
Chapter 1

Errata for MPI-3.0

This document was processed on August 22, 2013.

The known corrections to MPI-3.0 are listed in this document. All page and line num-
bers are for the o�cial version of the MPI-3.0 document available from the MPI Forum home
page at www.mpi-forum.org. Information on reporting mistakes in the MPI documents is
also located on the MPI Forum home page.

• In all mpi_f08 subroutine and function definitions in Chapters 3–17 and Annex A.3, in
Example 5.21 on page 187 line 13, and in all mpi_f08 ABSTRACT INTERFACE definitions
(on page 183 line 47, page 268 lines 23 and 33, page 273 line 47, page 274 line 9, page
277 lines 12 and 21, page 344 line 22, page 346 line 12, page 347 line 36, page 475
lines 10 and 43, page 476 line 38, page 537 line 29, page 538 line 2, and page 678 line
11 - page 680 line 35), the BIND(C) must be removed.

• Section 8.2, page 339 (MPI_ALLOC_MEM) line 47 reads

but with a di↵erent linker name:

but should read

but with a di↵erent specific procedure name:

• Section 8.2, page 340 (MPI_ALLOC_MEM) lines 10-11 read

The linker name base of this overloaded function is
MPI_ALLOC_MEM_CPTR. The implied linker names are described in Sec-
tion 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_ALLOC_MEM_CPTR. The implied specific procedure names are de-
scribed in Section 17.1.5 on page 605.

• Section 11.2.2, page 408 (MPI_WIN_ALLOCATE) line 2 reads

but with a di↵erent linker name:

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

www.mpi-forum.org

2 CHAPTER 1. ERRATA FOR MPI-3.0

but should read

but with a di↵erent specific procedure name:

• Section 11.2.2, page 408 (MPI_WIN_ALLOCATE) lines 14-15 read

The linker name base of this overloaded function is
MPI_WIN_ALLOCATE_CPTR. The implied linker names are described in
Section 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_WIN_ALLOCATE_CPTR. The implied specific procedure names are de-
scribed in Section 17.1.5 on page 605.

• Section 11.2.3, page 409 (MPI_WIN_ALLOCATE_SHARED) line 33 reads

but with a di↵erent linker name:

but should read

but with a di↵erent specific procedure name:

• Section 11.2.3, page 409 (MPI_WIN_ALLOCATE_SHARED) lines 44-46 read

The linker name base of this overloaded function is
MPI_WIN_ALLOCATE_SHARED_CPTR. The implied linker names are de-
scribed in Section 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_WIN_ALLOCATE_SHARED_CPTR. The implied specific procedure names
are described in Section 17.1.5 on page 605.

• Section 11.2.3, page 411 (MPI_WIN_SHARED_QUERY_CPTR) line 14 reads

but with a di↵erent linker name:

but should read

but with a di↵erent specific procedure name:

• Section 11.2.3, page 411 (MPI_WIN_SHARED_QUERY_CPTR) lines 26-27 read

The linker name base of this overloaded function is
MPI_WIN_SHARED_QUERY_CPTR. The implied linker names are described
in Section 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_WIN_ALLOCATE_CPTR. The implied specific procedure names are de-
scribed in Section 17.1.5 on page 605.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3

• Section 14.2.1, page 555 (Profiling interface) lines 38-40 read

For Fortran, the di↵erent support methods cause several linker names.
Therefore, several profiling routines (with these linker names) are needed
for each Fortran MPI routine, as described in Section 17.1.5 on page 605.

but should read

For Fortran, the di↵erent support methods cause several specific procedure
names. Therefore, several profiling routines (with these specific procedure
names) are needed for each Fortran MPI routine, as described in Section
17.1.5 on page 605.

• Section 14.2.7, page 560 (Profiling interface, Fortran support methods) lines 29-32
read

The di↵erent Fortran support methods and possible options for the support
of subarrays (depending on whether the compiler can support TYPE(*),

DIMENSION(..) choice bu↵ers) imply di↵erent linker names for the same
Fortran MPI routine. The rules and implications for the profiling interface
are described in Section 17.1.5 on page 605.

but should read

The di↵erent Fortran support methods and possible options for the support
of subarrays (depending on whether the compiler can support TYPE(*),

DIMENSION(..) choice bu↵ers) imply di↵erent specific procedure names for
the same Fortran MPI routine. The rules and implications for the profiling
interface are described in Section 17.1.5 on page 605.

