Tools and Debugging Interfaces to MPI
Version 1.0

MPI Forum Working Group on Tools
Accepted by the Message Passing Interface Forum
(date thd.)

Acknowledgments

Author
Anh Vo

Contributing Authors
Kathryn Mohror, Jeff Squyres

Editor
TBD

Reviewers

TBD

Contents

1 Background 1
2 Overview 2
3 Definitions 4
3.1 MPI Process Definition 4
3.2 Image Definition L 4
3.3 “Starter” Process Definition o0 4
The MPI Process as the Starter Process 4

A Separate mpiexec as the Starter Process 5

3.4 MPIR Host and Target Node Definitions 5

4 Debugger/MPI Interaction Model 6
4.1 Debug DLL e 6
4.2 Debugger/Debug DLL Interaction Use Case 6

5 Interface Specifications 9
5.1 MPIR_dll_name 9
5.2 Types for Target Independence 9
5.2.1 mgs_tword_t 9

5.2.2 mgs_taddr_t 9

5.2.3 mgs_target_type_sizes o 9

5.3 Opaque Types Passed Through the Interface 10
5.4 Constants and Enums L 11
54.1 mgs_lang_code 11

5.4.2 mqgs_op_class e 11

5.4.3 mgs_interface_versiono 11

5.4.4 mqgs_status 11

54.5 Otherenums 11

5.5 Concrete Objects Passed Through the Interface 12
5.5.1 mgs_communicatoro 12

5.5.2 mgs_pending_operation Lo o oL 13

5.6 Callbacks Provided by the Debugger 14
5.6.1 mgs_basic_callbacks 14
mas_malloc_ft 14

mqs_free_fto 15
mqs_errorstring_ft Lo 15
mqs_put_image_info_ft o000 oo 15

ii

The interface described in this document is not part of the official MPI specification

mqs_get_image_info_ft oL

mqs_put_process_info_ft oL
mqs_get_process_info_ft oL

5.6.2 mgs_image_callbacks oo oo
mqs_get_type_sizes_ft L
mqs_find_function_ft
mqgs_find_symbol_ft
mqgs_find_type_ft
mqs_field_offset _ft o
mqs_sizeof _ft oo

5.6.3 mgs_process_callbacks L L
mqs_get_global_rank_ft 0000000
mqs_get_image_ft
mgqs_fetch_data_ft
mqs_target_to_host_ft o oo

5.7 Callbacks Provided by the DLL
5.7.1 mgqgs_setup_basic_callbacks
5.7.2 mgs_version_string Lo
5.7.3 mgs_version_compatibility o000
574 mqgs_dll_taddr_width
5.7.5 mgs_dll_error_string o
5.8 Executable Image Related Functions
5.8.1 mgs_setup_image
5.8.2 mgs_image_has_queues
5.8.3 mgs_destroy_image_infoo
5.9 Process Related Functions o L.
5.9.1 mQgS_Setup_Process oo e e
5.9.2 mqgs_process_has_queues.
5.9.3 mgs_destroy_process_info
5.10 Query Functions L L
5.10.1 mgs_update_communicator_list
5.10.2 mgs_setup_communicator_iterator
5.10.3 mgs_get_communicator Lo
5.10.4 mgs_get_comm_group oo e
5.10.5 mgs_next_communicator
5.10.6 mgs_setup_operation_iterator oo
5.10.7 mgs_next_operationo

Bibliography

iii
The interface described in this document is not part of the official MPI specification

iv
The interface described in this document is not part of the official MPI specification

Chapter 1

Background

In early 1995, TotalView’s Jim Cownie and Argonne National Laboratory’s Bill Gropp and
Rusty Lusk developed parallel debugging interfaces for use with MPI. They designed and
implemented the interfaces in MPICH, one of the first widely available MPI implementa-
tions. Two interfaces were developed: one for process discovery and acquisition and one
for message queue inspection. Coined the “MPIR” interfaces [1, 2], the MPI debugging in-
terfaces eventually became de facto standards implemented by various MPI providers such
as Compaq, HP, IBM, Intel, LAM/MPI, MPI Software Technologies, Open MPI, Quadrics,
SCALI, SGI, Sun/Oracle, and other implementations of MPI.

In 2010, the MPI Forum published a document which formally standardized the MPIR,
Process Acquisition Interface but omitted the details about the interface for Message Queue
Support (MQS). This document complements the 2010 MPIR document by describing the
existing MQS interface being used by most MPI debuggers and MPI implementations today
to provide users with information about the state of message queues in an MPI program.

Rationale. Note that this document does not introduce any improvements to the
existing de facto use of the MQS interface. Nor does it addresses any shortcomings of
the existing MQS interface, such as the inability to load different debugger dynamically
linked libraries (DLLs) to support an environment where the debugger runs with a
different bitness from the target. This document is solely intended to codify the
current state of the art. (End of rationale.)

Unofficial Draft for Comment Only 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

Overview

Tools and debuggers use the MQS interface to extract information describing the conceptual
message-passing state of an MPI application in order to display it to users. While the
original intent of the interface was to provide the functionality to debuggers, any tool that
has debugger-like capabilities (e.g., providing symbol name look up) can use this interface
to access the message-passing state. Note that this document uses the terms “tools” and
“debuggers” interchangeably.

