section. Except where otherwise noted, all conventions and
principles governing the C bindings of the MPI API also apply to the MPI tool information
interface, which is available by including the mpi.h header file. All routines in this interface
have local semantics.

Advice to users. The number and type of control variables and performance variables
can vary between MPI implementations, platforms and different builds of the same
implementation on the same platform as well as between runs. Hence, any application
relying on a particular variable will not be portable. Further, there is no guarantee
that number of variables, variable indices, and variable names are the same across
processes.

This interface is primarily intended for performance monitoring tools, support tools,
and libraries controlling the application’s environment. When maximum portability
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8 CHAPTER 14. TOOL SUPPORT

is desired, application programmers should either avoid using the MPI tool informa-
tion interface or avoid being dependent on the existence of a particular control or
performance variable. (End of advice to users.)

ticket383.

Advice to implementors. Although this interface is flexible, implementations should
strive for consistency in naming and definitions as much as possible. For example,
variables with the same name should have the same meaning across all MPI processes
in a single job. (End of advice to implementors.)

14.3.1 Verbosity Levels

The MPI tool information interface provides access to internal configuration and perfor-
mance information through a set of control and performance variables defined by the MPI
implementation. Since some implementations may export a large number of variables,
variables are classified by a verbosity level that categorizes both their intended audience
(end users, performance tuners or MPI implementors) and a relative measure of level of
detail (basic, detailed or all). These verbosity levels are described by a single integer.
Table 14.1 lists the constants for all possible verbosity levels. The values of the con-
stants are monotonic in the order listed in the table; i.e., MPI_T_VERBOSITY_USER_BASIC

< MPI_T_VERBOSITY_USER_DETAIL < . . .< MPI_T_VERBOSITY_MPIDEV_ALL.

MPI_T_VERBOSITY_USER_BASIC Basic information of interest to users
MPI_T_VERBOSITY_USER_DETAIL Detailed information of interest to users
MPI_T_VERBOSITY_USER_ALL All remaining information of interest to users

MPI_T_VERBOSITY_TUNER_BASIC Basic information required for tuning
MPI_T_VERBOSITY_TUNER_DETAIL Detailed information required for tuning
MPI_T_VERBOSITY_TUNER_ALL All remaining information required for tuning

MPI_T_VERBOSITY_MPIDEV_BASIC Basic information for MPI implementors
MPI_T_VERBOSITY_MPIDEV_DETAIL Detailed information for MPI implementors
MPI_T_VERBOSITY_MPIDEV_ALL All remaining information for MPI implementors

Table 14.1: MPI tool information interface verbosity levels

14.3.2 Binding MPI Tool Information Interface Variables to MPI Objects

Each MPI tool information interface variable provides access to a particular control setting
or performance property of the MPI implementation. A variable may refer to a specific
MPI object such as a communicator, datatype, or one-sided communication window, or the
variable may refer more generally to the MPI environment of the process. Except for the
last case, the variable must be bound to exactly one MPI object before it can be used.
Table 14.2 lists all MPI object types to which an MPI tool information interface variable
can be bound, together with the matching constant that MPI tool information interface
routines return to identify the object type.

Rationale. Some variables have meanings tied to a specific MPI object. Examples
include the number of send or receive operations that use a particular datatype, the
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14.3. THE MPI TOOL INFORMATION INTERFACE 9

Constant MPI object

MPI_T_BIND_NO_OBJECT N/A; applies globally to entire MPI process
MPI_T_BIND_MPI_COMM MPI communicators
MPI_T_BIND_MPI_DATATYPE MPI datatypes
MPI_T_BIND_MPI_ERRHANDLER MPI error handlers
MPI_T_BIND_MPI_FILE MPI file handles
MPI_T_BIND_MPI_GROUP MPI groups
MPI_T_BIND_MPI_OP MPI reduction operators
MPI_T_BIND_MPI_REQUEST MPI requests
MPI_T_BIND_MPI_WIN MPI windows for one-sided communication
MPI_T_BIND_MPI_MESSAGE MPI message object
MPI_T_BIND_MPI_INFO MPI info object

Table 14.2: Constants to identify associations of variables

number of times a particular error handler has been called, or the communication pro-
tocol and “eager limit” used for a particular communicator. Creating a new MPI tool
information interface variable for each MPI object would cause the number of vari-
ables to grow without bound, since they cannot be reused to avoid naming conflicts.
By associating MPI tool information interface variables with a specific MPI object,
the MPI implementation only must specify and maintain a single variable, which can
then be applied to as many MPI objects of the respective type as created during the
program’s execution. (End of rationale.)

14.3.3 Convention for Returning Strings

Several MPI tool information interface functions return one or more strings. These functions
have two arguments for each string to be returned: an [OUT]OUT parameter that identifies ticket0.
a pointer to the buffer in which the string will be returned, and an [IN/OUT]IN/OUT ticket0.
parameter to pass the length of the buffer. The user is responsible for the memory allocation
of the buffer and must pass the size of the buffer (n) as the length argument. Let n be the
length value specified to the function. On return, the function writes at most n− 1 of the
string’s characters into the buffer, followed by a null terminator. If the returned string’s
length is greater than or equal to n, the string will be truncated to n−1 characters. In this
case, the length of the string plus one (for the terminating null character) is returned in the
length argument. If the user passes the null pointer as the buffer argument or passes 0 as
the length argument, the function does not return the string and only returns the length of
the string plus one in the length argument. If the user passes the null pointer as the length
argument, the buffer argument is ignored and nothing is returned.

14.3.4 Initialization and Finalization

The MPI tool information interface requires a separate set of initialization and finalization
routines.
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10 CHAPTER 14. TOOL SUPPORT

MPI_T_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_T_init_thread(int required, int *provided)

All programs or tools that use the MPI tool information interface must initialize the
MPI tool information interface in the processes that will use the interface before calling
any other of its routines. A user can initialize the MPI tool information interface by calling
MPI_T_INIT_THREAD, which can be called multiple times. In addition, this routine initial-
izes the thread environment for all routines in the MPI tool information interface. Calling
this routine when the MPI tool information interface is already initialized has no effect
beyond increasing the reference count of how often the interface has been initialized. The
argument required is used to specify the desired level of thread support. The possible values
and their semantics are identical to the ones that can be used with MPI_INIT_THREAD
listed in Section 12.4. The call returns in provided information about the actual level of
thread support that will be provided by the MPI implementation for calls to MPI tool
information interface routines. It can be one of the four values listed in Section 12.4.

The MPI specification does not require all MPI processes to exist before the call to
MPI_INIT. If the MPI tool information interface is used before MPI_INIT has been called,
the user is responsible for ensuring that the MPI tool information interface is initialized on
all processes it is used in. Processes created by the MPI implementation during MPI_INIT
inherit the status of the MPI tool information interface (whether it is initialized or not as
well as all active sessions and handles) from the process from which they are created.

Processes created at runtime as a result of calls to MPI’s dynamic process management
require their own initialization before they can use the MPI tool information interface.

Advice to users. If MPI_T_INIT_THREAD is called before MPI_INIT_THREAD,
the requested and granted thread level for MPI_T_INIT_THREAD may influence the
behavior and return value of MPI_INIT_THREAD. The same is true for the reverse
order. (End of advice to users.)

Advice to implementors. MPI implementations should strive to make as many control
or performance variables available before MPI_INIT (instead of adding them within
MPI_INIT) to allow tools the most flexibility. In particular, control variables should
be available before MPI_INIT if their value cannot be changed after MPI_INIT. (End
of advice to implementors.)