• Section 17.1.1, page 598 (Fortran support, overview) lines 29-32 read

The Fortran interfaces of each MPI routine are shorthands. Section 17.1.5
defines the corresponding full interface specification together with the used
linker names and implications for the profiling interface.

but should read

The Fortran interfaces of each MPI routine are shorthands. Section 17.1.5
defines the corresponding full interface specification together with the spe-
cific procedure names and implications for the profiling interface.

• Section 17.1.2, page 599 (Fortran support through the mpi_f08 module) lines 19-20
read

Define all MPI handles with uniquely named handle types (instead of
INTEGER handles, as in the mpi module).

but should read

Define the derived typeMPI_Status, and define allMPI handles with uniquely
named handle types (instead of INTEGER handles, as in the mpi module).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. ERRATA FOR MPI-3.0

• Section 17.1.2, page 601 (Fortran support through the mpi_f08 module) lines 11-15
read

The INTERFACE construct in combination with BIND(C) allows the imple-
mentation of the Fortran mpi_f08 interface with a single set of portable
wrapper routines written in C, which supports all desired features in the
mpi_f08 interface. TS 29113 also has a provision for OPTIONAL arguments
in BIND(C) interfaces.

but should be removed.

• Both the last Advice to implementors in Section 17.1.4 (Fortran support through the
mpif.h include file), page 604 line 29 - page 605 line 11, and the whole Section 17.1.5
(Interface specification, linker names and the profiling interface), page 605 line 29 -
page 609 line 31 are replaced with:

17.1.5 Interface Specifications, Procedure Names, and the Profiling Interface

The Fortran interface specification of each MPI routine specifies the routine name that must
be called by the application program, and the names and types of the dummy arguments
together with additional attributes. The Fortran standard allows a given Fortran interface
to be implemented with several methods, e.g., within or outside of a module, with or without
BIND(C), or the bu↵ers with or without TS29113. Such implementation decisions imply
di↵erent binary interfaces and di↵erent specific procedure names. The requirements for
several implementation schemes together with the rules for the specific procedure names
and its implications for the profiling interface are specified within this section, but not the
implementation details.

Advice to users. The PMPI interface allows intercepting MPI routines. For exam-
ple, an additional MPI_ISEND profiling wrapper can be provided that is called by the
application and internally calls PMPI_ISEND. There are two typical use cases: a pro-
filing layer that is developed independently from the application and the MPI library,
and profiling routines that are part of the application and have access to the appli-
cation data. With MPI-3.0, new Fortran interfaces and implementation schemes were
introduced that have several implications on how Fortran MPI routines are internally
implemented and optimized. For profiling layers, these schemes imply that several in-
ternal interfaces with di↵erent specific procedure names may need to be intercepted.
Therefore, for wrapper routines that are part of a Fortran application, it may be more
convenient to make the name shift within the application, i.e., to substitute the call
to the MPI routine (e.g., MPI_ISEND) by a call to a user-written profiling wrapper
with a new name (e.g., X_MPI_ISEND) and to call the Fortran MPI_ISEND from this
wrapper, instead of using the PMPI interface. (End of advice to users.)

Rationale. This section was introduced in MPI-3.0 on Sep. 21, 2012. The major goals
for implementing the three Fortran support methods have been:

• Portable implementation of the wrappers from the MPI Fortran interfaces to the
MPI routines in C.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5

• Binary backward compatible implementation path when switching
MPI_SUBARRAYS_SUPPORTED from .FALSE. to .TRUE..

• The Fortran PMPI interface need not be backward compatible, but a method
must be included that a tools layer can use to examine the MPI library about
the specific procedure names and interfaces used.

• No performance drawbacks.

• Consistency between all three Fortran support methods.

• Consistent with Fortran 2008 + TS 29113.

The design expected that all dummy arguments in the MPI Fortran interfaces are
interoperable with C according to Fortran 2008 + TS 29113. This expectation was
not fulfilled. The LOGICAL arguments are not interoperable with C, mainly because
the internal representations for .FALSE. and .TRUE. are compiler dependent. The
provided interface was mainly based on BIND(C) interfaces and therefore inconsistent
with Fortran. To be consistent with Fortran, the BIND(C) had to be removed from
the callback procedure interfaces and the predefined callbacks, e.g.,
MPI_COMM_DUP_FN. Non-BIND(C) procedures are also not interoperable with C,
and therefore the BIND(C) had to be removed from all routines with
PROCEDURE arguments, e.g., from MPI_OP_CREATE.

Therefore, this section was rewritten in an erratum to MPI-3.0. (End of rationale.)

A Fortran call to an MPI routine shall result in a call to a procedure with one of the
specific procedure names and calling conventions, as described in Table 1.1 on page 6. Case
is not significant in the names.