Within each MPI process, there are three distinct abstract message queues which rep-
resent the MPI subsystem. They are:

1. Send Queue: This queue represents all of the outstanding send operations.
2. Receive Queue: This queue represents all of the outstanding receive operations.

3. Unexpected Message Queue: This queue represents all the messages that have arrived
at the process, but have not been matched yet.

The send and receive queues store information about all of the unfinished send and
receive operations that the process has started within a given communicator. These might
result either from blocking operations such as MPI_SEND and MPI_RECV or nonblocking
operations such as MPI_ISEND and MPI_IRECV. Each entry in these queues contains the
information that was passed to the function call that initiated the operation. Nonblocking
operations remain on these queues until they have been completed by MPI_WAIT, MPI_-
TEST, or one of the related multiple completion routines.

The unexpected message queue contains a different class of information than the send
and receive queues, because the elements on this queue were created by MPI calls in other
processes. Therefore, less information is available about these elements (e.g., the data type
that was used by the sender).

In all three queues, the order of the elements represents the order that the MPI subsys-
tem will perform matching. This is important where many entries could match, for instance
when a wildcard tag or source is used in a receive operation.

Note that these queues are conceptual; they are an abstraction for representing the
progression of messages in an MPI program. The actual number of queues in an MPI im-
plementation is implementation dependent. The MQS interface defines these conceptual
queues so that message information can be presented to users independently of any partic-
ular MPI implementation. For example, an MPI implementation may maintain only two
queues, the receive queue and the unexpected message queue. The implementation does

Unofficial Draft for Comment Only 2

not maintain an explicit queue of send operations; instead, all the information about an
incomplete send operation is maintained in the associated MPI_Request.

3
The interface described in this document is not part of the official MPI specification

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 3

Definitions

3.1 MPI Process Definition

An MPI process, or process in the scope of this document, is defined to be an OS process
that is part of the MPI application as described in the MPI standard. While the standard
does not require that an MP process be an OS process, this is a requirement for most
debuggers and this interface was designed with that assumption.

In this document, the rank of a process is assumed to be relative to MPI_COMM_WORLD
— this version of the MQS interface does not support MPI dynamic processes. For example,
the phrase “MPI rank 0 process” denotes the process that is rank 0 in MPI_COMM_WORLD.

3.2 Image Definition

An image is an executable file that was loaded into memory when a process is started. For
SIMD-style programs, all MPI processes have the same image. For MIMD-style programs,
MPI processes might have different images.

3.3 "“Starter” Process Definition

The starter process is the process that is responsible for launching the MPI job. The starter
process may be a separate process that is not part of the MPI application, or any MPI
process may act as a starter process. By definition, the starter process contains functions,
data structures, and symbol table information for the MPIR Process Acquisition Interface.

The MPI implementation determines which launch discipline is used, as described in
the following subsections.

The MPI Process as the Starter Process

An MPI implementation might implement its launching mechanism such that an MPI pro-
cess, e.g., the MPI rank 0 process, launches the remaining MPI processes of the MPI appli-
cation. In such implementations, the MPI process that started the other MPI processes is
the starter process.

Unofficial Draft for Comment Only 4

A Separate mpiexec as the Starter Process

Many MPI implementations use a separate mpiexec process that is responsible for launching
the MPI processes. In these implementations, the mpiexec process is the starter process.
Note that the name of the starter process executable varies by implementation; mpirun is a
name commonly used by several implementations, for example. Other names include (but
are not limited to) srun and prun.

3.4 MPIR Host and Target Node Definitions

For the purposes of this document, the host node is defined to be the node running the tool
process, and a target node is defined to be a node running the target application processes
the tool is controlling. A target node might also be the host node; that is, the target
application processes might be running on the same node as the tool process.

5
The interface described in this document is not part of the official MPI specification

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 4

Debugger/MPI Interaction Model

4.1 Debug DLL

The debugger gains access to the message queue functionality by loading a DLL provided
by the MPI implementation, the debug DLL. This allows the debugger to be insulated
from the internals of the MPI library so that it can support multiple MPI implementations.
Furthermore, MPI implementations can provide their users with debugging support without
requiring source access to the debugger. The debugger learns about the location of this DLL
by reading the variable MPIR_d11_name from the MPI starter process.

All calls to the debug DLL from the debugger are made from entry points whose names
are known to the debugger. However, all calls from the DLL to the debugger are made
through a table of function pointers that is passed to the initialization entry point of the
debug DLL. This procedure ensures that the debug DLL is independent of any particular
debugger or debugger version.

For efficiency, it is important that the debug DLL be able to easily associate informa-
tion with some of these debugger-owned objects. For instance, it is convenient to extract
information about the address of a global variable of interest to the debug DLL only once
for each process being debugged, rather than every time the debug DLL needs to access
the variable. Similarly, the offset of a field in a structure that the debug DLL needs to
understand is constant within a specific executable image, and again should only be looked
up once. Therefore, callbacks are provided by the debugger to allow the debug DLL to
store and retrieve information associated with image and process objects. Since retrieving
the information is a callback, the debugger has the option of either extending its internal
data structures to provide space for an additional pointer or of implementing a hash table
to associate the information with the process key.

