Tools and Debugging Interfaces to MPI

Version 1.0
MPI Forum Working Group on Tools Accepted by the Message Passing Interface Forum (date tbd.)
Acknowledgments
Author
Anh Vo
Contributing Authors

Kathryn Mohror, Jeff Squyres
Editor
TBD
Reviewers
TBD
Contents
1
Background
1
2
Overview
2
3
Definitions
4
3.1
MPI Process Definition
. .
4

3.2
Image Definition .
4

3.3
“Starter” Process Definition .
4

The MPI Process as the Starter Process
4

A Separate mpiexec as the Starter Process
.
4

3.4
MPIR Host and Target Node Definitions .
5

	4
	Debugger/MPI Interaction Model
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	6

	
	4.1
Debug DLL
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	6

	
	4.2
Debugger/Debug DLL Interaction Use Case
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	6

	5
	Interface Specifications
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	9

	
	5.1
MPIR_dll_name
.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	9

	
	5.2
Types for Target Independence
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	9

	
	5.2.1
mqs_tword_t
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	9

	
	5.2.2
mqs_taddr_t
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	9

	
	5.2.3
mqs_target_type_sizes
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	9

	
	5.3
Opaque Types Passed Through the Interface
	
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	10

	
	5.4
Constants and Enums
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	11

	
	5.4.1
mqs_lang_code
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	11

	
	5.4.2
mqs_op_class
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	11

	
	5.4.3
mqs_interface_version
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	11

	
	5.4.4
mqs_status
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	11

	
	5.4.5
Other enums
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	11

	5.5
Concrete Objects Passed Through the Interface
12

	5.5.1
	mqs_communicator
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	12

	5.5.2
	mqs_pending_operation . . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	13

5.6
Callbacks Provided by the Debugger .
14
5.6.1
mqs_basic_callbacks .
14
	mqs_malloc_ft . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	14

	mqs_free_ft
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	15

	mqs_errorstring_ft
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	15

	mqs_put_image_info_ft .
15

ii
The interface described in this document is not part of the official MPI specification
	mqs_get_image_info_ft . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	15

	mqs_put_process_info_ft .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	16

	mqs_get_process_info_ft .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	16

	5.6.2
	mqs_image_callbacks .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	16

	
	mqs_get_type_sizes_ft
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	16

	
	mqs_find_function_ft .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	17

	
	mqs_find_symbol_ft .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	17

	
	mqs_find_type_ft . . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	17

	
	mqs_field_offset_ft . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	18

	
	mqs_sizeof _ft
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	18

	5.6.3
	mqs_process_callbacks
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	18

	mqs_get_global_rank_ft
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	19

	mqs_get_image_ft . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	19

	mqs_fetch_data_ft . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	19

	mqs_target_to_host_ft
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	19

	5.7
Callbacks Provided by the DLL .
20

	5.7.1
	mqs_setup_basic_callbacks
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	20

	5.7.2
	mqs_version_string
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	20

	5.7.3
	mqs_version_compatibility .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	20

	5.7.4
	mqs_dll_taddr_width
. . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	20

	5.7.5
	mqs_dll_error_string
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	21

	5.8
Executable Image Related Functions .
21

	5.8.1
	mqs_setup_image
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	21

	5.8.2
	mqs_image_has_queues .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	21

	5.8.3
	mqs_destroy_image_info .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	22

	5.9
Process Related Functions .
22

	
	5.9.1
	mqs_setup_process
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	22

	
	5.9.2
	mqs_process_has_queues .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	22

	
	5.9.3
	mqs_destroy_process_info
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	23

	5.10
	Query
	Functions
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	23

5.10.1 mqs_update_communicator_list .
23
5.10.2 mqs_setup_communicator_iterator
23
	5.10.3
	mqs_get_communicator
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	24

	5.10.4
	mqs_get_comm_group
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	24

	5.10.5
	mqs_next_communicator
. . .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	24

	5.10.6
	mqs_setup_operation_iterator .
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	25

	5.10.7
	mqs_next_operation
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	25