MPI_T_FINALIZE( )

int MPI_T_finalize(void)

This routine finalizes the use of the MPI tool information interface and may be called
as often as the corresponding MPI_T_INIT_THREAD routine up to the current point of
execution. Calling it more times returns a corresponding error code. As long as the number
of calls to MPI_T_FINALIZE is smaller than the number of calls to MPI_T_INIT_THREAD
up to the current point of execution, the MPI tool information interface remains initialized
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14.3. THE MPI TOOL INFORMATION INTERFACE 11

and calls to its routines are permissible. Further, additional calls to MPI_T_INIT_THREAD
after one or more calls to MPI_T_FINALIZE are permissible.

Once MPI_T_FINALIZE is called the same number of times as the routine
MPI_T_INIT_THREAD up to the current point of execution, the MPI tool information in-
terface is no longer initialized. The interface can be reinitialized by subsequent calls to
MPI_T_INIT_THREAD.

At the end of the program execution, unless MPI_ABORT is called, an application must
have called MPI_T_INIT_THREAD and MPI_T_FINALIZE an equal number of times.

14.3.5 Datatype System

All variables managed through the MPI tool information interface represent their values
through typed buffers of a given length and type using an MPI datatype (similar to regular
send/receive buffers). Since the initialization of the MPI tool information interface is sep-
arate from the initialization of MPI, MPI tool information interface routines can be called
before MPI_INIT. Consequently, these routines can also use MPI datatypes before MPI_INIT.
Therefore, within the context of the MPI tool information interface, it is permissible to use
a subset of MPI datatypes as specified below before a call to MPI_INIT (or equivalent).

MPI_INT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_UNSIGNED_LONG_LONG

MPI_COUNT

MPI_CHAR

MPI_DOUBLE

Table 14.3: MPI datatypes that can be used by the MPI tool information interface

Rationale. The MPI tool information interface relies mainly on unsigned datatypes
for integer values since most variables are expected to represent counters or resource
sizes. MPI_INT is provided for additional flexibility and is expected to be used mainly
for control variables and enumeration types (see below).

Providing all basic datatypes, in particular providing all signed and unsigned variants
of integer types, would lead to a larger number of types, which tools need to interpret.
This would cause unnecessary complexity in the implementation of tools based on the
MPI tool information interface. (End of rationale.)

The MPI tool information interface only relies on a subset of the basic MPI datatypes
and does not use any derived MPI datatypes. Table 14.3 lists all MPI datatypes that can
be returned by the MPI tool information interface to represent its variables. ticket405.

The use of the datatype MPI_CHAR in the MPI tool information interface implies a null-
terminated character array, i.e., a string in the C language. If a variable has type MPI_CHAR,
the value of the count parameter returned by MPI_T_CVAR_HANDLE_ALLOC and
MPI_T_PVAR_HANDLE_ALLOC must be large enough to include any valid value, including
its terminating null character. The contents of returned MPI_CHAR arrays are only defined
from index 0 through the location of the first null character.
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12 CHAPTER 14. TOOL SUPPORT

Rationale. The MPI tool information interface requires a significantly simpler type
system than MPI itself. Therefore, only its required subset must be present before
MPI_INIT (or equivalent) and MPI implementations do not need to initialize the com-
plete MPI datatype system. (End of rationale.)

For variables of type MPI_INT, an MPI implementation can provide additional infor-
mation by associating names with a fixed number of values. We refer to this information
in the following as an enumeration. In this case, the respective calls that provide addi-
tional metadata for each control or performance variable, i.e., MPI_T_CVAR_GET_INFO
(Section 14.3.6) and MPI_T_PVAR_GET_INFO (Section 14.3.7), return a handle of type
MPI_T_enum that can be passed to the following functions to extract additional informa-
tion. Thus, the MPI implementation can describe variables with a fixed set of values that
each represents a particular state. Each enumeration type can have N different values, with
a fixed N that can be queried using MPI_T_ENUM_GET_INFO.

MPI_T_ENUM_GET_INFO(enumtype, num, name, name_len)

IN enumtype enumeration to be queried (handle)

OUT num number of discrete values represented by this enumer-

ation (integer)

OUT name buffer to return the string containing the name of the

enumeration (string)

INOUT name_len length of the string and/or buffer for name (integer)

int MPI_T_enum_get_info(MPI_T_enum enumtype, int *num, char *name, int

*name_len)

If enumtype is a valid enumeration, this routine returns the number of items represented
by this enumeration type as well as its name. N must be greater than 0, i.e., the enumeration
must represent at least one value.

The arguments name and name_len are used to return the name of the enumeration as
described in Section 14.3.3.

The routine is required to return a name of at least length one. This name must be
unique with respect to all other names for enumerations that the MPI implementation uses.

Names associated with individual values in each enumeration enumtype can be queried
using MPI_T_ENUM_GET_ITEM.
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14.3. THE MPI TOOL INFORMATION INTERFACE 13

MPI_T_ENUM_GET_ITEM(enumtype, index, value, name, name_len)

IN enumtype enumeration to be queried (handle)

IN index number of the value to be queried in this enumeration

(integer)

OUT value variable value (integer)

OUT name buffer to return the string containing the name of the

enumeration item (string)

INOUT name_len length of the string and/or buffer for name (integer)

int MPI_T_enum_get_item(MPI_T_enum enumtype, int index, int *value, char

*name, int *name_len)

The arguments name and name_len are used to return the name of the enumeration
item as described in Section 14.3.3.

If completed successfully, the routine returns the name/value pair that describes the
enumeration at the specified index. The call is further required to return a name of at least
length one. This name must be unique with respect to all other names of items for the same
enumeration.

14.3.6 Control Variables

The routines described in this section of the MPI tool information interface specification
focus on the ability to list, query, and possibly set control variables exposed by the MPI
implementation. These variables can typically be used by the user to fine tune properties
and configuration settings of the MPI implementation. On many systems, such variables
can be set using environment variables, although other configuration mechanisms may be
available, such as configuration files or central configuration registries. A typical example
that is available in several existing MPI implementations is the ability to specify an “eager
limit,” i.e., an upper bound on the size of messages sent or received using an eager protocol.

Control Variable Query Functions

An MPI implementation exports a set of N control variables through the MPI tool infor-
mation interface. If N is zero, then the MPI implementation does not export any control
variables, otherwise the provided control variables are indexed from 0 to N − 1. This index
number is used in subsequent calls to identify the individual variables.

An MPI implementation is allowed to increase the number of control variables during
the execution of an MPI application when new variables become available through dynamic
loading. However, MPI implementations are not allowed to change the index of a control
variable or to delete a variable once it has been added to the set. When a variable becomes
inactive, e.g., through dynamic unloading, accessing its value should return a corresponding
error code.

Advice to users. While the MPI tool information interface guarantees that indices or
variable properties do not change during a particular run of an MPI program, it does
not provide a similar guarantee between runs. (End of advice to users.)
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14 CHAPTER 14. TOOL SUPPORT

The following function can be used to query the number of control variables, num_cvar:

MPI_T_CVAR_GET_NUM(num_cvar)

OUT num_cvar returns number of control variables (integer)

int MPI_T_cvar_get_num(int *num_cvar)

The function MPI_T_CVAR_GET_INFO provides access to additional information for
each variable.

