
The MPI Message Queue Dumping Interface

Version 1.0

MPI Forum Working Group on Tools
Accepted by the Message Passing Interface Forum

(date tbd.)

Acknowledgments

Author
Anh Vo

Contributing Authors
John DelSignore, Kathryn Mohror, Jeff Squyres

Editor
TBD

Reviewers
Dong Ahn, William Gropp, Martin Schulz

Contents

1 Background 1

2 Overview 2

3 Definitions 3
3.1 Shared Library and DLL . 3
3.2 Process and Image Definitions . 3
3.3 “Starter” Process Definition . 4

The MPI Process as the Starter Process 4
A Separate mpiexec as the Starter Process 4

3.4 MQD Host and Target Node Definitions . 4

4 Debugger/MPI Interaction Model 5
4.1 Debug DLL . 5
4.2 Debugger/Debug DLL Interaction Use Case 5

5 Interface Specifications 8
5.1 MPIR_dll_name . 8
5.2 Types for Target Independence . 8

5.2.1 mqs_tword_t . 8
5.2.2 mqs_taddr_t . 8
5.2.3 mqs_target_type_sizes . 9

5.3 Opaque Types Passed Through the Interface 9
5.4 Constants and Enums . 10

5.4.1 mqs_lang_code . 10
5.4.2 mqs_op_class . 10
5.4.3 Interface compatibility enum . 10
5.4.4 mqs_status . 11
5.4.5 Result code enums . 11
5.4.6 Invalid MPI Process Rank enum . 11

5.5 Concrete Objects Passed Through the Interface 11
5.5.1 mqs_communicator . 12
5.5.2 mqs_pending_operation . 12

5.6 Callbacks Provided by the Debugger . 13
5.6.1 mqs_basic_callbacks . 14

mqs_malloc_ft . 14
mqs_free_ft . 14
mqs_dprints_ft . 14

ii
The interface described in this document is not part of the official MPI specification

mqs_errorstring_ft . 15
mqs_put_image_info_ft . 15
mqs_get_image_info_ft . 15
mqs_put_process_info_ft . 15
mqs_get_process_info_ft . 16

5.6.2 mqs_image_callbacks . 16
mqs_get_type_sizes_ft . 16
mqs_find_function_ft . 17
mqs_find_symbol_ft . 17
mqs_find_type_ft . 17
mqs_field_offset_ft . 18
mqs_sizeof_ft . 18

5.6.3 mqs_process_callbacks . 18
mqs_get_global_rank_ft . 18
mqs_get_image_ft . 19
mqs_fetch_data_ft . 19
mqs_target_to_host_ft . 19

5.7 Callbacks Provided by the DLL . 20
5.7.1 mqs_setup_basic_callbacks . 20
5.7.2 mqs_version_string . 20
5.7.3 mqs_version_compatibility . 20
5.7.4 mqs_dll_taddr_width . 21
5.7.5 mqs_dll_error_string . 21

5.8 Executable Image Related Functions . 21
5.8.1 mqs_setup_image . 21
5.8.2 mqs_image_has_queues . 22
5.8.3 mqs_destroy_image_info . 22

5.9 Process Related Functions . 22
5.9.1 mqs_setup_process . 22
5.9.2 mqs_process_has_queues . 22
5.9.3 mqs_destroy_process_info . 23

5.10 Query Functions . 23
5.10.1 mqs_update_communicator_list . 23
5.10.2 mqs_setup_communicator_iterator 24
5.10.3 mqs_get_communicator . 24
5.10.4 mqs_get_comm_group . 24
5.10.5 mqs_next_communicator . 24
5.10.6 mqs_setup_operation_iterator . 25
5.10.7 mqs_next_operation . 25

Bibliography 26

iii
The interface described in this document is not part of the official MPI specification

iv
The interface described in this document is not part of the official MPI specification

Chapter 1

Background

In early 1995, TotalView’s Jim Cownie and Argonne National Laboratory’s Bill Gropp and
Rusty Lusk developed parallel debugging interfaces for use with MPI. They designed and
implemented the interfaces in MPICH, one of the first widely available MPI implementa-
tions. Two interfaces were developed: one for process discovery and acquisition and one
for message queue inspection. Coined the “MPIR” interfaces [1, 2], the MPI debugging in-
terfaces eventually became de facto standards implemented by various MPI providers such
as Compaq, HP, IBM, Intel, LAM/MPI, MPI Software Technologies, Open MPI, Quadrics,
SCALI, SGI, Sun/Oracle, and other implementations of MPI.

In 2010, the MPI Forum published a document which formally described the MPIR
Process Acquisition Interface but omitted the details about the MPI Message Queue Dump-
ing (MQD) interface. This document complements the MPIR Process Acquisition Interface
document by describing the existing MQD interface being used by most MPI debuggers and
MPI implementations today to provide users with information about the state of message
queues in an MPI program.

Rationale. Note that this document does not introduce any improvements to the
existing de facto use of the MQD interface. Nor does it addresses any shortcomings
of the existing MQD interface, such as the inability to load different debugger dy-
namically linked libraries (DLLs) to support an environment where the debugger runs
with a different bitness from the target. This document is solely intended to codify
the current state of the art. (End of rationale.)

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

Overview

Tools and debuggers use the MQD interface to extract information describing the conceptual
message-passing state of an MPI process. While the original intent of the interface was to
provide the functionality to debuggers, any tool that has debugger-like capabilities (e.g.,
providing symbol name look up) can use this interface to access the message-passing state.
Note that this document uses the terms “tools” and “debuggers” interchangeably.

Within each MPI process, there are three distinct abstract message queues which rep-
resent the MPI subsystem. They are:

1. Send Queue: This queue represents all of the outstanding send operations.

2. Receive Queue: This queue represents all of the outstanding receive operations.

3. Unexpected Message Queue: This queue represents all the messages that have arrived
at the process, but have not been matched yet.