Note that for the deprecated routines in Section 15.1 on page 591, which are reported
only in Annex A.4, scheme 2A is utilized in the mpi module and mpif.h, and also in the
mpi_f08 module.

Advice to implementors. An implementor may provide other specific procedure
names, e.g., internal names generated by using CONTAINS to include theMPI routines in
the namespace of the mpi_f08 and mpi modules. In this case, these specific procedure
names may not be interceptable by profiling wrappers. To be compliant with the
MPI standard as described in Section 17.1.1 on page 597, the implementor must also
provide an additional MPI library and module file combination that uses the specific
procedure names as described in Table 1.1. (End of advice to implementors.)

To set MPI_SUBARRAYS_SUPPORTED to .TRUE. within a Fortran support method, it
is required that all non-blocking and split-collective routines with bu↵er arguments are
implemented according to 1B and 2B, i.e., with MPI_Xxxx_f08ts in the mpi_f08 module,
and with MPI_XXXX_FTS in the mpi module and the mpif.h include file.

The mpi and mpi_f08 modules and the mpif.h include file will each correspond to
exactly one implementation scheme from Table 1.1 on page 6. However, the MPI library
may contain multiple implementation schemes from Table 1.1; this may be desirable for
backwards binary compatibility, for example.

Rationale. After a compiler provides the facilities from TS 29113, i.e., TYPE(*),
DIMENSION(..), it is possible to change the bindings within a Fortran support method
to support subarrays without recompiling the complete application provided that

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. ERRATA FOR MPI-3.0

No. Specific pro- Calling convention
cedure name

1A MPI_Isend_f08 Fortran interface and arguments, as in Annex A.3, except
that in routines with a choice bu↵er dummy argument, this
dummy argument is implemented with non-standard exten-
sions like !$PRAGMA IGNORE_TKR, which should be identical
to TYPE(*),DIMENSION(*) of TS 29113.

1B MPI_Isend_f08ts Fortran interface and arguments, as in Annex A.3, but
only for routines with one or more choice bu↵er dummy
arguments; these dummy arguments are implemented with
TYPE(*), DIMENSION(..).

2A MPI_ISEND Fortran interface and arguments, as in Annex A.4, except
that in routines with a choice bu↵er dummy argument, this
dummy argument is implemented with non-standard exten-
sions like !$PRAGMA IGNORE_TKR, which should be identical
to TYPE(*),DIMENSION(*) of TS 29113.

2B MPI_ISEND_FTS Fortran interface and arguments, as in Annex A.4, but
only for routines with one or more choice bu↵er dummy
arguments; these dummy arguments are implemented with
TYPE(*), DIMENSION(..).

Table 1.1: Specific Fortran procedure names and related calling conventions. MPI_ISEND
is used as an example.

the previous interfaces with its specific procedure names are still included in the
library. Of course, only recompiled routines can benefit from the added facilities.
There is no binary compatibility conflict because each interface uses its own spe-
cific procedure names and all interfaces use the same constants (except the value of
MPI_SUBARRAYS_SUPPORTED and MPI_ASYNC_PROTECTS_NONBLOCKING) and type
definitions. After a compiler also ensures that bu↵er arguments of nonblocking MPI
operations can be protected through the ASYNCHRONOUS attribute, and the proce-
dure declarations in the mpi_f08 and mpi module and the mpif.h include file declare
choice bu↵ers with the ASYNCHRONOUS attribute, then the value of
MPI_ASYNC_PROTECTS_NONBLOCKING can be switched to .TRUE. in the module def-
inition and include file. (End of rationale.)

Advice to users. Partial recompilation of user applications when upgrading MPI
implementations is a highly complex and subtle topic. Users are strongly advised to
consult their MPI implementation’s documentation to see exactly what is – and what
is not – supported. (End of advice to users.)

Within the mpi_f08 and mpi modules and mpif.h, for all MPI procedures supported,
a second procedure with the same calling conventions shall be supplied, except that the
name is modified by prefixing with the letter “P”, e.g., PMPI_Isend. The specific procedure
names for these PMPI_... procedures must be di↵erent from the specific procedure names
for the MPI_... procedures and are not specified by this standard.