MPI_T_CVAR_GET_INFO(cvar_index, name, name_len, verbosity, datatype, enumtype, desc,
desc_len, bind, scope)

IN cvar_index index of the control variable to be queried, value be-

tween 0 and num_cvar − 1 (integer)

OUT name buffer to return the string containing the name of the

control variable (string)

INOUT name_len length of the string and/or buffer for name (integer)

OUT verbosity verbosity level of this variable (integer)

OUT datatype MPI datatype of the information stored in the control

variable (handle)

OUT enumtype optional descriptor for enumeration information (han-

dle)

OUT desc buffer to return the string containing a description of

the control variable (string)

INOUT desc_len length of the string and/or buffer for desc (integer)

OUT bind type of MPI object to which this variable must be

bound (integer)

OUT scope scope of when changes to this variable are possible

(integer)

int MPI_T_cvar_get_info(int cvar_index, char *name, int *name_len, int

*verbosity, MPI_Datatype *datatype, MPI_T_enum *enumtype, char

*desc, int *desc_len, int *bind, int *scope)

After a successful call to MPI_T_CVAR_GET_INFO for a particular variable, subsequent
calls to this routine that query information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values.ticket378.

If any OUT parameter to MPI_T_CVAR_GET_INFO is a NULL pointer, the implemen-
tation will ignore the parameter and not return a value for the parameter.

The arguments name and name_len are used to return the name of the control variable
as described in Section 14.3.3.

If completed successfully, the routine is required to return a name of at least length
one. The name must be unique with respect to all other names for control variables used
by the MPI implementation.
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14.3. THE MPI TOOL INFORMATION INTERFACE 15

The argument verbosity returns the verbosity level of the variable (see Section 14.3.1).
The argument datatype returns the MPI datatype that is used to represent the control

variable.
If the variable is of type MPI_INT, MPI can optionally specify an enumeration for the

values represented by this variable and return it in enumtype. In this case, MPI returns an
enumeration identifier, which can then be used to gather more information as described in
Section 14.3.5. Otherwise, enumtype is set to MPI_T_ENUM_NULL. If the datatype is not
MPI_INT or the argument enumtype is the null pointer, no enumeration type is returned.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 14.3.3.

Returning a description is optional. If an MPI implementation does not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

The parameter bind returns the type of the MPI object to which the variable must be
bound or the value MPI_T_BIND_NO_OBJECT (see Section 14.3.2).

The scope of a variable determines whether changing a variable’s value is either local to
the process or must be done by the user across multiple processes. The latter is further split
into variables that require changes in a group of processes and those that require collective
changes among all connected processes. Both cases can require all processes either to be
set to consistent (but potentially different) values or to equal values on every participating
process. The description provided with the variable must contain an explanation about the
requirements and/or restrictions for setting the particular variable.

On successful return from MPI_T_CVAR_GET_INFO, the argument scope will be set to
one of the constants listed in Table 14.4.

Scope Constant Description

MPI_T_SCOPE_CONSTANT read-only, value is constant
MPI_T_SCOPE_READONLY read-only, cannot be written, but can change
MPI_T_SCOPE_LOCAL may be writeable, writing is a local operation
MPI_T_SCOPE_GROUP may be writeable, must be done to a group of processes,

all processes in a group must be set to consistent values
MPI_T_SCOPE_GROUP_EQ may be writeable, must be done to a group of processes,

all processes in a group must be set to the same value
MPI_T_SCOPE_ALL may be writeable, must be done to all processes,

all connected processes must be set to consistent values
MPI_T_SCOPE_ALL_EQ may be writeable, must be done to all processes,

all connected processes must be set to the same value

Table 14.4: Scopes for control variables

Advice to users. The scope of a variable only indicates if a variable might be
changeable; it is not a guarantee that it can be changed at any time. (End of advice
to users.)

ticket377.
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16 CHAPTER 14. TOOL SUPPORT

MPI_T_CVAR_GET_INDEX(name, cvar_index)

IN name name of the control variable (string)

OUT cvar_index index of the control variable (integer)

int MPI_T_cvar_get_index(const char *name, int *cvar_index)

MPI_T_CVAR_GET_INDEX is a function for retrieving the index of a control variable
given a known variable name. The name parameter is provided by the caller, and cvar_index
is returned by the MPI implementation. The name parameter is a string terminated with a
null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME

if name does not match the name of any control variable provided by the implementation
at the time of the call.

Rationale. This routine is provided to enable fast retrieval of control variables by
a tool, assuming it knows the name of the variable for which it is looking. The
number of variables exposed by the implementation can change over time, so it is not
possible for the tool to simply iterate over the list of variables once at initialization.
Although using MPI implementation specific variable names is not portable across MPI
implementations, tool developers may choose to take this route for lower overhead at
runtime because the tool will not have to iterate over the entire set of variables to
find a specific one. (End of rationale.)

Example: Printing All Control Variables

Example 14.4
The following example shows how the MPI tool information interface can be used to

query and to print the names of all available control variables.

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main(int argc, char *argv[]) {

int i, err, num, namelen, bind, verbose, scope;

int threadsupport;

char name[100];

MPI_Datatype datatype;

err=MPI_T_init_thread(MPI_THREAD_SINGLE,&threadsupport);

if (err!=MPI_SUCCESS)

return err;

err=MPI_T_cvar_get_num(&num);

if (err!=MPI_SUCCESS)

return err;
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14.3. THE MPI TOOL INFORMATION INTERFACE 17

for (i=0; i<num; i++) {

namelen=100;

err=MPI_T_cvar_get_info(i, name, &namelen,

&verbose, &datatype, NULL,

NULL, NULL, /*no description */

&bind, &scope);

if (err!=MPI_SUCCESS || err!=MPI_T_ERR_INVALID_INDEX) return err;

printf("Var %i: %s\n", i, name);

}

err=MPI_T_finalize();

if (err!=MPI_SUCCESS)

return 1;

else

return 0;

}

Handle Allocation and Deallocation

Before reading or writing the value of a variable, a user must first allocate a handle of type
MPI_T_cvar_handle for the variable by binding it to an MPI object (see also Section 14.3.2).

Rationale. Handles used in the MPI tool information interface are distinct from
handles used in the remaining parts of the MPI standard because they must be usable
before MPI_INIT and after MPI_FINALIZE. Further, accessing handles, in particular
for performance variables, can be time critical and having a separate handle space
enables optimizations. (End of rationale.)

MPI_T_CVAR_HANDLE_ALLOC(cvar_index, obj_handle, handle, count)

IN cvar_index index of control variable for which handle is to be al-

located (index)

IN obj_handle reference to a handle of the MPI object to which this

variable is supposed to be bound (pointer)

OUT handle allocated handle (handle)

OUT count number of elements used to represent this variable (in-

teger)

int MPI_T_cvar_handle_alloc(int cvar_index, void *obj_handle,

MPI_T_cvar_handle *handle, int *count)

This routine binds the control variable specified by the argument index to an MPI object.
The object is passed in the argument obj_handle as an address to a local variable that stores
the object’s handle. The argument obj_handle is ignored if the MPI_T_CVAR_GET_INFO
call for this control variable returned MPI_T_BIND_NO_OBJECT in the argument bind. The
handle allocated to reference the variable is returned in the argument
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18 CHAPTER 14. TOOL SUPPORT

handle. Upon successful return, count contains the number of elements (of the datatype
returned by a previous MPI_T_CVAR_GET_INFO call) used to represent this variable.

Advice to users. The count can be different based on the MPI object to which the
control variable was bound. For example, variables bound to communicators could
have a count that matches the size of the communicator.

It is not portable to pass references to predefined MPI object handles, such as
MPI_COMM_WORLD to this routine, since their implementation depends on the MPI
library. Instead, such object handles should be stored in a local variable and the
address of this local variable should be passed into MPI_T_CVAR_HANDLE_ALLOC.
(End of advice to users.)

The value of cvar_index should be in the range 0 to num_cvar − 1, where num_cvar
is the number of available control variables as determined from a prior call to
MPI_T_CVAR_GET_NUM. The type of the MPI object it references must be consistent
with the type returned in the bind argument in a prior call to MPI_T_CVAR_GET_INFO.