The send and receive queues store information about all of the unfinished send and
receive operations that the process has started within a given communicator. These might
result either from blocking operations such as MPI_SEND and MPI_RECV or nonblocking
operations such as MPI_ISEND and MPI_IRECV. Each entry in these queues contains the
information that was passed to the function call that initiated the operation. Nonblocking
operations remain on these queues until they have been completed by MPI_WAIT, MPI_-
TEST, or one of the related multiple completion routines.

The unexpected message queue contains a different class of information than the send
and receive queues, because the elements on this queue were created by MPI calls in other
processes. Therefore, less information is available about these elements (e.g., the data type
that was used by the sender).

In all three queues, the order of the elements represents the order that the MPI subsys-
tem will perform matching. This is important where many entries could match, for instance
when a wildcard tag or source is used in a receive operation.

Note that these queues are conceptual; they are an abstraction for representing the
progression of messages in an MPI program. The actual number of queues in an MPI im-
plementation is implementation dependent. The MQD interface defines these conceptual
queues so that message information can be presented to users independently of any partic-
ular MPI implementation. For example, an MPI implementation may maintain only two
queues, the receive queue and the unexpected message queue. The implementation does
not maintain an explicit queue of send operations; instead, all the information about an
incomplete send operation is maintained in the associated MPI_Request.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 2

Chapter 3

Definitions

3.1 Shared Library and DLL

A shared library is a file that is intended to be shared by excutable files.
A dynamically linked library (DLL) is a library file that is intended for dynamic link-

ing. In most modern systems, a DLL can be loaded and unloaded at runtime on request
by calling dlopen, dlclose, dlsym on UNIX and UNIX-like systems or LoadLibrary,

FreeLibrary, GetProcAddress on Windows systems. The debuggers require the dynamic
loading of DLL’s to provide MQD support.

3.2 Process and Image Definitions

An image file is an executable or shared library file, which may contain symbol definitions
needed by the MQD interface.

An MPI process, or process in the scope of this document, is defined to be an OS
process, which consists of an address space and a collection of execution contexts (threads
or lightweight processes). The MPI process is part of the MPI application as described in
the MPI standard. While the standard does not require that an MPI process be an OS
process, this is a requirement for most debuggers and this interface was designed with that
assumption.

An address space is a region of memory that consists of executable code and data, and
is partially composed of a collection of image files. The collection of image files may change
at any point during the execution of the MPI process, and the image files may be relocated
at runtime within the address space at the point they are loaded into memory.

An mqs_image, or sometimes simply referred to as an image in this document, is an
abstract concept that represents the collection of image files loaded into the address space
of the MPI process at any given time, and is debugger implementation defined. In static
execution environments, where shared libraries are not supported, an mqs_image can repre-
sent an executable image file. However, in dynamic execution environments, where shared
libraries, dynamically loaded shared libraries, and runtime relocation of shared libraries are
supported, an mqs_image represents the collection of image files loaded into the address
space of the MPI process at any given point in time. In this situation mqs_image may in
fact represent the MPI process itself.

Unofficial Draft for Comment Only 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.3 “Starter” Process Definition

The starter process is the process that is responsible for launching the MPI job. The starter
process may be a separate process that is not part of the MPI application, or any MPI
process may act as a starter process. By definition, the starter process contains functions,
data structures, and symbol table information for the MPIR Process Acquisition Interface.

The MPI implementation determines which launch discipline is used, as described in
the following subsections.

The MPI Process as the Starter Process

An MPI implementation might implement its launching mechanism such that an MPI pro-
cess, e.g., the MPI_COMM_WORLD rank 0 process, launches the remaining MPI processes
of the MPI application. In such implementations, the MPI process that started the other
MPI processes is the starter process.

A Separate mpiexec as the Starter Process

Many MPI implementations use a separate mpiexec process that is responsible for launching
the MPI processes. In these implementations, the mpiexec process is the starter process.
Note that the name of the starter process executable varies by implementation; mpirun is a
name commonly used by several implementations, for example. Other names include (but
are not limited to) srun, aprun, orterun, and prun.

3.4 MQD Host and Target Node Definitions

For the purposes of this document, the host node is defined to be the node running the tool
process, and a target node is defined to be a node running the target application processes
the tool is controlling. A target node might also be the host node; that is, the target
application processes might be running on the same node as the tool process.

4
The interface described in this document is not part of the official MPI specification

Chapter 4

Debugger/MPI Interaction Model

4.1 Debug DLL

The debugger gains access to the message queue functionality by loading a DLL provided
by the MPI implementation, the debug DLL. This allows the debugger to be insulated
from the internals of the MPI library so that it can support multiple MPI implementations.
Furthermore, MPI implementations can provide their users with debugging support without
requiring source access to the debugger. The debugger learns about the location of this DLL
by reading the variable MPIR_dll_name from the MPI starter process.

All calls to the debug DLL from the debugger are made from entry points whose names
are known to the debugger. However, all calls from the DLL to the debugger are made
through a table of function pointers that is passed to the initialization entry point of the
debug DLL. This procedure ensures that the debug DLL is independent of any particular
debugger or debugger version.

For efficiency, it is important that the debug DLL be able to easily associate informa-
tion with some of these debugger-owned objects. For instance, it is convenient to extract
information about the address of a global variable of interest to the debug DLL only once
for each process being debugged, rather than every time the debug DLL needs to access the
variable. Similarly, the offset of a field in a structure that the debug DLL needs to lookup
is constant within a specific executable image or shared library, and again should only be
looked up once. Therefore, callbacks are provided by the debugger to allow the debug
DLL to store and retrieve information associated with image and process objects. Since
retrieving the information is a callback, the debugger has the option of either extending
its internal data structures to provide space for an additional pointer or of implementing a
lookup scheme (e.g., a hash table) to associate the information with the process key.