Advice to implementors. Since the DLL will run within the code space of the
debugger, the implementation of the debug DLL should avoid any calls that might
block or sleep for a long period of time. Such call will make the debugger become
unresponsive to user interaction. (End of advice to implementors.)

4.2 Debugger/Debug DLL Interaction Use Case

Figure 4.1 illustrates the interaction between the debugger and the debug DLL to iterate the
message within the message queues. This example assumes that there are n MPI processes
that were launched running the image “a.out”.

Unofficial Draft for Comment Only 6

Tool Process
Tool daemon launch/protocol

A

Debugging Subsystem ¢ ‘
Symbol Table Process Control Tool Daemon Process Tool Daemon Process
Information (ptrace, /proc,
(ELF,]?\;VARF’ etc.) Process Control cee Process Control
@—\ elel. (ptrace, /proc, etc.) (ptrace, /proc, etc.),
» mqs_put image info(); b L 1
Attach Attach

mgqs_put process_info();

T
A

Interaction
through

callbacks | Load ¢ Symbol Idading %@ RIW
DLL providing MQS functionality E)(&mblc(s) & DLLs
N DLL callbacks
q mgqs_version_string(); v v v v

mgqs_setup basic callbacks();

MPI “rank[0]” Process MPI “rank[n-1]” Process

™ mgqs setup image();
B R char MPIR_dll_name[]; char MPIR_dll_name[];

A 4

——> mgqgs_image has_queues();

mgqs_setup_process();
mgqs_process_has_queues();
\mqsfdllierroristring();
[~ mgs_update communicator _list()

N

(==

? 05 7055

mgqs_setup_communicator_iterator();
mqs_get communicator();
mgqs_next_communicator();
mgqs_setup_operation_iterator();
mgqs_next_operation();

—_—

Figure 4.1: Example collaboration diagram for Debugger/DLL interaction

. The debugger looks for the global symbol MPIR_d11_name in the target image. If this
symbol exists, it is expected to be the name of the debug DLL. If this symbol does
not exist, the debugger might attempt to load some hardcoded values. If no library
exists, MQS functionality is disabled.

. The debugger attempts to load the DLL.

. Once the debugger has loaded the DLL it will check for version compatibility by calling
mgs_version_string() to inquire the version of the DLL. It should also call mqs_-
version_compatibility() to inquire whether this DLL requires a different version
of the debugger. Lastly, during this pre-initialization phase, it should call mqs_d11_-
taddr_width() so that the debugger knows the bitness with which the DLL was
compiled.

. The debugger initializes the MQS support by calling mqgs_setup_basic_callbacks()
and pass the address to the structure containing the addresses of the basic callback
functions provided by the debugger. This DLL is expected to save the pointer to the
callback structure.

. For each executable image that is used by the processes the debugger calls mgs_-

setup_image and provide it with a pointer to callback structure containing image

7
The interface described in this document is not part of the official MPI specification

10.

11.

related callbacks.

. The DLL will initialize any data structure that is necessary to store image specific

information and will call mgs_put_image_info to have the debugger associate the
image with the allocated data structure.

Once mgs_setup_image completes successfully, the debugger calls mqs_image_has_-
queues to indicate whether the image has message queues support or not. If the image
has message queues support, the function will return mgs_ok, otherwise it will return
an error. For each image that has queue support, the debugger should call mgs_-
setup_process on each process that is an instance of the image and subsequently
calls mqs_setup_process_info to allow the DLL to initialize data structure that it
uses to store process specific information. For each of the aforementioned process,
the debugger also calls mgs_process_has_queues to inquire whether the process has
message queue support enabled.

. If the DLL returns an error for any of the callbacks, the debugger should call mgs_-

dll_error_string to get more obtain more information about the error. On the
other hand, if the debugger returns an error for any of the callbacks, the DLL should
call mgs_errorstring_fp (part of the mqs_basic_callbacks structure) to get more
infromation on the error.

. Before querying the message queues the debugger calls the function mgs_update_-

communicator_list() to verify that it has the latest information about the active
communicator in a specific process and refrehes it if necessary.

The debugger then iterates over each communicator by first asking the DLL to setup
the internal iterator to iterate over the active communicator list by calling mgs_-
setup_communicator_iterator(). Then it calls mqs_get_communicator() to ob-
tain each communciator in the list and moves the iterator to the next communicator
by calling mqs_next_communicator (). mgs_next_communicator () returns mgs_ok if
there is another element to look at; otherwise it should return mqs_end_of_list.

Within each communicator, the debugger iterates over the message queues by first
calling mqs_setup_operation_iterator () and indicate the queues it wants to iterate
over. The debugger then calls mgs_next_operation to start iterating the messages
within the requested queue.

8

The interface described in this document is not part of the official MPI specification

Chapter 5

Interface Specifications

Unless otherwise noted, all definitions are required.

5.1 MPIR_dIl_name

MPIR_d11_name contains the location of the debug DLL provided by the MPI implementa-
tion. If this symbol is not present in the starter process, the debugger might attempt to
load some default library name, which is implementation dependent. If this also fails, MQS
support is disabled.

Advice to implementors. On some platforms it might be necessary to take additional
efforts during compiling or linking to prevent this variable from being stripped or
optimized out because it is usually not referenced from with the MPI implementation.
(End of advice to implementors.)