In the case that the bind argument returned by MPI_T_CVAR_GET_INFO equals
MPI_T_BIND_NO_OBJECT, the argument obj_handle is ignored.

MPI_T_CVAR_HANDLE_FREE(handle)

INOUT handle handle to be freed (handle)

int MPI_T_cvar_handle_free(MPI_T_cvar_handle *handle)

When a handle is no longer needed, a user of the MPI tool information interface should
call MPI_T_CVAR_HANDLE_FREE to free the handle and the associated resources in the
MPI implementation. On a successful return, MPI sets the handle to
MPI_T_CVAR_HANDLE_NULL.

Control Variable Access Functions

MPI_T_CVAR_READ(handle, buf)

IN handle handle to the control variable to be read (handle)

OUT buf initial address of storage location for variable value

(choice)

int MPI_T_cvar_read(MPI_T_cvar_handle handle, void* buf)

This routine queries the value of a control variable identified by the argument handle and
stores the result in the buffer identified by the parameter buf. The user must ensure that the
buffer is of the appropriate size to hold the entire value of the control variable (based on the
returned datatype and count from prior corresponding calls to MPI_T_CVAR_GET_INFO
and MPI_T_CVAR_HANDLE_ALLOC, respectively).
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14.3. THE MPI TOOL INFORMATION INTERFACE 19

MPI_T_CVAR_WRITE(handle, buf)

IN handle handle to the control variable to be written (handle)

IN buf initial address of storage location for variable value

(choice)

int MPI_T_cvar_write(MPI_T_cvar_handle handle, const void* buf)

This routine sets the value of the control variable identified by the argument handle to
the data stored in the buffer identified by the parameter buf. The user must ensure that the
buffer is of the appropriate size to hold the entire value of the control variable (based on the
returned datatype and count from prior corresponding calls to MPI_T_CVAR_GET_INFO
and MPI_T_CVAR_HANDLE_ALLOC, respectively).

If the variable has a global scope (as returned by a prior corresponding
MPI_T_CVAR_GET_INFO call), any write call to this variable must be issued by the user
in all connected (as defined in Section 10.5.4) MPI processes. If the variable has group
scope, any write call to this variable must be issued by the user in all MPI processes in
the group, which must be described by the MPI implementation in the description by the
MPI_T_CVAR_GET_INFO.

In both cases, the user must ensure that the writes in all processes are consistent. If
the scope is either MPI_T_SCOPE_ALL_EQ or MPI_T_SCOPE_GROUP_EQ this means that the
variable in all processes must be set to the same value.

If it is not possible to change the variable at the time the call is made, the function
returns either MPI_T_ERR_CVAR_SET_NOT_NOW, if there may be a later time at which the
variable could be set, or MPI_T_ERR_CVAR_SET_NEVER, if the variable cannot be set for the
remainder of the application’s execution.

Example: Reading the Value of a Control Variable

Example 14.5
The following example shows a routine that can be used to query the value with a

control variable with a given index. The example assumes that the variable is intended to
be bound to an MPI communicator.

int getValue_int_comm(int index, MPI_Comm comm, int *val) {

int err,count;

MPI_T_cvar_handle handle;

/* This example assumes that the variable index */

/* can be bound to a communicator */

err=MPI_T_cvar_handle_alloc(index,&comm,&handle,&count);

if (err!=MPI_SUCCESS) return err;

/* The following assumes that the variable is */

/* represented by a single integer */

err=MPI_T_cvar_read(handle,val);
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20 CHAPTER 14. TOOL SUPPORT

if (err!=MPI_SUCCESS) return err;

err=MPI_T_cvar_handle_free(&handle);

return err;

}

14.3.7 Performance Variables

The following section focuses on the ability to list and to query performance variables
provided by the MPI implementation. Performance variables provide insight into MPI im-
plementation specific internals and can represent information such as the state of the MPI
implementation (e.g., waiting blocked, receiving, not active), aggregated timing data for
submodules, or queue sizes and lengths.

Rationale. The interface for performance variables is separate from the interface for
control variables, since performance variables have different requirements and param-
eters. By keeping them separate, the interface provides cleaner semantics and allows
for more performance optimization opportunities. (End of rationale.)

Performance Variable Classes

Each performance variable is associated with a class that describes its basic semantics,
possible datatypes, basic behavior, its starting value, whether it can overflow, and when
and how an MPI implementation can change the variable’s value. The starting value is the
value that is assigned to the variable the first time that it is used or whenever it is reset.

Advice to users. If a performance variable belongs to a class that can overflow,
it is up to the user to protect against this overflow, e.g., by frequently reading and
resetting the variable value. (End of advice to users.)

Advice to implementors. MPI implementations should use large enough datatypes
for each performance variable to avoid overflows under normal circumstances. (End
of advice to implementors.)

The classes are defined by the following constants:

• MPI_T_PVAR_CLASS_STATE

A performance variable in this class represents a set of discrete states. Variables of
this class are represented by MPI_INT and can be set by the MPI implementation at
any time. Variables of this type should be described further using an enumeration, as
discussed in Section 14.3.5. The starting value is the current state of the implemen-
tation at the time that the starting value is set. MPI implementations must ensure
that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_LEVEL

A performance variable in this class represents a value that describes the utilization
level of a resource. The value of a variable of this class can change at any time to match
the current utilization level of the resource. Values returned from variables in this class
are non-negative and represented by one of the following datatypes: MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value
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14.3. THE MPI TOOL INFORMATION INTERFACE 21

is the current utilization level of the resource at the time that the starting value is
set. MPI implementations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_SIZE

A performance variable in this class represents a value that is the [fixed]size of a ticket385.
resource. Values returned from variables in this class are non-negative and rep-
resented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current
[utilization level]size of the resource at the time that the starting value is set. MPI ticket385.
implementations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_PERCENTAGE

The value of a performance variable in this class represents the percentage utiliza-
tion of a finite resource. The value of a variable of this class can change at any
time to match the current utilization level of the resource. It will be returned as an
MPI_DOUBLE datatype. The value must always be between 0.0 (resource not used at
all) and 1.0 (resource completely used). The starting value is the current percent-
age utilization level of the resource at the time that the starting value is set. MPI
implementations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_HIGHWATERMARK

A performance variable in this class represents a value that describes the high water-
mark utilization of a resource. The value of a variable of this class is non-negative
and grows monotonically from the initialization or reset of the variable. It can be rep-
resented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utiliza-
tion level of the resource at the time that the starting value is set. MPI implementa-
tions must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_LOWWATERMARK

A performance variable in this class represents a value that describes the low water-
mark utilization of a resource. The value of a variable of this class is non-negative
and decreases monotonically from the initialization or reset of the variable. It can be
represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utiliza-
tion level of the resource at the time that the starting value is set. MPI implementa-
tions must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_COUNTER

A performance variable in this class counts the number of occurrences of a specific
event (e.g., the number of memory allocations within an MPI library). The value of
a variable of this class increases monotonically from the initialization or reset of the
performance variable by one for each specific event that is observed. Values must
be non-negative and represented by one of the following datatypes: MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG. The starting value for variables
of this class is 0. Variables of this class can overflow.

• MPI_T_PVAR_CLASS_AGGREGATE

The value of a performance variable in this class is an an aggregated value that
represents a sum of arguments processed during a specific event (e.g., the amount
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of memory allocated by all memory allocations). This class is similar to the counter
class, but instead of counting individual events, the value can be incremented by
arbitrary amounts. The value of a variable of this class increases monotonically from
the initialization or reset of the performance variable. It must be non-negative and
represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value for variables of this
class is 0. Variables of this class can overflow.