Advice to implementors. Since the DLL will run within the code space of the
debugger, the implementation of the debug DLL should avoid any calls that might
block or sleep for a long period of time. Such call will make the debugger become
unresponsive to user interaction. (End of advice to implementors.)

4.2 Debugger/Debug DLL Interaction Use Case

Figure 4.1 illustrates the interaction between the debugger and the debug DLL to iterate
over the messages within the message queues. This example assumes that there are n MPI
processes that were launched running the image “a.out”.

Unofficial Draft for Comment Only 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DLL providing MQS functionality

DLL callbacks

Tool Process

Debugging Subsystem

Symbol Table
Information

(ELF, DWARF,
etc).

Process Control
(ptrace, /proc,

etc.)

Tool Daemon Process

MPI “rank[0]” Process

char MPIR_dll_name[];

MPI “rank[n-1]” Process

char MPIR_dll_name[]; …

Load

Tool Daemon Process

Tool daemon launch/protocol

…

MPI process “a.out”
Executable(s) & DLLs

Attach Attach

Process Control
(ptrace, /proc, etc.)

Process Control
(ptrace, /proc, etc.)

1

2
R/W

Interaction
through
callbacks

mqs_version_string();
mqs_setup_basic_callbacks();
mqs_setup_image();
mqs_image_has_queues();
mqs_setup_process();
mqs_process_has_queues();

mqs_put_image_info();
mqs_put_process_info();

mqs_dll_error_string();
mqs_update_communicator_list()
mqs_setup_communicator_iterator();
mqs_get_communicator();
mqs_next_communicator();
mqs_setup_operation_iterator();
mqs_next_operation();

Symbol loading

3
4

6

5
7

8
9

10
0
11
0

Figure 4.1: Example collaboration diagram for Debugger/DLL interaction

1. The debugger looks for the global symbol MPIR_dll_name in the target process. If the
symbol exists, it is expected to be a null-terminated string containing the name of the
shared library (the shared object or DLL providing MQD functionality) to dynamically
load into the debugger. If the symbol does not exist, the debugger might attempt to
load a hardcoded shared library name. If no library exists, MQD functionality is
disabled.

2. The debugger attempts to dynamically load the debug DLL.

3. Once the debugger has loaded the debug DLL it will check for version compatibility
by calling mqs_version_string() to inquire the version of the debug DLL. It should
also call mqs_version_compatibility() to inquire whether the debug DLL requires
a different version of the debugger. Lastly, during this pre-initialization phase, the
debugger should call mqs_dll_taddr_width() so that it knows the bit width with
which the debug DLL was compiled.

4. The debugger initializes the debug DLL by calling mqs_setup_basic_callbacks()

and pass the pointer to the structure containing the pointers to the basic callback
functions provided by the debugger.

5. For each mqs_image that is used by the MPI processes the debugger calls mqs_-

6
The interface described in this document is not part of the official MPI specification

setup_image and provide it with a pointer to callback structure containing image
related callbacks.

6. The DLL will initialize any data structure that is necessary to store image specific
information and will call mqs_put_image_info to have the debugger associate the
mqs_image with the allocated data structure.

7. Once mqs_setup_image completes successfully, the debugger calls mqs_image_has_-

queues to indicate whether the mqs_image has message queue dumping support or
not. If the image has message queues dumping support, the function will return mqs_-

ok, otherwise it will return an error. For each mqs_image that has queue support,
the debugger should call mqs_setup_process on each process that is an instance
of the image and subsequently calls mqs_setup_process_info to allow the DLL to
initialize data structure that it uses to store process specific information. For each
of the aforementioned process, the debugger also calls mqs_process_has_queues to
inquire whether the process has message queue dumping support enabled.

8. If the debug DLL returns an error for any of the callbacks, the debugger should
call mqs_dll_error_string obtain more information about the error. On the other
hand, if the debugger returns an error for any of the callbacks, the DLL should
call mqs_errorstring_fp (part of the mqs_basic_callbacks structure) to get more
information on the error.

9. Before querying the message queues the debugger calls the function mqs_update_-

communicator_list() to verify that it has the latest information about the active
communicator in a specific process and refreshes it if necessary.

10. The debugger then iterates over each communicator by first asking the DLL to setup
the internal iterator to iterate over the active communicator list by calling mqs_-

setup_communicator_iterator(). Then it calls mqs_get_communicator() to ob-
tain each communciator in the list and moves the iterator to the next communicator
by calling mqs_next_communicator(). mqs_next_communicator() returns mqs_ok if
there is another element to look at; otherwise it should return mqs_end_of_list.

11. Within each communicator, the debugger iterates over the message queues by first
calling mqs_setup_operation_iterator() and indicate the queues it wants to iterate
over. The debugger then calls mqs_next_operation to start iterating the messages
within the requested queue.

7
The interface described in this document is not part of the official MPI specification

Chapter 5

Interface Specifications

The MPI Message Queue Dumping interface is specified as a set of C-language definitions.
The following sections enumerate those definition. Unless otherwise noted, all definitions
are required.

5.1 MPIR_dll_name

MPIR_dll_name is a null-terminated string that contains the file system path name of the
debug DLL provided by the MPI implementation. If this symbol is not present in the MPI
process, the debugger might attempt to load a default shared library, which is implemen-
tation dependent. If this also fails, MQD support is disabled.

Advice to implementors. On some platforms it might be necessary to take additional
efforts during compiling or linking to prevent this variable from being stripped or
optimized out because it is usually not referenced from with the MPI implementation.
(End of advice to implementors.)