5.2 Types for Target Independence

Since the code in the debug DLL is running inside the debugger, it could be running on a
completely different machine than the target node where the debugged process is running.
Therefore, the interface uses explicit types to describe target types, rather than canonical
C types.

5.2.1 mgs_tword_t

mgs_tword_t is a target independent typedef name that is the appropriate type for the
DLL to use on the host to hold a target word (long).

5.2.2 mgs_taddr_t

mgs_tword_t is a target independent typedef name that is the appropriate type for the
DLL to use on the host to hold a target address (voidx)

5.2.3 mqs_target_type_sizes

Type definition:

Unofficial Draft for Comment Only 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

typedef struct
{
int short_size;
int int_size;
int long_size;
int long_long_size;
int pointer_size;
} mgs_target_type_sizes;

mgs_target_type_sizes is a type definition for a struct that holds the size of common
types in the target architecture. The debug DLL will use the callback mqs_get_type_-
sizes_ft provided by the debugger, which takes a variable of type mqs_target_type_-
sizes and populate it with the size information that it has based on the target host:

e short_size holds the size of the type short in the target architecture.

e int_size holds the size of the type int in the target architecture.

e long_size holds the size of the type long in the target architecture.

e long_long_size holds the size of the type long long in the target architecture.

e pointer_size holds the size of a pointer in the target architecture.

5.3 Opaque Types Passed Through the Interface

The debugger exposes several objects to the debug DLL: the executable image file, a specific
process, and named types. In order to avoid exposing the debugger’s internal representations
of these types to the debug DLL, which has no need to see the internal structure of these
objects, these objects are defined in the interface file as typedefs of undefined structures
and are always passed by reference. The use of these opaque types allows the debugger
freedom to either pass true pointers to its internal data structures or to pass some other key
to the debug DLL from which it can later retrieve the internal object. The use of typedefs
provides more compile-time checking than the use of void * for objects.

The following are opaque types defined within the debugger and are exposed to the
debug DLL as undefined typedefs. The debug DLL uses these types as keys to identify
objects of interest, or to be passed back to the debugger through some callback.

e mgs_image identifies an executable image.
e mgs_process identifies an MPI process.
e mgs_type identifies a named target type.

The following are opaque types defined within the debugger and are cast to explicit
types within the debug DLL for the debug DLL’s internal processing. These types exist so
that the debug DLL can associate some information with the debugger-owned objects.

e mgs_image_info is used to associate information pertaining to an object of type
mgs_image.

e mgs_process_info is used to associate information pertaining to an object of type
mgs_process.

10
The interface described in this document is not part of the official MPI specification

5.4 Constants and Enums

5.4.1 mgs_lang_code

typedef enum {
mgs_lang_c =’c’,
mgs_lang_cplus = ’C’,
mgs_lang_f£77 £,
mgs_lang_£90 'F
} mgs_lang_code;

Because symbol lookup mechanisms vary between different languages, it is necessary
to indicate the language for which the lookup operation is intended. This enum is used to
indicate the different language types.

5.4.2 mgs_op_class

typedef enum

{
mgs_pending_sends,
mgs_pending_receives,
mgs_unexpected_messages

} mgs_op_class;

This enum is used by the debugger to indicate the queue in which it is interested.

5.4.3 maqs_interface_version

This constant defines the version of the interface header.

54.4 mqs_status

enum mgs_status

{
mgs_st_pending,
mgs_st_matched,
mgs_st_complete

};

This enum is used to by the DLL to indicate the status of a message in the message
queue.

5.4.5 Other enums

enum {
mgs_ok = 0,
mgs_no_information,
mgs_end_of_list,
mgs_first_user_code = 100

11
The interface described in this document is not part of the official MPI specification

This enum defines the various return codes for the message queue functionality. This
enum is used by both the DLL and the debugger.

enum
{

MQS_INVALID_PROCESS = -1
};

This constant provides a value for the debugger to return error indicating an invalid
process index.

5.5 Concrete Objects Passed Through the Interface

To allow the debugger to obtain useful information from the debug DLL, concrete types are
defined to describe a communicator and a specific element on a message queue.

The information in the mgs_communicator structure includes the communicator’s size,
the local rank of the process within the communicator, and the name of the communicator
as defined by the MPI implementation or set by the user using the MPI-2 function MPI_-
COMM_SET_NAME, which was added to the standard to aid in debugging and profiling.

The mgs_pending_operation structure contains enough information to allow the de-
bugger to provide the user with details both of the arguments to a receive and of the
incoming message that matched it. All references to other processes are available in the
mgs_pending_operation structure both as indices into the group associated with the com-
municator and as indices into MPI_COMM_WORLD.

5.5.1 mgs_communicator

Type definition:

typedef struct

{
mgs_taddr_t unique_id;
mgs_tword_t local_rank;
mgs_tword_t size;
char name [64] ;

} mgs_communicator;

The debugger uses this type definition to represent an MPI communicator.

e unique_id uniquely identifies a communicator.

local_rank identifies the rank of the current MPI process.

size holds the size of the communicator.

e name contains the name of the communicator if it was given one.