A user-written or middleware profiling routine should provide the same specific For-
tran procedure names and calling conventions, and therefore, can interpose itself as the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7

MPI library routine. The profiling routine can internally call the matching PMPI routine
with any of its existing bindings, except for routines that have callback routine dummy
arguments, choice bu↵er arguments, or that are attribute caching routines (
MPI_{COMM|WIN|TYPE}_{SET|GET}_ATTR). In this case, the profiling software must
invoke the corresponding PMPI routine using the same Fortran support method as used in
the calling application program, because the C, mpi_f08 and mpi callback prototypes are
di↵erent or the meaning of the choice bu↵er or attribute_val arguments are di↵erent.

Advice to users. Although for each support method and MPI routine (e.g.,
MPI_ISEND in mpi_f08), multiple routines may need to be provided to intercept
the specific procedures in the MPI library (e.g., MPI_Isend_f08 and MPI_Isend_f08ts),
each profiling routine itself uses only one support method (e.g., mpi_f08) and calls
the real MPI routine through the one PMPI routine defined in this support method
(i.e., PMPI_Isend in this example). (End of advice to users.)

Advice to implementors. If all of the following conditions are fulfilled:

• the handles in the mpi_f08 module occupy one Fortran numerical storage unit
(same as an INTEGER handle),

• the internal argument passing mechanism used to pass an actual ierror argument
to a non-optional ierror dummy argument is binary compatible to passing an
actual ierror argument to an ierror dummy argument that is declared as OPTIONAL,

• the internal argument passing mechanism for ASYNCHRONOUS and non-
ASYNCHRONOUS arguments is the same,

• the internal routine call mechanism is the same for the Fortran and the C com-
pilers for which the MPI library is compiled,

• the compiler does not provide TS 29113,

then the implementor may use the same internal routine implementations for all For-
tran support methods but with several di↵erent specific procedure names. For TS
29113 quality, new routines are needed only for routines with choice bu↵er arguments.
(End of advice to implementors.)

Advice to implementors. In the Fortran support method mpif.h, compile-time
argument checking can be also implemented for all routines. For mpif.h, the argument
names are not specified through the MPI standard, i.e., only positional argument lists
are defined, and not key-word based lists. Due to the rule that mpif.h must be
valid for fixed and free source form, the subroutine declaration is restricted to one
line with 72 characters. To keep the argument lists short, each argument name can
be shortened to a minimum of one character. With this, the two longest subroutine
declaration statements are

SUBROUTINE PMPI_Dist_graph_create_adjacent(a,b,c,d,e,f,g,h,i,j,k)

SUBROUTINE PMPI_Rget_accumulate(a,b,c,d,e,f,g,h,i,j,k,l,m,n)

with 71 and 66 characters. With bu↵ers implemented with TS 29113, the specific
procedure names have an additional postfix. The longest of such interface definitions
is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. ERRATA FOR MPI-3.0

INTERFACE PMPI_Rget_accumulate

SUBROUTINE PMPI_Rget_accumulate_fts(a,b,c,d,e,f,g,h,i,j,k,l,m,n)

with 70 characters. In principle, continuation lines would be possible in mpif.h (spaces
on columns 73-131, & on column 132, and on column 6 of the continuation line) but
this would not be valid if the source line length is extended with a compiler flag to 132
characters. Column 133 is also not available for the continuation character because
lines longer than 132 characters are invalid with some compilers by default.

The longest specific procedure names are PMPI_Dist_graph_create_adjacent_f08 and
PMPI_File_write_ordered_begin_f08ts both with 35 characters in the mpi_f08 module.

For example, the interface specifications together with the specific procedure names
can be implemented with

MODULE mpi_f08
TYPE, BIND(C) :: MPI_Comm
INTEGER :: MPI_VAL

END TYPE MPI_Comm
...
INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)
SUBROUTINE MPI_Comm_rank_f08(comm, rank, ierror)
IMPORT :: MPI_Comm
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: rank
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

END SUBROUTINE
END INTERFACE

END MODULE mpi_f08

MODULE mpi
INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)
SUBROUTINE MPI_Comm_rank(comm, rank, ierror)
INTEGER, INTENT(IN) :: comm ! The INTENT may be added although
INTEGER, INTENT(OUT) :: rank ! it is not defined in the
INTEGER, INTENT(OUT) :: ierror ! official routine definition.