5.2 Types for Target Independence

Since the code in the debug DLL is running inside the debugger, it could be running on
a completely different platform than the target platform where the debugged process is
running. For example, the debug DLL might be compiled as a 32-bit shared library, but
the target MPI process might be compiled as a 64-bit application. Therefore, the interface
uses explicit types to describe target types, rather than canonical C types.

5.2.1 mqs_tword_t

mqs_tword_t is a target independent typedef name that is the appropriate type for the
DLL to use on the host to hold a target word (long).

5.2.2 mqs_taddr_t

mqs_taddr_t is a target independent typedef name that is the appropriate type for the
DLL to use on the host to hold a target address (void*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 8

5.2.3 mqs_target_type_sizes

Type definition:

typedef struct

{

int short_size;

int int_size;

int long_size;

int long_long_size;

int pointer_size;

} mqs_target_type_sizes;

mqs_target_type_sizes is a type definition for a struct that holds the size of common
types in the target architecture. The debug DLL will use the callback mqs_get_type_-

sizes_ft provided by the debugger, which takes a variable of type mqs_target_type_-

sizes and populate it with the size information that it has based on the target host:

• short_size holds the size of the type short in the target architecture.

• int_size holds the size of the type int in the target architecture.

• long_size holds the size of the type long in the target architecture.

• long_long_size holds the size of the type long long in the target architecture.

• pointer_size holds the size of a pointer (void*) in the target architecture.

5.3 Opaque Types Passed Through the Interface

The debugger exposes several objects to the debug DLL: an mqs_image, a specific process,
and named types. In order to avoid exposing the debugger’s internal representations of
these types to the debug DLL, which has no need to see the internal structure of these
objects, these objects are defined in the interface file as typedefs of undefined (opaque)
structures and are always passed by reference (as a pointer to the opaque structure). The
use of these opaque types allows the debugger freedom to either pass true pointers to its
internal data structures or to pass some other key to the debug DLL from which it can later
retrieve the internal object. The use of typedefs provides more compile-time checking than
the use of void * for objects.

The following are opaque types defined within the debugger and are exposed to the
debug DLL as undefined typedefs. The debug DLL uses these types as keys to identify
objects of interest, or to be passed back to the debugger through some callback.

• mqs_image identifies an mqs_image. That is, the object that describes the collection
if image files loaded into the process’ address space.

• mqs_process identifies an MPI process.

• mqs_type identifies a named target type symbol.

9
The interface described in this document is not part of the official MPI specification

The following are opaque types defined within the debugger and are cast to explicit
types within the debug DLL for the debug DLL’s internal processing. These types exist so
that the debug DLL can associate some information with the debugger-owned objects.

• mqs_image_info is used to associate information pertaining to an object of type
mqs_image.

• mqs_process_info is used to associate information pertaining to an object of type
mqs_process.

5.4 Constants and Enums

5.4.1 mqs_lang_code

typedef enum {

mqs_lang_c = ’c’,

mqs_lang_cplus = ’C’,

mqs_lang_f77 = ’f’,

mqs_lang_f90 = ’F’

} mqs_lang_code;

Because symbol lookup mechanisms vary between different languages, it is necessary
to indicate the language for which the lookup operation is intended. This enum is used to
indicate the different language types.

5.4.2 mqs_op_class

typedef enum

{

mqs_pending_sends,

mqs_pending_receives,

mqs_unexpected_messages

} mqs_op_class;

This enum is used by the debugger to indicate the queue in which it is interested.

5.4.3 Interface compatibility enum

enum

{

#if defined(FOR_MPI2)

MQS_INTERFACE_COMPATIBILITY = 3

#else

MQS_INTERFACE_COMPATIBILITY = 2

#endif

};

This constant defines the version of the interface header.

10
The interface described in this document is not part of the official MPI specification

5.4.4 mqs_status

enum mqs_status

{

mqs_st_pending,

mqs_st_matched,

mqs_st_complete

};

This enum is used to by the DLL to indicate the status of a message in the message
queue.

5.4.5 Result code enums

enum {

mqs_ok = 0,

mqs_no_information,

mqs_end_of_list,

mqs_first_user_code = 100

};

This enum defines the various result codes for the message queue dumping functionality.
This enum is used by both the debug DLL and the debugger.

5.4.6 Invalid MPI Process Rank enum

enum

{

MQS_INVALID_PROCESS = -1

};

This constant provides a value indicating an invalid MP process rank.

5.5 Concrete Objects Passed Through the Interface

To allow the debugger to obtain useful information from the debug DLL, concrete types are
defined to describe a communicator and a specific element on a message queue.

The information in the mqs_communicator structure includes the communicator’s size,
the local rank of the process within the communicator, and the name of the communicator
as defined by the MPI implementation or set by the user using the MPI-2 function MPI_-
COMM_SET_NAME, which was added to the standard to aid in debugging and profiling.

The mqs_pending_operation structure contains enough information to allow the de-
bugger to provide the user with details both of the arguments to a receive and of the
incoming message that matched it. All references to other processes are available in the
mqs_pending_operation structure both as indices into the group associated with the com-
municator and as indices into MPI_COMM_WORLD.

11
The interface described in this document is not part of the official MPI specification

5.5.1 mqs_communicator

Type definition:

typedef struct

{

mqs_taddr_t unique_id;

mqs_tword_t local_rank;

mqs_tword_t size;

char name[64];

} mqs_communicator;

The debugger uses this type definition to represent an MPI communicator.

• unique_id uniquely identifies a communicator.

• local_rank identifies the rank of the current MPI process.

• size holds the size of the communicator.

• name contains the name of the communicator if it was given one.