12
The interface described in this document is not part of the official MPI specification

5.5.2 mgs_pending_operation

Type defintion:

typedef struct

{

int status;

mgs_tword_t desired_local_rank;
mgs_tword_t desired_global_rank;
int tag_wild;
mgs_tword_t desired_tag;
mgs_tword_t desired_length;

int system_buffer;
mgs_taddr_t buffer;

/*

Fields valid if status >= matched or it is a send */

mgs_tword_t actual_local_rank;
mgs_tword_t actual_global_rank;
mgs_tword_t actual_tag;
mgs_tword_t actual_length;

char extra_text[5] [64];
} mgs_pending_operation;

This structure contains enough information to allow the debugger to provide the user

with details about both of the arguments to a receive and of the incoming message that
matched it. All refereces to other processes are available in the mqs_pending_operation
structure both as indices into the group associated with the communicator and as indices
into MPI_COMM_WORLD. This avoids any need for the debugger to concern itself explicitly
with this mapping

status stores the status of the message. The value of this field should be either mgs_-
st_pending, mgs_st_matched, or mgs_st_complete as described in the enumeration
mgs_status (section 5.4.4).

desired_local_rank stores the rank of the target or the source for the communicator
from which this message was initiated.

desired_global_rank stores the rank of the target or the source with respect to
MPI_COMM_WORLD.

tag_wild is a boolean that identifies whether this message is a posted receive with
tag MPI_ANY_TAG. If the receive was posted with MPI_ANY_TAG, |tag_wild— will be
set to 1. Otherwise, it it set to 0.

desired_tag holds the tag of the message. This field is ignored if tag_wild is not
set.

desired_length holds the length of the message buffer in bytes.

system_buffer is a boolean that identifies whether this is a user or a system buffer.
A value of 1 indicates that it is a system buffer. Otherwise, it is set to 0.

13

The interface described in this document is not part of the official MPI specification

e buffer holds the address to the beginning of the message data.

The following fields are only meaningful if the message is a send or if the status fields
indicates that this message is either matched (mgs_st_matched), or completed (mqs_st_-
complete).

e actual_local_rank holds the actual local rank within the communicator (after the
message has matched).

e actual_global_rank holds the actual global rank with respect to
MPI_COMM_WORLD.

e actual_tag holds the actual tag of the message.
e actual_length holds the actual length of the message buffer in bytes.

e extra_text is a null-terminated string that can be used by the DLL to provide more
information to the user. The debugger does not interpret this field and can display it
to the user.

5.6 Callbacks Provided by the Debugger

The debugger provides several callbacks that will be called by the DLL to extract informa-
tion pertaining to the runtime state of the execution. All the callbacks are grouped into
three different groups based on their functionalities: mgs_basic_callbacks, mqs_image_-
callbacks, and mgs_process_callbacks.

5.6.1 mqs_basic_callbacks
Type definition:

typedef struct mgs_basic_callbacks

{
mgs_malloc_£ft mgs_malloc_£fp;
mgs_free_ft mqgs_free_£p;
mgs_errorstring_£ft mgs_errorstring_£fp;

mgs_put_image_info_ft mqgs_put_image_info_fp;

mgs_get_image_info_ft mgs_get_image_info_fp;

mgs_put_process_info_ft mgs_put_process_info_=fp;

mgs_get_process_info_ft mqs_get_process_info_=fp;
} mgs_basic_callbacks;

maqs_malloc_ft

Function type definition:

14
The interface described in this document is not part of the official MPI specification

typedef void* (*mgs_malloc_ft) (size_t size)

IN size number of bytes to allocate

Allocates a block of memory with the specified size. Note that because the debugger
might operate within certain assumptions about memory allocation, the DLL cannot call any
normal allocation routine (e.g., malloc); it has to use this function for allocation memory.
The debugger guarantees that if the allocation fails, a NULL pointer will be returned.

maqs_free_ft

Function type definition:

typedef void (*mqs_free_ft) (void* buf)
INOUT buf buffer to be freed

Frees a previously allocated memory buffer. Similarly to mqs_malloc_ft, the DLL has
to use this function to free any memory allocated by mqs_malloc_ft (which is the only way
to allocate memory from the DLL).

mqs_errorstring_ft

Function type definition:

typedef char* (*mgs_errorstring_ft) (int errno)

IN errno the error code for corresponding the error string

Converts an error code from the debugger into an error message. The function returns
a pointer to a null terminated error string that corresponds to the given error code.

mqs_put_image_info_ft

Function type definition:

typedef void (*mgs_put_image_info_ft) (mqgs_image* image, mqgs_image_info* imageinfo)
ouT image the image to receive the image info

IN imageinfo the image info to associate with the image

Associates the given image information with the given image. This allows the DLL to
cache the information associated with the image (e.g., the pointer to the callbacks structure
provided by the debugger) so that it can retrieve it later (using mqs_get_image_info) when
the debugger needs to invoke image-related functionalities (e.g., mgs_image_has_queues —
see section 5.8.2). See section 5.8.1 for more details.