• MPI_T_PVAR_CLASS_TIMER

The value of a performance variable in this class represents the aggregated time that
the MPI implementation spends executing a particular event, type of event, or section
of the MPI library. This class has the same basic semantics as
MPI_T_PVAR_CLASS_AGGREGATE, but explicitly records a timing value. The value of
a variable of this class increases monotonically from the initialization or reset of the
performance variable. It must be non-negative and represented by one of the following
datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG,
MPI_DOUBLE. The starting value for variables of this class is 0. If the type
MPI_DOUBLE is used, the units that represent time in this datatype must match the
units used by MPI_WTIME. Otherwise, the time units should be documented, e.g.,
in the description returned by MPI_T_PVAR_GET_INFO. Variables of this class can
overflow.

• MPI_T_PVAR_CLASS_GENERIC

This class can be used to describe a variable that does not fit into any of the
other classes. For variables in this class, the starting value is variable-specific and
implementation-defined.

Performance Variable Query Functions

An MPI implementation exports a set of N performance variables through the MPI tool
information interface. If N is zero, then the MPI implementation does not export any
performance variables; otherwise the provided performance variables are indexed from 0 to
N − 1. This index number is used in subsequent calls to identify the individual variables.

An MPI implementation is allowed to increase the number of performance variables
during the execution of an MPI application when new variables become available through
dynamic loading. However, MPI implementations are not allowed to change the index of
a performance variable or to delete a variable once it has been added to the set. When
a variable becomes inactive, e.g., through dynamic unloading, accessing its value should
return a corresponding error code.

The following function can be used to query the number of performance variables, N :

MPI_T_PVAR_GET_NUM(num_pvar)

OUT num_pvar returns number of performance variables (integer)

int MPI_T_pvar_get_num(int *num_pvar)

The function MPI_T_PVAR_GET_INFO provides access to additional information for
each variable.
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MPI_T_PVAR_GET_INFO(pvar_index, name, name_len, verbosity, varclass, datatype,
enumtype, desc, desc_len, bind, readonly, continuous, atomic)

IN pvar_index index of the performance variable to be queried be-

tween 0 and num_pvar − 1 (integer)

OUT name buffer to return the string containing the name of the

performance variable (string)

INOUT name_len length of the string and/or buffer for name (integer)

OUT verbosity verbosity level of this variable (integer)

OUT var_class class of performance variable (integer)

OUT datatype MPI datatype of the information stored in the perfor-

mance variable (handle)

OUT enumtype optional descriptor for enumeration information (han-

dle)

OUT desc buffer to return the string containing a description of

the performance variable (string)

INOUT desc_len length of the string and/or buffer for desc (integer)

OUT bind type of MPI object to which this variable must be

bound (integer)

OUT readonly flag indicating whether the variable can be

written/reset (integer)

OUT continuous flag indicating whether the variable can be started and

stopped or is continuously active (integer)

OUT atomic flag indicating whether the variable can be atomically

read and reset (integer)

int MPI_T_pvar_get_info(int pvar_index, char *name, int *name_len,

int *verbosity, int *var_class, MPI_Datatype *datatype,

MPI_T_enum *enumtype, char *desc, int *desc_len, int *bind,

int *readonly, int *continuous, int *atomic)

After a successful call to MPI_T_PVAR_GET_INFO for a particular variable, subsequent
calls to this routine that query information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values. ticket378.

If any OUT parameter to MPI_T_PVAR_GET_INFO is a NULL pointer, the implemen-
tation will ignore the parameter and not return a value for the parameter.

The arguments name and name_len are used to return the name of the performance
variable as described in Section 14.3.3. If completed successfully, the routine is required
to return a name of at least length one.

The argument verbosity returns the verbosity level of the variable (see Section 14.3.1).
The class of the performance variable is returned in the parameter var_class. The class

must be one of the constants defined in Section 14.3.7.
The combination of the name and the class of the performance variable must be unique

with respect to all other names for performance variables used by the MPI implementation.
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Advice to implementors. Groups of variables that belong closely together, but have
different classes, can have the same name. This choice is useful, e.g., to refer to
multiple variables that describe a single resource (like the level, the total size, as well
as high and low watermarks). (End of advice to implementors.)

The argument datatype returns the MPI datatype that is used to represent the perfor-
mance variable.

If the variable is of type MPI_INT, MPI can optionally specify an enumeration for the
values represented by this variable and return it in enumtype. In this case, MPI returns an
enumeration identifier, which can then be used to gather more information as described in
Section 14.3.5. Otherwise, enumtype is set to MPI_T_ENUM_NULL. If the datatype is not
MPI_INT or the argument enumtype is the null pointer, no [emumeration]enumeration typeticket0.
is returned.

Returning a description is optional. If an MPI implementation does not [ to ] return aticket0.
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return from this function.

The parameter bind returns the type of the MPI object to which the variable must be
bound or the value MPI_T_BIND_NO_OBJECT (see Section 14.3.2).

Upon return, the argument readonly is set to zero if the variable can be written or reset
by the user. It is set to one if the variable can only be read.

Upon return, the argument continuous is set to zero if the variable can be started and
stopped by the user, i.e., it is possible for the user to control if and when the value of a
variable is updated. It is set to one if the variable is always active and cannot be controlled
by the user.

Upon return, the argument atomic is set to zero if the variable cannot be read and
reset atomically. Only variables for which the call sets atomic to one can be used in a call
to MPI_T_PVAR_READRESET.ticket377.

MPI_T_PVAR_GET_INDEX(name, var_class, pvar_index)

IN name the name of the performance variable (string)

IN var_class the class of the performance variable (integer)

OUT pvar_index the index of the performance variable (integer)

int MPI_T_pvar_get_index(const char *name, int var_class, int *pvar_index)

MPI_T_PVAR_GET_INDEX is a function for retrieving the index of a performance
variable given a known variable name and class. The name and var_class parameters are
provided by the caller, and pvar_index is returned by the MPI implementation. The name
parameter is string terminated with a null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME if
name does not match the name of any performance variable provided by the implementation
at the time of the call.

Rationale. This routine is provided to enable fast retrieval of performance variables
by a tool, assuming it knows the name of the variable for which it is looking. The
number of variables exposed by the implementation can change over time, so it is not
possible for the tool to simply iterate over the list of variables once at initialization.
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Although using MPI implementation specific variable names is not portable across MPI
implementations, tool developers may choose to take this route for lower overhead at
runtime because the tool will not have to iterate over the entire set of variables to
find a specific one. (End of rationale.)

Performance Experiment Sessions

Within a single program, multiple components can use the MPI tool information interface.
To avoid collisions with respect to accesses to performance variables, users of the MPI tool
information interface must first create a session. Subsequent calls that access performance
variables can then be made within the context of this session. Any call executed in a session
must not influence the results in any other session.

MPI_T_PVAR_SESSION_CREATE(session)

OUT session identifier of performance session (handle)

int MPI_T_pvar_session_create(MPI_T_pvar_session *session)

This call creates a new session for accessing performance variables and returns a handle
for this session in the argument session of type MPI_T_pvar_session.

MPI_T_PVAR_SESSION_FREE(session)

INOUT session identifier of performance experiment session (handle)

int MPI_T_pvar_session_free(MPI_T_pvar_session *session)

This call frees an existing session. Calls to the MPI tool information interface can no
longer be made within the context of a session after it is freed. On a successful return, MPI
sets the session identifier to MPI_T_PVAR_SESSION_NULL.