5.5.2 mqs_pending_operation

Type definition:

typedef struct

{

/* Fields for all messages */

int status;

mqs_tword_t desired_local_rank;

mqs_tword_t desired_global_rank;

int tag_wild;

mqs_tword_t desired_tag;

mqs_tword_t desired_length;

int system_buffer;

mqs_taddr_t buffer;

/* Fields valid if status >= matched or it is a send */

mqs_tword_t actual_local_rank;

mqs_tword_t actual_global_rank;

mqs_tword_t actual_tag;

mqs_tword_t actual_length;

char extra_text[5][64];

} mqs_pending_operation;

This structure contains enough information to allow the debugger to provide the user
with details about both of the arguments to a receive and of the incoming message that
matched it. All references to other processes are available in the mqs_pending_operation

12
The interface described in this document is not part of the official MPI specification

structure both as indices into the group associated with the communicator and as indices
into MPI_COMM_WORLD. This avoids any need for the debugger to concern itself explicitly
with this mapping

• status stores the status of the message. The value of this field should be either mqs_-
st_pending, mqs_st_matched, or mqs_st_complete as described in the enumeration
mqs_status (section 5.4.4).

• desired_local_rank stores the rank of the target or the source for the communicator
from which this message was initiated.

• desired_global_rank stores the rank of the target or the source with respect to
MPI_COMM_WORLD.

• tag_wild is a boolean that identifies whether this message is a posted receive with
tag MPI_ANY_TAG. If the receive was posted with MPI_ANY_TAG, |tag_wild— will be
set to 1. Otherwise, it it set to 0.

• desired_tag holds the tag of the message. This field is ignored if tag_wild is not
set.

• desired_length holds the length of the message buffer in bytes.

• system_buffer is a boolean that identifies whether this is a user or a system buffer.
A value of 1 indicates that it is a system buffer. Otherwise, it is set to 0.

• buffer holds the address to the beginning of the message data.

The following fields are only meaningful if the message is a send or if the status fields
indicates that this message is either matched (mqs_st_matched), or completed (mqs_st_-
complete).

• actual_local_rank holds the actual local rank within the communicator (after the
message has matched).

• actual_global_rank holds the actual global rank with respect to
MPI_COMM_WORLD.

• actual_tag holds the actual tag of the message.

• actual_length holds the actual length of the message buffer in bytes.

• extra_text is a null-terminated string that can be used by the DLL to provide more
information to the user. The debugger does not interpret this field and can display
it to the user. This field can be used to give the name of the function causing this
request, for example.

5.6 Callbacks Provided by the Debugger

The debugger provides several callbacks that will be called by the DLL to extract informa-
tion pertaining to the runtime state of the execution. All the callbacks are grouped into
three different groups based on their functionalities: mqs_basic_callbacks, mqs_image_-
callbacks, and mqs_process_callbacks.

13
The interface described in this document is not part of the official MPI specification

5.6.1 mqs_basic_callbacks

Type definition:

typedef struct mqs_basic_callbacks

{

mqs_malloc_ft mqs_malloc_fp;

mqs_free_ft mqs_free_fp;

mqs_dprints_ft mqs_dprints_fp;

mqs_errorstring_ft mqs_errorstring_fp;

mqs_put_image_info_ft mqs_put_image_info_fp;

mqs_get_image_info_ft mqs_get_image_info_fp;

mqs_put_process_info_ft mqs_put_process_info_fp;

mqs_get_process_info_ft mqs_get_process_info_fp;

} mqs_basic_callbacks;

mqs_malloc_ft

Function type definition:

typedef void* (*mqs_malloc_ft) (size_t size)

IN size number of bytes to allocate

Allocates a block of memory with the specified size. Note that because the debugger
might operate within certain assumptions about memory allocation, the DLL cannot call
any normal allocation routine (e.g., malloc or strdup); it has to use this function for
allocation memory. The debugger guarantees that if the allocation fails, a NULL pointer
will be returned. Memory allocated by mqs_malloc_fp must be deallocated using mqs_-

free_fp.

mqs_free_ft

Function type definition:

typedef void (*mqs_free_ft) (void* buf)

INOUT buf buffer to be freed

Frees a previously allocated memory buffer. Similarly to mqs_malloc_fp, the DLL has
to use this function to free any memory allocated by mqs_malloc_fp (which is the only way
to allocate memory from the DLL).

mqs_dprints_ft

Function type definition:

14
The interface described in this document is not part of the official MPI specification

typedef void (*mqs_dprints_ft) (const char* buf)

INOUT buf buffer to be printed]

Prints a message to the debugger. This function is intended for debugging purposes
only.

mqs_errorstring_ft

Function type definition:

typedef char* (*mqs_errorstring_ft) (int error_code)

IN error_code the error code for corresponding the error string

Converts an error code from the debugger into an error message. The function returns
a pointer to a null terminated error string that corresponds to the given error code. The
returned error string is owned by the debugger and must not be deallocated by the debug
DLL.

mqs_put_image_info_ft

Function type definition:

typedef void (*mqs_put_image_info_ft) (mqs_image* image, mqs_image_info* imageinfo)

OUT image the image to receive the image info

IN imageinfo the image info to associate with the image

Associates the given image information with the given image. This allows the DLL to
cache the information associated with the image (e.g., the pointer to the callbacks structure
provided by the debugger) so that it can retrieve it later (using mqs_get_image_info) when
the debugger needs to invoke image-related functionalities (e.g., mqs_image_has_queues –
see section 5.8.2). See section 5.8.1 for more details.

mqs_get_image_info_ft

Function type definition:

typedef mqs_image_info* (*mqs_get_image_info_ft) (mqs_image* image)

IN image the image to extract the image info from

Returns the image information associated with the given image.

mqs_put_process_info_ft

Function type definition:

15
The interface described in this document is not part of the official MPI specification

typedef void (*mqs_put_process_info_ft) (mqs_process* process, mqs_process_info* process-
info)

OUT process the process to receive the process info

IN processinfo the process info to associate with the process

Associates the given process information with the given process. This allows the DLL
to cache the information associated with the process (e.g., the pointer to the callbacks
structure provided by the debugger) so that it can retrieve it later (using mqs_get_-

process_info_fp) when the debugger needs to invoke process-related functionalities (e.g.,
mqs_process_has_queues – see section 5.9.2). See section 5.8.1 for more details.

mqs_get_process_info_ft

Function type definition:

typedef mqs_process_info* (*mqs_get_process_info_ft) (mqs_process* process)

IN process the process to extract the process info from

Returns the process information associated with the given process.