15
The interface described in this document is not part of the official MPI specification

mqs_get_image_info_ft

Function type definition:

typedef mgs_image_info* (*mqs_get_image_info_ft) (mqgs_image* image)

IN image the image to extract the image info from

Returns the image information associated with the given image.

maqs_put_process_info_ft

Function type definition:

typedef void (*mqs_put_process_info_ft) (mqgs_process* process, mqs_process_info* process-

info)
ouT process the process to receive the process info
IN processinfo the process info to associate with the image

Associates the given process information with the given process. This allows the DLL to
cache the information associated with the process (e.g., the pointer to the callbacks structure
provided by the debugger) so that it can retrieve it later (using mgs_get_process_info)
when the debugger needs to invoke process-related functionalities (e.g., nqs_process_has_-
queues — see section 5.9.2). See section 5.8.1 for more details.

mqs_get_process_info_ft

Function type definition:

typedef mqs_process_info* (*mqs_get_process_info_ft) (mqgs_process* process)

IN process the process to extract the process info from

Returns the process information associated with the given process.

5.6.2 mgs_image_callbacks
Type definition:

typedef struct mgs_image_callbacks

{
mgs_get_type_sizes_ft mgs_get_type_sizes_fp;
mgs_find_function_ft mgs_find_function_f£fp;
mgs_find_symbol_£ft mgs_find_symbol_£fp;
mgs_find_type_ft mgs_find_type_£fp;
mgs_field_offset_ft mgs_field_offset_fp;
mgs_sizeof_ft mgs_sizeof_£fp;

} mgs_image_callbacks;

16
The interface described in this document is not part of the official MPI specification

mqs_get_type_sizes_ft

Function type definition:

typedef void (*mqs_get_type_sizes_ft) (mqs_process* process, mqs_target_type_sizes* sizes)

IN process the process to get the sizes from

ouT sizes the placeholder for the sizes

Retrieves the size information about common data types from the running process. See
section 5.2.3 for the definition of mgs_target_type_sizes.

maqs_find_function_ft

Function type definition:

typedef int (*mqgs_find_function_ft) (mgs_image* image, char* fname, mqs_lang_code lang,
mqs_taddr_t* addr)

IN image the image to search for the function
IN fname the name of the function to search for
IN lang the language code

ouT addr the address of the function

Given an image, returns the address of the specified function. The function returns
msq_ok if successful and mgs_no_information if the function cannot be found.

mqs_find_symbol_ft

Function type definition:

typedef int (*mgs_find_symbol_ft) (mqs_image* image, char* sname, mgs_taddr_t* addr)

IN image the image to search for the symbol
IN sname the name of the symbol to search for
ouT addr the address of the symbol

Given an image, returns the address of the specified symbol. The function returns
msq_ok if successful and mgs_no_information if the symbol cannot be found.

mqs_find_type_ft

Function type definition:

17
The interface described in this document is not part of the official MPI specification

typedef mgs_type* (*mqs_find_type_ft) (mgs_image* image, char* tname, mgs_lang_code

lang)
IN image the image to search for the type
IN tname the name of the type to search for
IN lang the language code

Given an image, returns the type associated with the given named type. The function
either returns a type handle, or NULL if the type cannot be found.

Advice to implementors. Since the debugger may load debug information lazily
and/or the linker may remove such type information during optimization, the MPI
run time library should ensure that the type definitions required occur in a file whose
debug information will already have been loaded. For instance, by placing them in
the same file as the startup breakpoint function. (End of advice to implementors.)

mqs_field_offset_ft

Function type definition:

typedef int (*mqs_field_offset_ft) (mqs_type* type, char* fname)
IN type the type that contains the field

IN fname the field name to retrieve the offset

Given the handle for a struct type, returns the byte offset of the named field. If the
field cannot be found, the function returns -1.

mqs_sizeof _ft

Function type definition:

typedef int (*mqs_sizeof _ft) (mqs_type* type)
IN type the type to get the size for

Given the handle for a type, returns the size of the type in bytes.

5.6.3 mgs_process_callbacks
Type definition:

typedef struct mgs_process_callbacks

{
mgs_get_global _rank_ft mgs_get_global_rank_fp;
mgs_get_image_ft mgs_get_image_fp;
mgs_fetch_data_ft mgs_fetch_data_£fp;
mgs_target_to_host_ft mgs_target_to_host_£fp;

} mgs_process_callbacks;

18
The interface described in this document is not part of the official MPI specification

mqs_get_global_rank_ft

Function type definition:

typedef int (*mqs_get_global_rank_ft) (mqs_process* process)

IN process the process to get the global rank for
Given a process, returns its rank in MPI_COMM_WORLD.
mqs_get_image_ft

Function type definition:

typedef mqgs_image* (*mqgs_get_image_ft) (mgs_process* process)

IN process the process to get the image for
Given a process, returns the image of which it is an instance.

mgqs_fetch_data_ft

Function type definition:

typedef int (*mgs_fetch_data_ft) (mqgs_process* process, mqgs_taddr_t addr, int size, void*

buf)
IN process the process to fetch the data from
IN addr the virtual address in the process’ virtual address space
IN size the number of bytes to read
ouT buf the buffer to store the data

Fetches data from the process into the specified buffer. The function returns msq_ok if
the data could be fetched successfully. Otherwise, it returns mqs_no_information.

mqs_target_to_host_ft

It is possible that although the debugger is running locally on the same machine as the target
process, the target process may have different properties from the debugger. For example,
on some operating systems it is possible to execute both 32- and 64-bit processes. To
handle this situation, the debugger provides a callback that returns type size information
for a specific process. To handle the possibility that the byte ordering may be different
between the debug host and the target, the debugger provides a callback to perform any
necessary byte reordering when viewing the target store as an object of a specific size. This
callback enables the debug DLL to be entirely independent of the target process.
Function type definition

19
The interface described in this document is not part of the official MPI specification

typedef void (*mqs_target_to_host_ft) (mqs_process* process, const void* indata, void* out-
data, int size)

IN process the process where the original data is from
IN indata the data to convert

ouT outdata the buffer to store the converted data

IN size the number of bytes to convert

Converts data from target representation to host representation.