Handle Allocation and Deallocation

Before using a performance variable, a user must first allocate a handle of type
MPI_T_pvar_handle for the variable by binding it to an MPI object (see also Section 14.3.2).
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MPI_T_PVAR_HANDLE_ALLOC(session, pvar_index, obj_handle, handle, count)

IN session identifier of performance experiment session (handle)

IN pvar_index index of performance variable for which handle is to

be allocated (integer)

IN obj_handle reference to a handle of the MPI object to which this

variable is supposed to be bound (pointer)

OUT handle allocated handle (handle)

OUT count number of elements used to represent this variable (in-

teger)

int MPI_T_pvar_handle_alloc(MPI_T_pvar_session session, int pvar_index,

void *obj_handle, MPI_T_pvar_handle *handle, int *count)

This routine binds the performance variable specified by the argument index to an
MPI object in the session identified by the parameter session. The object is passed in the
argument obj_handle as an address to a local variable that stores the object’s handle. The
argument obj_handle is ignored if the MPI_T_PVAR_GET_INFO call for this performance
variable returned MPI_T_BIND_NO_OBJECT in the argument bind. The handle allocated to
reference the variable is returned in the argument handle. Upon successful return, count
contains the number of elements (of the datatype returned by a previous
MPI_T_PVAR_GET_INFO call) used to represent this variable.

Advice to users. The count can be different based on the MPI object to which the
performance variable was bound. For example, variables bound to communicators
could have a count that matches the size of the communicator.

It is not portable to pass references to predefined MPI object handles, such as
MPI_COMM_WORLD, to this routine, since their implementation depends on the MPI
library. Instead, such an object handle should be stored in a local variable and the
address of this local variable should be passed into MPI_T_PVAR_HANDLE_ALLOC.
(End of advice to users.)

The value of index should be in the range 0 to num_pvar − 1, where num_pvar is the
number of available performance variables as determined from a prior call to
MPI_T_PVAR_GET_NUM. The type of the MPI object it references must be consistent
with the type returned in the bind argument in a prior call to MPI_T_PVAR_GET_INFO.ticket0.

[ In the case the bind argument equals MPI_T_BIND_NO_OBJECT, the argument
obj_handle is ignored. ]ticket386.

For all routines in the rest of this section that take both handle and session as IN

arguments, if the handle argument passed in is not associated with the session argument,
MPI_T_ERR_INVALID_HANDLE is returned.

MPI_T_PVAR_HANDLE_FREE(session, handle)

IN session identifier of performance experiment session (handle)

INOUT handle handle to be freed (handle)
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int MPI_T_pvar_handle_free(MPI_T_pvar_session session, MPI_T_pvar_handle

*handle)

When a handle is no longer needed, a user of the MPI tool information interface should
call MPI_T_PVAR_HANDLE_FREE to free the handle in the session identified by the pa-
rameter session and the associated resources in the MPI implementation. On a successful
return, MPI sets the handle to MPI_T_PVAR_HANDLE_NULL.

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating once a handle has been allocated. Such variables may be queried at
any time, but they cannot be started or stopped by the user. All other variables are in a
stopped state after their handle has been allocated; their values are not updated until they
have been started by the user.

MPI_T_PVAR_START(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_pvar_start(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

This functions starts the performance variable with the handle identified by the pa-
rameter handle in the session identified by the parameter session.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to start all variables within the session identified by the parameter session for
which handles have been allocated. In this case, the routine returns MPI_SUCCESS if all vari-
ables are started successfully (even if there are no non-continuous variables to be started), ticket391.
otherwise MPI_T_ERR_PVAR_NO_STARTSTOP is returned. Continuous variables and vari-
ables that are already started are ignored when MPI_T_PVAR_ALL_HANDLES is specified.

MPI_T_PVAR_STOP(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_pvar_stop(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

This functions stops the performance variable with the handle identified by the param-
eter handle in the session identified by the parameter session.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to stop all variables within the session identified by the parameter
session for which handles have been allocated. In this case, the routine returns MPI_SUCCESS

if all variables are stopped successfully (even if there are no non-continuous variables to be ticket391.
started), otherwise MPI_T_ERR_PVAR_NO_STARTSTOP is returned. Continuous variables
and variables that are already stopped are ignored when MPI_T_PVAR_ALL_HANDLES is
specified.
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Performance Variable Access Functions

MPI_T_PVAR_READ(session, handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

OUT buf initial address of storage location for variable value

(choice)

int MPI_T_pvar_read(MPI_T_pvar_session session, MPI_T_pvar_handle handle,

void* buf)

The MPI_T_PVAR_READ call queries the value of the performance variable with the
handle handle in the session identified by the parameter session and stores the result in the
buffer identified by the parameter buf. The user is responsible to ensure that the buffer
is of the appropriate size to hold the entire value of the performance variable (based on
the datatype and count returned by the corresponding previous calls to
MPI_T_PVAR_GET_INFO and MPI_T_PVAR_HANDLE_ALLOC, respectively).

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the func-
tion MPI_T_PVAR_READ.

MPI_T_PVAR_WRITE(session,handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

IN buf initial address of storage location for variable value

(choice)

int MPI_T_pvar_write(MPI_T_pvar_session session, MPI_T_pvar_handle handle,

const void* buf)

The MPI_T_PVAR_WRITE call attempts to write the value of the performance variable
with the handle identified by the parameter handle in the session identified by the parameter
session. The value to be written is passed in the buffer identified by the parameter buf. The
user must ensure that the buffer is of the appropriate size to hold the entire value of the per-
formance variable (based on the datatype and count returned by the corresponding previous
calls to MPI_T_PVAR_GET_INFO and MPI_T_PVAR_HANDLE_ALLOC, respectively).

If it is not possible to change the variable, the function returns
MPI_T_ERR_PVAR_NO_WRITE.

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the func-
tion MPI_T_PVAR_WRITE.
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MPI_T_PVAR_RESET(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_pvar_reset(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

The MPI_T_PVAR_RESET call sets the performance variable with the handle identified
by the parameter handle to its starting value specified in Section 14.3.7. If it is not possible
to change the variable, the function returns MPI_T_ERR_PVAR_NO_WRITE.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to reset all variables within the session identified by the parameter session for
which handles have been allocated. In this case, the routine returns MPI_SUCCESS if all
variables are reset successfully (even if there are no valid handles or all are read-only), ticket391.
otherwise MPI_T_ERR_PVAR_NO_WRITE is returned. Read-only variables are ignored when
MPI_T_PVAR_ALL_HANDLES is specified.

MPI_T_PVAR_READRESET(session, handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

OUT buf initial address of storage location for variable value

(choice)

int MPI_T_pvar_readreset(MPI_T_pvar_session session, MPI_T_pvar_handle

handle, void* buf)

This call atomically combines the functionality of MPI_T_PVAR_READ and
MPI_T_PVAR_RESET with the same semantics as if these two calls were called separately.
If atomic operations on this variable are not supported, this routine returns
MPI_T_ERR_PVAR_NO_ATOMIC.

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the func-
tion MPI_T_PVAR_READRESET.

Advice to implementors. Sampling-based tools rely on the ability to call the MPI
tool information interface, in particular routines to start, stop, read, write and reset
performance variables, from any program context, including asynchronous contexts
such as signal handlers. MPI implementations should strive, if possible in their par-
ticular environment, to enable these usage scenarios for all or a subset of the routines
mentioned above. If implementing only a subset, the read, write, and reset routines
are typically the most critical for sampling based tools. An MPI implementation
should clearly document any restrictions on the program contexts in which the MPI
tool information interface can be used. Restrictions might include guaranteeing usage
outside of all signals or outside a specific set of signals. Any restrictions could be docu-
mented, for example, through the description returned by MPI_T_PVAR_GET_INFO.
(End of advice to implementors.)