5.6.2 mqs_image_callbacks

Type definition:

typedef struct mqs_image_callbacks

{

mqs_get_type_sizes_ft mqs_get_type_sizes_fp;

mqs_find_function_ft mqs_find_function_fp;

mqs_find_symbol_ft mqs_find_symbol_fp;

mqs_find_type_ft mqs_find_type_fp;

mqs_field_offset_ft mqs_field_offset_fp;

mqs_sizeof_ft mqs_sizeof_fp;

} mqs_image_callbacks;

mqs_get_type_sizes_ft

Function type definition:

typedef void (*mqs_get_type_sizes_ft) (mqs_process* process, mqs_target_type_sizes* sizes)

IN process the process to get the sizes from

OUT sizes the pointer to the structure to receive the sizes

Retrieves the size information about common data types for process and stores them
in the structure pointed to by sizes. See section 5.2.3 for the definition of mqs_target_-
type_sizes.

16
The interface described in this document is not part of the official MPI specification

mqs_find_function_ft

Function type definition:

typedef int (*mqs_find_function_ft) (mqs_image* image, char* fname, mqs_lang_code lang,
mqs_taddr_t* addr)

IN image the image to search for the function

IN fname the name of the function to search for

IN lang the language code

OUT addr the address of the function

Given an image, returns the address of the specified function. The function returns
msq_ok if successful and mqs_no_information if the function cannot be found.

mqs_find_symbol_ft

Function type definition:

typedef int (*mqs_find_symbol_ft) (mqs_image* image, char* sname, mqs_taddr_t* addr)

IN image the image to search for the symbol

IN sname the name of the symbol to search for

OUT addr the address of the symbol

Given an image, returns the address of the specified symbol. The function returns
msq_ok if successful and mqs_no_information if the symbol cannot be found.

Advice to implementors. Some implementations of the debug DLL might use this
function to force the debugger to fully process all symbol table information in a
compilation unit. The debug DLL chooses a function defined in a compilation unit
that contains MPI type definitions to make sure that the debugger has fully read in
the types. (End of advice to implementors.)

mqs_find_type_ft

Function type definition:

typedef mqs_type* (*mqs_find_type_ft) (mqs_image* image, char* tname, mqs_lang_code
lang)

IN image the image to search for the type

IN tname the name of the type to search for

IN lang the language code

Given an image, returns the type associated with the given named type. The function
either returns a type handle (a pointer to an opaque mqs_type handle), or NULL if the

17
The interface described in this document is not part of the official MPI specification

type cannot be found.

Advice to implementors. Since the debugger may load debug information lazily
and/or the linker may remove such type information during optimization, the MPI
run time library should ensure that the type definitions required occur in a file whose
debug information will already have been loaded. See the advice for implementors
for mqs_find_function_fp for an example of how to use mqs_find_function_fp to
force the debugger to load debug information. (End of advice to implementors.)

mqs_field_offset_ft

Function type definition:

typedef int (*mqs_field_offset_ft) (mqs_type* type, char* fname)

IN type the type that contains the field

IN fname the field name to retrieve the offset

Given the handle for a struct type, returns the byte offset of the named field. If the
field cannot be found, the function returns -1.

mqs_sizeof_ft

Function type definition:

typedef int (*mqs_sizeof_ft) (mqs_type* type)

IN type the type to get the size for

Given the type handle for a type, returns the size of the type in bytes.

5.6.3 mqs_process_callbacks

Type definition:

typedef struct mqs_process_callbacks

{

mqs_get_global_rank_ft mqs_get_global_rank_fp;

mqs_get_image_ft mqs_get_image_fp;

mqs_fetch_data_ft mqs_fetch_data_fp;

mqs_target_to_host_ft mqs_target_to_host_fp;

} mqs_process_callbacks;

mqs_get_global_rank_ft

Function type definition:

18
The interface described in this document is not part of the official MPI specification

typedef int (*mqs_get_global_rank_ft) (mqs_process* process)

IN process the process to get the global rank for

Given a process, returns its rank in MPI_COMM_WORLD. Returns
MQS_INVALID_PROCESS if the rank of the process is not known.

mqs_get_image_ft

Function type definition:

typedef mqs_image* (*mqs_get_image_ft) (mqs_process* process)

IN process the process to get the image for

Given a process, returns a pointer to the mqs_image (i.e., the object describing the set
of image files loaded into the process’ address space).

mqs_fetch_data_ft

Function type definition:

typedef int (*mqs_fetch_data_ft) (mqs_process* process, mqs_taddr_t addr, int size, void*
buf)

IN process the process to fetch the data from

IN addr the virtual address in the process’ virtual address space

IN size the number of bytes to read

OUT buf the buffer to store the data

Fetches data from the process into the specified buffer. The function returns msq_ok

if the data could be fetched successfully. Otherwise, it returns mqs_no_information. The
data returned in the buffer is in the same format as data stored in the target process when
accessed as a byte array. The debug DLL must call mqs_target_to_host_fp to do any
necessary byte reordering for multi-byte types, such as short, int, void*, double, etc.

mqs_target_to_host_ft

It is possible that although the debugger is running locally on the same machine as the target
process, the target process may have different properties from the debugger. For example,
on some operating systems it is possible to execute both 32- and 64-bit processes. To
handle this situation, the debugger provides a callback that returns type size information
for a specific process. To handle the possibility that the byte ordering may be different
between the debug host and the target, the debugger provides a callback to perform any
necessary byte reordering when viewing the target store as an object of a specific size. This
callback enables the debug DLL to be entirely independent of the target process.