5.7 Callbacks Provided by the DLL

5.7.1 mqgs_setup_basic_callbacks

Function type definition:

extern void mgs_setup_basic_callbacks(const mqgs_basic_callbacks* cb)

IN cb the basic callbacks table to provide to the DLL

This function is called by the debugger to the DLL to provide the DLL with the basic
callbacks table.

5.7.2 mqs_version_string

Function type definition:

extern char* mqs_version_string()

Returns the DLL version. This allows the debugger to check whether the debugger’s
MQ@QS support is compatible with this version of the DLL (e.g., whether the user needs a
newer version of the DLL).

5.7.3 mgs_version_compatibility

Function type definition:

extern int mgs_version_compatibility()

Returns the DLL compatibility level. This allows the debugger to check whether this
version of the DLL’s MQS support is compatible with the debugger’s version (e.g., whether
the user needs a newer version of the debugger).

5.7.4 mqs_dll_taddr_width

Function type definition:

20
The interface described in this document is not part of the official MPI specification

extern int mgs_dll_taddr_width()

Gives the width of an address pointer that has been compiled into the DLL. It is not
the width of an address pointer for the target process, which could be different from this.

5.7.5 mqgs_dll_error_string

Function type definition:

extern char* mqs_dll_error_string(int errno)

IN errno the error code that corresponds to the error string

Returns a pointer to a null-terminated string providing the string that is associated
with the error value. Note that this function, which provides a means for the debugger to
get the string associated with an error returned from the DLL, complements the function
mgs_errorstring, which provides a means for the DLL to get the string associated with
an error returned from the debugger.

5.8 Executable Image Related Functions

These functions are provided by the DLL and are called by the debugger.

5.8.1 mqs_setup_image

Function type definition:

extern int mgs_setup_image(mqgs_image* image, const mgs_image_callbacks* cb)
INOUT image the image to setup the callbacks table
IN cb the image callbacks table

Sets up debug information for a specific image. This function must cache the provided
callbacks and use those functions for accessing this image. The DLL should use the mgs_-
put_image_info and mgs_get_image_info functions to associate information to keep with
the image. The debugger will call mqs_destroy_image_info when the information about
the given image is no longer needed. This will be called once for each executable image in
the parallel program.

5.8.2 mgs_image_has_queues

Function type definition:

21
The interface described in this document is not part of the official MPI specification

extern int mgs_image_has_queues(mgs_image* image, char** message)
IN image the image to query mgs functionality

ouT message buffer to store message from the DLL

Returns whether this image has the necessary symbols to allow access to the message
queues. This function is called once for each image, and the information is cached within
the debugger. The function returns mgs_ok if MQS support can be provided by this image.

5.8.3 mgs_destroy_image_info

Function type definition:

extern int mgs_destroy_image_info(mgs_image_info* imageinfo)

IN imageinfo the image info to free

Allows for cleaning up when the image information is no longer needed.

5.9 Process Related Functions

These functions are provided by the DLL and are called by the debugger.

5.9.1 mqgs_setup_process

Function type definition:

extern int mgs_setup_process(mgs_process* process, const mgs_process_callbacks* cb)
INOUT process the process to setup the callbacks table
IN cb the processcallbacks table

Sets up process specific information.

5.9.2 mgs_process_has_queues

Function type definition:

extern int mgs_process_has_queues(mqs_process* process, char** message)
IN image the process to query mqs functionality

ouT message buffer to store message from the DLL

Similar to the mqs_process_has_queues function, this allows for querying whether
process has support for message queues. This function should only be called if the image
claims to provide message queues. For example, the image might have enabled message

22
The interface described in this document is not part of the official MPI specification

queues support if only certain environment variables are set at launch time. This function
checks at runtime whether message queues support is enabled for this specific process.

5.9.3 mgs_destroy_process_info

Function type definition:

extern int mgs_destroy_process_info(mqs_process_info* processinfo)

IN processinfo the process info to free

Allows for cleaning up when the process information is no longer needed.

5.10 Query Functions

These functions provide the message queue query functionality. The model is that the
debugger calls down to the DLL to initialize an iteration over a specific class of items,
and then keeps calling the iterating function until it gets mqs_false. The DLL internally
keeps track of the item being iterated (similar to a file cursor). For communicators, the
stepping is separated from extracting information because the debugger will need the state
of the communicator iterator to qualify the selections of the operation iterator. mqs_true
is returned when the description has been updated; mqs_false means there is no more
information to return, and therefore the description contains no useful information. There
is only one of each type of iteration running at once; the DLL should save the iteration
state in the mgs_process_info.