Rationale. All routines to read, to write or to reset performance variables require the
session argument. This requirement keeps the interface consistent and allows the use
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of MPI_T_PVAR_ALL_HANDLES where appropriate. Further, this opens up additional
performance optimizations for the implementation of handles. (End of rationale.)

Example: Tool to Detect Receives with Long Unexpected Message Queues

Example 14.6
The following example shows a sample tool to identify receive operations that occur

during times with long message queues. This examples assumes that the MPI implementa-
tion exports a variable with the name “MPI_T_UMQ_LENGTH” to represent the current length
of the unexpected message queue. The tool is implemented as a PMPI tool using the MPI
profiling interface.

The tool consists of three parts: (1) the initialization (by intercepting the call to
MPI_INIT), (2) the test for long unexpected message queues (by intercepting calls to
MPI_RECV), and (3) the clean-up phase (by intercepting the call to MPI_FINALIZE). To
capture all receives, the example would have to be extended to have similar wrappers for
all receive operations.

Part 1— Initialization: During initialization, the tool searches for the variable and, once
the right index is found, allocates a session and a handle for the variable with the found
index, and starts the performance variable.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <mpi.h>

/* Global variables for the tool */

static MPI_T_pvar_session session;

static MPI_T_pvar_handle handle;

int MPI_Init(int *argc, char ***argv ) {

int err, num, i, index, namelen, verbosity;

int var_class, bind, threadsup;

int readonly, continuous, atomic, count;

char name[18];

MPI_Comm comm;

MPI_Datatype datatype;

MPI_T_enum enumtype;

err=PMPI_Init(argc,argv);

if (err!=MPI_SUCCESS) return err;

err=PMPI_T_init_thread(MPI_THREAD_SINGLE,&threadsup);

if (err!=MPI_SUCCESS) return err;

err=PMPI_T_pvar_get_num(&num);
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if (err!=MPI_SUCCESS) return err;

index=-1;

i=0;

while ((i<num) && (index<0) && (err==MPI_SUCCESS)) {

/* Pass a buffer that is at least one character longer than */

/* the name of the variable being searched for to avoid */

/* finding variables that have a name that has a prefix */

/* equal to the name of the variable being searched. */

namelen=18;

err=PMPI_T_pvar_get_info(i, name, &namelen, &verbosity,

&var_class, &datatype, &enumtype, NULL, NULL, &bind,

&readonly, &continuous, &atomic);

if (strcmp(name,"MPI_T_UMQ_LENGTH")==0) index=i;

i++; }

if (err!=MPI_SUCCESS) return err;

/* this could be handled in a more flexible way for a generic tool */

assert(index>=0);

assert(var_class==MPI_T_PVAR_CLASS_LEVEL);

assert(datatype==MPI_INT);

assert(bind==MPI_T_BIND_MPI_COMM);

/* Create a session */

err=PMPI_T_pvar_session_create(&session);

if (err!=MPI_SUCCESS) return err;

/* Get a handle and bind to MPI_COMM_WORLD */

comm=MPI_COMM_WORLD;

err=PMPI_T_pvar_handle_alloc(session, index, &comm, &handle, &count);

if (err!=MPI_SUCCESS) return err;

/* this could be handled in a more flexible way for a generic tool */

assert(count==1);

/* Start variable */

err=PMPI_T_pvar_start(session, handle);

if (err!=MPI_SUCCESS) return err;

return MPI_SUCCESS;

}

Part 2 — Testing the Queue Lengths During Receives: During every receive operation, the
tool reads the unexpected queue length through the matching performance variable and
compares it against a predefined threshold.

#define THRESHOLD 5

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
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MPI_Comm comm, MPI_Status *status)

{

int value, err;

if (comm==MPI_COMM_WORLD) {

err=PMPI_T_pvar_read(session, handle, &value);

if ((err==MPI_SUCCESS) && (value>THRESHOLD))

{

/* tool identified receive called with long UMQ */

/* execute tool functionality, */

/* e.g., gather and print call stack */

}

}

return PMPI_Recv(buf, count, datatype, source, tag, comm, status);

}

Part 3 — Termination: In the wrapper for MPI_FINALIZE, the MPI tool information inter-
face is finalized.

int MPI_Finalize()

{

int err;

err=PMPI_T_pvar_handle_free(session, &handle);

err=PMPI_T_pvar_session_free(&session);

err=PMPI_T_finalize();

return PMPI_Finalize();

}

14.3.8 Variable Categorization

MPI implementations can optionally group performance and control variables into categories
to express logical relationships between various variables. For example, an MPI implemen-
tation could group all control and performance variables that refer to message transfers in
the MPI implementation and thereby distinguish them from variables that refer to local
resources such as memory allocations or other interactions with the operating system.

Categories can also contain other categories to form a hierarchical grouping. Categories
can never include themselves, either directly or transitively within other included categories.
Expanding on the example above, this allows MPI to refine the grouping of variables referring
to message transfers into variables to control and to monitor message queues, message
matching activities and communication protocols. Each of these groups of variables would
be represented by a separate category and these categories would then be listed in a single
category representing variables for message transfers.

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories via
the MPI tool information interface. If N = 0, then the MPI implementation does not export
any categories, otherwise the provided categories are indexed from 0 to N − 1. This index
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number is used in subsequent calls to functions of the MPI tool information interface to
identify the individual categories.

An MPI implementation is permitted to increase the number of categories during the
execution of an MPI program when new categories become available through dynamic load-
ing. However, MPI implementations are not allowed to change the index of a category or
delete it once it has been added to the set.

Similarly, MPI implementations are allowed to add variables to categories, but they
are not allowed to remove variables from categories or change the order in which they are
returned.

The following function can be used to query the number of [control variables]categories, ticket387.
N .

MPI_T_CATEGORY_GET_NUM(num_cat)

OUT num_cat current number of categories (integer)

int MPI_T_category_get_num(int *num_cat)

Individual category information can then be queried by calling the following function:

MPI_T_CATEGORY_GET_INFO(cat_index, name, name_len, desc, desc_len, num_cvars,
num_pvars, num_categories)

IN cat_index index of the category to be queried (integer)

OUT name buffer to return the string containing the name of the

category (string)

INOUT name_len length of the string and/or buffer for name (integer)

OUT desc buffer to return the string containing the description

of the category (string)

INOUT desc_len length of the string and/or buffer for desc (integer)

OUT num_cvars number of control variables in the category (integer)

OUT num_pvars number of performance variables in the category (in-

teger)

OUT num_categories number of categories contained in the category (inte-

ger)

int MPI_T_category_get_info(int cat_index, char *name, int *name_len,

char *desc, int *desc_len, int *num_cvars, int *num_pvars,

int *num_categories)

The arguments name and name_len are used to return the name of the category as
described in Section 14.3.3.

The routine is required to return a name of at least length one. This name must be
unique with respect to all other names for categories used by the MPI implementation. ticket378.

If any OUT parameter to MPI_T_CATEGORY_GET_INFO is a NULL pointer, the im-
plementation will ignore the parameter and not return a value for the parameter.
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The arguments desc and desc_len are used to return the description of the category as
described in Section 14.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

The function returns the number of control variables, performance variables and other
categories contained in the queried category in the arguments num_cvars, num_pvars, and
num_categories, respectively.ticket377.

MPI_T_CATEGORY_GET_INDEX(name, cat_index)

IN name the name of the category (string)

OUT cat_index the index of the category (integer)

int MPI_T_category_get_index(const char *name, int *cat_index)

MPI_T_CATEGORY_GET_INDEX is a function for retrieving the index of a category
given a known category name. The name parameter is provided by the caller, and cat_index
is returned by the MPI implementation. The name parameter is a string terminated with a
null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME

if name does not match the name of any category provided by the implementation at the
time of the call.