Function type definition

19
The interface described in this document is not part of the official MPI specification

typedef void (*mqs_target_to_host_ft) (mqs_process* process, const void* indata, void* out-
data, int size)

IN process the process where the original data is from

IN indata the data to convert

OUT outdata the buffer to store the converted data

IN size the number of bytes to convert

Converts data from target representation to host representation.

5.7 Callbacks Provided by the DLL

5.7.1 mqs_setup_basic_callbacks

Function declaration:

extern void mqs_setup_basic_callbacks(const mqs_basic_callbacks* cb)

IN cb the basic callbacks table to provide to the DLL

This function is called by the debugger to the debug DLL to provide the debug DLL
with the basic callbacks table. The debug DLL needs only save the pointer to the mqs_-

basic_callbacks object. The debugger must ensure the structure of fucntion pointers
remain valid for as long as the debug DLL is in use. The struture is owned by the debugger,
and should not be modified or deallocated by the debug DLL. This rule applies to all of the
callback structures.

5.7.2 mqs_version_string

Function declaration:

extern char* mqs_version_string()

Returns the debug DLL version. The debugger can print or display the version string
so that the user know which debug DLL was loaded. The returned version string is owned
by the DLL and must not be deallocated by the debugger.

5.7.3 mqs_version_compatibility

Function declaration:

extern int mqs_version_compatibility()

Returns the debug DLL compatibility level (i.e., the value of
MQS_INTERFACE_COMPATIBILITY when the DLL was compiled). This allows the debug-
ger to check whether this version of the debug DLL’s MQD support is compatible with the
debugger’s version (e.g., whether the user needs a newer version of the debugger).

20
The interface described in this document is not part of the official MPI specification

5.7.4 mqs_dll_taddr_width

Function declaration:

extern int mqs_dll_taddr_width()

Returns the size of mqs_taddr_t (i.e., sizeof (mqs_taddr_t)) that has been compiled
into the debug DLL. It is not the width of an address or pointer for the target process,
which could be a different size from an mqs_taddr_t. This function is useful, for example,
when the debug DLL was compiled with a 32-bit mqs_addr_t type, but the debugger was
compiled with a 64-bit mqs_addr_t.

5.7.5 mqs_dll_error_string

Function declaration:

extern char* mqs_dll_error_string(int error_code)

IN error_code the error code that corresponds to the error string

Returns a pointer to a null-terminated string that is associated with the error code.
This function provides a means for the debugger to get the string associated with an error
returned from the DLL. The returned error string is owned by the debug DLL and must not
be deallocated by the debugger. Note that this function complements the function mqs_-

errorstring_fp, which provides a means for the debug DLL to get the string associated
with an error code returned from the debugger.

5.8 Executable Image Related Functions

These functions are provided by the DLL and are called by the debugger.

5.8.1 mqs_setup_image

Function declaration:

extern int mqs_setup_image(mqs_image* image, const mqs_image_callbacks* cb)

INOUT image the image to setup the callbacks table

IN cb the image callbacks table

Sets up debug information for a specific image. This function must cache the provided
callbacks and use those functions for accessing this image. The DLL should use the mqs_-

put_image_info and mqs_get_image_info functions to associate information to keep with
the image. The debugger will call mqs_destroy_image_info when the information about
the given image is no longer needed. This will be called once for each executable image in
the parallel program.

21
The interface described in this document is not part of the official MPI specification

5.8.2 mqs_image_has_queues

Function declaration:

extern int mqs_image_has_queues(mqs_image* image, char** message)

IN image the image to query MQD functionality

OUT message buffer to store message from the DLL

Returns whether this image has the necessary symbols to allow access to the message
queues. This function is called by the debugger once for each image, and the information is
cached within the debugger. The function returns mqs_ok if MQD support can be provided
by this image.

5.8.3 mqs_destroy_image_info

Function declaration:

extern int mqs_destroy_image_info(mqs_image_info* imageinfo)

IN imageinfo the image info to free

Allows the debug DLL to clean up when the image information is no longer needed by
the debugger.

5.9 Process Related Functions

These functions are provided by the DLL and are called by the debugger.

5.9.1 mqs_setup_process

Function declaration:

extern int mqs_setup_process(mqs_process* process, const mqs_process_callbacks* cb)

INOUT process the process to setup the callbacks table

IN cb the processcallbacks table

Sets up process specific information.

5.9.2 mqs_process_has_queues

Function declaration:

22
The interface described in this document is not part of the official MPI specification

extern int mqs_process_has_queues(mqs_process* process, char** message)

IN image the process to query mqs functionality

OUT message buffer to store message from the DLL

Similar to the mqs_process_has_queues function, this allows for querying whether
process has MQD support. This function should only be called if the image claims to
provide MQD support. For example, the image might have enabled message queues support
if only certain environment variables are set at launch time. This function checks at runtime
whether MQD support is enabled for this specific process.

5.9.3 mqs_destroy_process_info

Function declaration:

extern int mqs_destroy_process_info(mqs_process_info* processinfo)

IN processinfo the process info to free

Allows the debug DLL to clean up when the process information is no longer needed
by the debugger.