5.10.1 mqgs_update_communicator_list

Function type definition:

extern int mgs_update_communicator_list(mgs_process* process)

IN process the process to refresh the list of active communicators

Given a process, refreshes the list of active communicators. Ideally this list is cached
somewhere within the DLL and the debugger invokes it when necessary. The function
returns msq_ok if the operation succeeds.

5.10.2 mqgs_setup_communicator_iterator

Function type definition:

extern int mgs_setup_communicator_iterator(mgs_process* process)

IN process the process to prepare the iterator

Given a process, prepares the iterator to walk the active communicator list. The
function returns msq_ok if the operation succeeds.

23
The interface described in this document is not part of the official MPI specification

5.10.3 mqgs_get_communicator

Function type definition:

extern int mgs_get_communicator(mgqs_process* process, mgs_communicator* mgs_comm)
IN process the process to retrieve the communicator

ouT mgs_comm the buffer to receive the communicator data

Extracts information about the current communicator. The function returns msq_ok
if the operation succeeds. See section 5.5.1 for the definition of mqs_communicator.
5.10.4 mqgs_get_comm_group

Function type definition:

extern int mgs_get_comm_group(mgs_process* process, int* ranks)
IN process the process to obtain the group information

ouT ranks the buffer to receive the rank mapping

Extracts the group from the current communicator. The debugger already knows the
size of the communicator, so it will allocate a suitably sized array for the result. The result
is an array in which the element at index i contains the MPI_COMM_WORLD rank of rank
i-th in the current communicator. The function returns msq_ok if the operation succeeds.

5.10.5 mqgs_next_communicator

Function type definition:

extern int mgs_next_communicator(mgs_process* process)

IN process the process to get the next communicator

Moves the internal iterator to the next communicator in this process. The function
returns mgs_ok if the operation succeeds.

Example 5.1

/* Iterate over each communicator displaying the messages */
mgs_communicator comm;

for (dll->setup_communicator_iterator (process);
dll->get_communicator (process, &comm) == mgs_ok;
dll->next_communicator (process)){
/* Do something on each communicator, described by comm */

24
The interface described in this document is not part of the official MPI specification

5.10.6 mqgs_setup_operation_iterator

Function type definition

extern int mgs_setup_operation_iterator(mgqs_process* process, int opclass)
IN process the process to setup the operation

IN opclass the type of operation requested

Prepares to iterate over the pending operations in the currently active communicator
in this process. op should be one of the operations specified in mgs_op_class (see section
5.4.2 for the definition of mqs_op_class). The function returns msq_ok if the operation
succeeds.

5.10.7 mqgs_next_operation

Function type definition:

extern int mgs_next_operation(mgs_process* process, mgs_pending_operation* op)
IN process the process to fetch the operation

ouT op the buffer to receive the operation data

Fetches information about the next appropriate pending operation in the current com-
municator. The function returns mqs_false when there is no more operation to iterate.

25
The interface described in this document is not part of the official MPI specification

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mes.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Message

Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’ Group

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,

pages 51-58, Barcelona, Spain, September 1999.

Unofficial Draft for Comment Only

26

	Contents
	Background
	Overview
	Definitions
	MPI Process Definition
	Image Definition
	``Starter'' Process Definition
	The MPI Process as the Starter Process
	A Separate mpiexec as the Starter Process

	MPIR Host and Target Node Definitions

	Debugger/MPI Interaction Model
	Debug DLL
	Debugger/Debug DLL Interaction Use Case

	Interface Specifications
	MPIR_dll_name
	Types for Target Independence
	mqs_tword_t
	mqs_taddr_t
	mqs_target_type_sizes

	Opaque Types Passed Through the Interface
	Constants and Enums
	mqs_lang_code
	mqs_op_class
	mqs_interface_version
	mqs_status
	Other enums

	Concrete Objects Passed Through the Interface
	mqs_communicator
	mqs_pending_operation

	Callbacks Provided by the Debugger
	mqs_basic_callbacks
	mqs_malloc_ft
	mqs_free_ft
	mqs_errorstring_ft
	mqs_put_image_info_ft
	mqs_get_image_info_ft
	mqs_put_process_info_ft
	mqs_get_process_info_ft

	mqs_image_callbacks
	mqs_get_type_sizes_ft
	mqs_find_function_ft
	mqs_find_symbol_ft
	mqs_find_type_ft
	mqs_field_offset_ft
	mqs_sizeof_ft

	mqs_process_callbacks
	mqs_get_global_rank_ft
	mqs_get_image_ft
	mqs_fetch_data_ft
	mqs_target_to_host_ft

	Callbacks Provided by the DLL
	mqs_setup_basic_callbacks
	mqs_version_string
	mqs_version_compatibility
	mqs_dll_taddr_width
	mqs_dll_error_string

	Executable Image Related Functions
	mqs_setup_image
	mqs_image_has_queues
	mqs_destroy_image_info

	Process Related Functions
	mqs_setup_process
	mqs_process_has_queues
	mqs_destroy_process_info

	Query Functions
	mqs_update_communicator_list
	mqs_setup_communicator_iterator
	mqs_get_communicator
	mqs_get_comm_group
	mqs_next_communicator
	mqs_setup_operation_iterator
	mqs_next_operation

	Bibliography