Rationale. This routine is provided to enable fast retrieval of a category index
by a tool, assuming it knows the name of the category for which it is looking. The
number of categories exposed by the implementation can change over time, so it is not
possible for the tool to simply iterate over the list of categories once at initialization.
Although using MPI implementation specific category names is not portable across
MPI implementations, tool developers may choose to take this route for lower overhead
at runtime because the tool will not have to iterate over the entire set of categories
to find a specific one. (End of rationale.)

MPI_T_CATEGORY_GET_CVARS(cat_index, len, indices)

IN cat_index index of the category to be queried, in the range [0, N−
1] (integer)

IN len the length of the indices array (integer)

OUT indices an integer array of size len, indicating control variable

indices (array of integers)

int MPI_T_category_get_cvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CVARS can be used to query which control variables are
contained in a particular category. A category contains zero or more control variables.
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MPI_T_CATEGORY_GET_PVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1] (integer)

IN len the length of the indices array (integer)

OUT indices an integer array of size len, indicating performance

variable indices (array of integers)

int MPI_T_category_get_pvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_PVARS can be used to query which performance variables
are contained in a particular category. A category contains zero or more performance
variables.

MPI_T_CATEGORY_GET_CATEGORIES(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1] (integer)

IN len the length of the indices array (integer)

OUT indices an integer array of size len, indicating category indices

(array of integers)

int MPI_T_category_get_categories(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CATEGORIES can be used to query which other categories
are contained in a particular category. A category contains zero or more other categories.

As mentioned above, MPI implementations can grow the number of categories as well
as the number of variables or other categories within a category. In order to allow users
of the MPI tool information interface to check quickly whether new categories have been
added or new variables or categories have been added to a category, MPI maintains a
virtual timestamp. This timestamp is monotonically increasing during the execution and is
returned by the following function:

MPI_T_CATEGORY_CHANGED(stamp)

OUT stamp a virtual time stamp to indicate the last change to the

categories (integer)

int MPI_T_category_changed(int *stamp)

If two subsequent calls to this routine return the same timestamp, it is guaranteed that
the category information has not changed between the two calls. If the timestamp retrieved
from the second call is higher, then some categories have been added or expanded.

Advice to users. The timestamp value is purely virtual and only intended to check
for changes in the category information. It should not be used for any other purpose.
(End of advice to users.)
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The index values returned in indices by MPI_T_CATEGORY_GET_CVARS,
MPI_T_CATEGORY_GET_PVARS and MPI_T_CATEGORY_GET_CATEGORIES can be used
as input to MPI_T_CVAR_GET_INFO, MPI_T_PVAR_GET_INFO and
MPI_T_CATEGORY_GET_INFO, respectively.

The user is responsible for allocating the arrays passed into the functions
MPI_T_CATEGORY_GET_CVARS, MPI_T_CATEGORY_GET_PVARS and
MPI_T_CATEGORY_GET_CATEGORIES. Starting from array index 0, each function writes
up to len elements into the array. If the category contains more than len elements, the
function returns an arbitrary subset of size len. Otherwise, the entire set of elements is
returned in the beginning entries of the array, and any remaining array entries are not
modified.

14.3.9 Return Codes for the MPI Tool Information Interface

All functions defined as part of the MPI tool information interface return an integer error
code (see Table 14.5) to indicate whether the function was completed successfully or was
aborted. In the latter case the error code indicates the reason for not completing the routine.
Such errors neither impact the execution of the MPI process nor invoke MPI error handlers.
The MPI process continues executing regardless of the return code from the call. The MPI
implementation is not required to check all user-provided parameters; if a user passes invalid
parameter values to any routine the behavior of the implementation is undefined.

All error codes with the prefix MPI_T_ must be unique values and cannot overlap with
any other error codes or error classes returned by the MPI implementation. Further, they
shall be treated as MPI error classes as defined in Section 8.4 on page 347 and follow the
same rules and restrictions. In particular, they must satisfy:

0 = MPI_SUCCESS < MPI_T_ERR_... ≤ MPI_ERR_LASTCODE.

Rationale. All MPI tool information interface functions must return error classes,
because applications cannot portably call MPI_ERROR_CLASS before
MPI_INIT or MPI_INIT_THREAD to map an arbitrary error code to an error class.
(End of rationale.)

14.3.10 Profiling Interface

All requirements for the profiling interfaces, as described in Section 14.2, also apply to
the MPI tool information interface. All rules, guidelines, and recommendations from Sec-
tion 14.2 apply equally to calls defined as part of the MPI tool information interface.
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Return Code Description

Return Codes for All Functions in the MPI Tool Information Interface

MPI_SUCCESS Call completed successfully
[ticket400.] MPI_T_ERR_INVALID [ticket400.]Invalid use of the interface or bad parameter values
MPI_T_ERR_MEMORY Out of memory
MPI_T_ERR_NOT_INITIALIZED Interface not initialized
MPI_T_ERR_CANNOT_INIT Interface not in the state to be initialized

Return Codes for Datatype Functions: MPI_T_ENUM_*

MPI_T_ERR_INVALID_INDEX The enumeration index is invalid
[ticket406.][or has been deleted.]

[ticket406.][MPI_T_ERR_INVALID_ITEM] [ticket406.][ The item index queried is out of range]
[ticket406.][(for MPI_T_ENUM_GET_ITEM only)]

Return Codes for variable and category query functions: [ticket377.][MPI_T_*_GET_INFO]MPI_T_*_GET_*

MPI_T_ERR_INVALID_INDEX The variable or category index is invalid
[ticket377.]MPI_T_ERR_INVALID_NAME [ticket377.]The variable or category name is invalid

Return Codes for Handle Functions: MPI_T_*_{ALLOC|FREE}
MPI_T_ERR_INVALID_INDEX The variable index is invalid [ticket406.][or has been deleted]
MPI_T_ERR_INVALID_HANDLE The handle is invalid
MPI_T_ERR_OUT_OF_HANDLES No more handles available

Return Codes for Session Functions: MPI_T_PVAR_SESSION_*

MPI_T_ERR_OUT_OF_SESSIONS No more sessions available
MPI_T_ERR_INVALID_SESSION Session argument is not a valid session

Return Codes for Control Variable Access Functions:
MPI_T_CVAR_READ, WRITE

MPI_T_ERR_CVAR_SET_NOT_NOW Variable cannot be set at this moment
MPI_T_ERR_CVAR_SET_NEVER Variable cannot be set until end of execution
MPI_T_ERR_INVALID_HANDLE The handle is invalid

Return Codes for Performance Variable Access and Control:
MPI_T_PVAR_{START|STOP|READ|WRITE|RESET|READREST}
MPI_T_ERR_INVALID_HANDLE The handle is invalid
MPI_T_ERR_INVALID_SESSION Session argument is not a valid session
MPI_T_ERR_PVAR_NO_STARTSTOP Variable cannot be started or stopped

(for MPI_T_PVAR_START and
MPI_T_PVAR_STOP)

MPI_T_ERR_PVAR_NO_WRITE Variable cannot be written or reset
(for MPI_T_PVAR_WRITE and
MPI_T_PVAR_RESET)

MPI_T_ERR_PVAR_NO_ATOMIC Variable cannot be read and written atomically
(for MPI_T_PVAR_READRESET)

Return Codes for Category Functions: MPI_T_CATEGORY_*

MPI_T_ERR_INVALID_INDEX The category index is invalid

Table 14.5: Return codes used in functions of the MPI tool information interface
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