5.10 Query Functions

These functions provide the message queue query functionality. The model is that the
debugger calls down to the DLL to initialize an iteration over a specific class of items,
and then keeps calling the iterating function until it gets mqs_false. The DLL internally
keeps track of the item being iterated (similar to a file cursor). For communicators, the
stepping is separated from extracting information because the debugger will need the state
of the communicator iterator to qualify the selections of the operation iterator. mqs_true

is returned when the description has been updated; mqs_false means there is no more
information to return, and therefore the description contains no useful information. There
is only one of each type of iteration running at once; the DLL should save the iteration
state in the mqs_process_info.

5.10.1 mqs_update_communicator_list

Function declaration:

extern int mqs_update_communicator_list(mqs_process* process)

IN process the process to refresh the list of active communicators

Given a process, refreshes the list of active communicators. Ideally this list is cached
somewhere within the DLL and the debugger invokes it when necessary. The function
returns msq_ok if the operation succeeds.

23
The interface described in this document is not part of the official MPI specification

5.10.2 mqs_setup_communicator_iterator

Function declaration:

extern int mqs_setup_communicator_iterator(mqs_process* process)

IN process the process to prepare the iterator

Given a process, prepares the iterator to walk the active communicator list. The
function returns msq_ok if the operation succeeds.

5.10.3 mqs_get_communicator

Function declaration:

extern int mqs_get_communicator(mqs_process* process, mqs_communicator* mqs_comm)

IN process the process to retrieve the communicator

OUT mqs_comm the buffer to receive the communicator data

Extracts information about the current communicator. The function returns msq_ok

if the operation succeeds. See section 5.5.1 for the definition of mqs_communicator.

5.10.4 mqs_get_comm_group

Function declaration:

extern int mqs_get_comm_group(mqs_process* process, int* ranks)

IN process the process to obtain the group information

OUT ranks the buffer to receive the rank mapping

Extracts the group from the current communicator. The debugger already knows the
size of the communicator, so it will allocate a suitably sized array for the result. The result is
an array in which the element at index i contains the MPI_COMM_WORLD rank of the i-th

rank in the current communicator. The function returns msq_ok if the operation succeeds.

5.10.5 mqs_next_communicator

Function declaration:

extern int mqs_next_communicator(mqs_process* process)

IN process the process to get the next communicator

Moves the internal iterator to the next communicator in this process. The function
returns mqs_ok if the operation succeeds.

24
The interface described in this document is not part of the official MPI specification

Example 5.1

/* Iterate over each communicator displaying the messages */

mqs_communicator comm;

for (dll->setup_communicator_iterator (process);

dll->get_communicator (process, &comm) == mqs_ok;

dll->next_communicator(process)){

/* Do something on each communicator, described by comm */

}

5.10.6 mqs_setup_operation_iterator

Function declaration

extern int mqs_setup_operation_iterator(mqs_process* process, int opclass)

IN process the process to setup the operation

IN opclass the type of operation requested

Prepares to iterate over the pending operations in the currently active communicator
in this process. op should be one of the operations specified in mqs_op_class (see section
5.4.2 for the definition of mqs_op_class). The function returns msq_ok if the operation
succeeds.

5.10.7 mqs_next_operation

Function declaration:

extern int mqs_next_operation(mqs_process* process, mqs_pending_operation* op)

IN process the process to fetch the operation

OUT op the buffer to receive the operation data

Fetches information about the next appropriate pending operation in the current com-
municator. The function returns mqs_false when there is no more operation to iterate.

25
The interface described in this document is not part of the official MPI specification

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mcs.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Message
Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pages 51–58, Barcelona, Spain, September 1999.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 26

	Contents
	Background
	Overview
	Definitions
	Shared Library and DLL
	Process and Image Definitions
	``Starter'' Process Definition
	The MPI Process as the Starter Process
	A Separate mpiexec as the Starter Process

	MQD Host and Target Node Definitions

	Debugger/MPI Interaction Model
	Debug DLL
	Debugger/Debug DLL Interaction Use Case

	Interface Specifications
	MPIR_dll_name
	Types for Target Independence
	mqs_tword_t
	mqs_taddr_t
	mqs_target_type_sizes

	Opaque Types Passed Through the Interface
	Constants and Enums
	mqs_lang_code
	mqs_op_class
	Interface compatibility enum
	mqs_status
	Result code enums
	Invalid MPI Process Rank enum

	Concrete Objects Passed Through the Interface
	mqs_communicator
	mqs_pending_operation

	Callbacks Provided by the Debugger
	mqs_basic_callbacks
	mqs_malloc_ft
	mqs_free_ft
	mqs_dprints_ft
	mqs_errorstring_ft
	mqs_put_image_info_ft
	mqs_get_image_info_ft
	mqs_put_process_info_ft
	mqs_get_process_info_ft

	mqs_image_callbacks
	mqs_get_type_sizes_ft
	mqs_find_function_ft
	mqs_find_symbol_ft
	mqs_find_type_ft
	mqs_field_offset_ft
	mqs_sizeof_ft

	mqs_process_callbacks
	mqs_get_global_rank_ft
	mqs_get_image_ft
	mqs_fetch_data_ft
	mqs_target_to_host_ft

	Callbacks Provided by the DLL
	mqs_setup_basic_callbacks
	mqs_version_string
	mqs_version_compatibility
	mqs_dll_taddr_width
	mqs_dll_error_string

	Executable Image Related Functions
	mqs_setup_image
	mqs_image_has_queues
	mqs_destroy_image_info

	Process Related Functions
	mqs_setup_process
	mqs_process_has_queues
	mqs_destroy_process_info

	Query Functions
	mqs_update_communicator_list
	mqs_setup_communicator_iterator
	mqs_get_communicator
	mqs_get_comm_group
	mqs_next_communicator
	mqs_setup_operation_iterator
	mqs_next_operation

	Bibliography