END SUBROUTINE
END INTERFACE

END MODULE mpi

And if interfaces are provided in mpif.h, they might look like this (outside of any
module and in fixed source format):

!23456789012345678901234567890123456789012345678901234567890123456789012
INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)
SUBROUTINE MPI_Comm_rank(comm, rank, ierror)
INTEGER, INTENT(IN) :: comm ! The argument names may be
INTEGER, INTENT(OUT) :: rank ! shortened so that the
INTEGER, INTENT(OUT) :: ierror ! subroutine line fits to the
END SUBROUTINE ! maximum of 72 characters.
END INTERFACE

(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9

Advice to users. The following is an example of how a user-written or middleware
profiling routine can be implemented:

SUBROUTINE MPI_Isend_f08ts(buf,count,datatype,dest,tag,comm,request,ierror)
USE :: mpi_f08, my_noname => MPI_Isend_f08ts
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
! ... some code for the begin of profiling

call PMPI_Isend (buf, count, datatype, dest, tag, comm, request, ierror)
! ... some code for the end of profiling

END SUBROUTINE MPI_Isend_f08ts

Note that this routine is used to intercept the existing specific procedure name
MPI_Isend_f08ts in the MPI library. This routine must not be part of a module.
This routine itself calls PMPI_Isend. The USE of the mpi_f08 module is needed for
definitions of handle types and the interface for PMPI_Isend. However, this module
also contains an interface definition for the specific procedure name MPI_Isend_f08ts
which conflicts with the definition of this profiling routine (i.e., the name is doubly
defined). Therefore, the USE here specifically excludes the interface from the module
by renaming the unused routine name in the mpi_f08 module into “my_noname” in
the scope of this routine. (End of advice to users.)

• Section 17.1.6, page 610 (MPI for di↵erent Fortran standard versions) line 27 reads

The routines are not BIND(C).

but should be removed.

• Section 17.1.6, page 610 (MPI for di↵erent Fortran standard versions) line 33 reads

The linker names are specified in Section 17.1.5 on page 605.

but should read

The specific procedure names are specified in Section 17.1.5 on page 605.

• Section 17.1.6, page 611 (MPI for di↵erent Fortran standard versions) line 21 reads

BIND(C, NAME=’...’) interfaces.

but should be removed.

• After Section 17.1.6, page 611 (MPI for di↵erent Fortran standard versions) line 26,
which reads

arguments.

the following list item should be added:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. ERRATA FOR MPI-3.0

The ability to overload the operators .EQ. and .NE. to allow the comparison
of derived types (used in MPI-3.0 for MPI handles).

• Section 17.1.6, page 611 (MPI for di↵erent Fortran standard versions) line 43 reads

The routines are not BIND(C).

but should be removed.

• Section 17.1.6, page 611 (MPI for di↵erent Fortran standard versions) line 47 reads

The linker names are specified in Section 17.1.5 on page 605.

but should read

The specific procedure names are specified in Section 17.1.5 on page 605.

• Section 17.1.6, page 612 (MPI for di↵erent Fortran standard versions) lines 22-24 read

– OPTIONAL dummy arguments are allowed in combination with BIND(C)

interfaces.

– CHARACTER(LEN=*) dummy arguments are allowed in combination with
BIND(C) interfaces.

but should be removed.

• Section 17.1.7, page 614 (Requirements on Fortran compilers) lines 25-47 read

All of these rules are valid independently of whether the MPI routine in-
terfaces in the mpi_f08 and mpi modules are internally defined with an
INTERFACE or CONTAINS construct, and with or without BIND(C), and also
if mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of
the Fortran 2003 standard if the MPI interfaces are defined without
BIND(C). Additional compiler support may be necessary if BIND(C) is
used. Some of these additional requirements are defined in the Fortran
TS 29113 [41]. Some of these requirements for MPI-3.0 are beyond the
scope of TS 29113. (End of advice to implementors.)

Further requirements apply if the MPI library internally uses
BIND(C) routine interfaces (i.e., for a full implementation of mpi_f08):

– Non-bu↵er arguments are INTEGER, INTEGER(KIND=...),
CHARACTER(LEN=*), LOGICAL, and BIND(C) derived types (handles and
status in mpi_f08), variables and arrays; function results are DOUBLE

PRECISION. All these types must be valid as dummy arguments in the
BIND(C) MPI routine interfaces. When compiling an MPI application,
the compiler should not issue warnings indicating that these types may
not be interoperable with an existing type in C. Some of these types
are already valid in BIND(C) interfaces since Fortran 2003, some may
be valid based on TS 29113 (e.g., CHARACTER*(*)).

– OPTIONAL dummy arguments are also valid within
BIND(C) interfaces. This requirement is fulfilled if TS 29113 is fully
supported by the compiler.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11

but should read

All of these rules are valid for the mpi_f08 and mpi modules and indepen-
dently of whether mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of the
Fortran 2003 standard, some of these requirements require the Fortran
TS 29113 [41], and some of these requirements for MPI-3.0 are beyond
the scope of TS 29113. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Errata for MPI-3.0