	Bibliography
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	26

iii
The interface described in this document is not part of the official MPI specification
iv
The interface described in this document is not part of the official MPI specification
1
2
3
4
5
[image: image1.png]

Chapter 1
6
8
9
[image: image2.png]

Background
10
12
13
In early 1995, TotalView’s Jim Cownie and Argonne National Laboratory’s Bill Gropp
14 and Rusty Lusk developed parallel debugging interfaces for use with MPICH, one of the
15 first widely available MPI implementations. Two interfaces were developed: one for pro-
16 cess discovery and acquisition and one for message queue inspection. Coined the “MPIR”
17 interfaces [1, 2], the MPI debugging interfaces eventually became de facto standards im-
18 plemented by various MPI providers such as Compaq, HP, IBM, Intel, LAM/MPI, MPI
19
Software Technologies, Open MPI, Quadrics, SCALI, SGI, Sun/Oracle, and other imple-
20
mentations of MPI.
21
In 2010, the MPI Forum published a document which formally described
the MPIR
22
Process Acquisition Interface but omitted the details about the MPI Message Queue
23
Dumping (MQD) Interface. This document complements the MPIR Process Acquisition Interface document by describing the
24 existing MQD interface being used by most MPI debuggers and MPI implementations today
25 to provide users with information about the state of message queues in an MPI program.
26
27
Rationale.
Note that this document does not introduce any improvements to the
28 existing de facto use of the MQD interface. Nor does it addresses any shortcomings of
29 the existing MQD interface, such as the inability to load different debugger dynami-
30 cally linked libraries (DLLs) to support an environment where the debugger runs on
31 a different platform from the target. This document is solely intended to codify the
32 current state of the art. (End of rationale.)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Unofficial Draft for Comment Only
1

1
2
3
4
5
[image: image3.png]

6
Chapter 2
8
9
[image: image4.png]

10
Overview
12
13
14
Tools and debuggers use the MQD interface to extract information describing the conceptual
15
message-passing state of an MPI process. While the
16
original intent of the interface was to provide the functionality to debuggers, any tool that
17
has debugger-like capabilities (e.g., providing symbol name look up) can use this interface
18
to access the message-passing state. Note that this document uses the terms “tools” and
19
“debuggers” interchangeably.
20
Within each MPI process, there are three distinct abstract message queues which rep-
21
resent the MPI subsystem. They are:
22
23
1. Send Queue: This queue represents all of the outstanding send operations.
[image: image5.png]

24
2. Receive Queue: This queue represents all of the outstanding receive operations.
26
3. Unexpected Message Queue: This queue represents all the messages that have arrived
27
at the process, but have not been matched yet.
28
29
The send and receive queues store information about all of the unfinished send and
30
receive operations that the process has started within a given communicator. These might
31
result either from blocking operations such as MPI_SEND and MPI_RECV or nonblocking
32
operations such as MPI_ISEND and MPI_IRECV. Each entry in these queues contains the
33
information that was passed to the function call that initiated the operation. Nonblocking
34
operations remain on these queues until they have been completed by MPI_WAIT, MPI_-

35
TEST, or one of the related multiple completion routines.
36
The unexpected message queue contains a different class of information than the send
37
and receive queues, because the elements on this queue were created by MPI calls in other
38
processes. Therefore, less information is available about these elements (e.g., the data type
39
that was used by the sender).
40
In all three queues, the order of the elements represents the order that the MPI subsys-
41
tem will perform matching. This is important where many entries could match, for instance
42
when a wildcard tag or source is used in a receive operation.
43
Note that these queues are conceptual; they are an abstraction for representing the
44
progression of messages in an MPI program. The actual number of queues in an MPI im-
45
plementation is implementation dependent. The MQD interface defines these conceptual
46
queues so that message information can be presented to users independently of any partic-
47
ular MPI implementation. For example, an MPI implementation may maintain only two
48
queues, the receive queue and the unexpected message queue. The implementation does
Unofficial Draft for Comment Only
2

not maintain an explicit queue of send operations; instead, all the information about an incomplete send operation is maintained in the associated MPI_Request.
3
The interface described in this document is not part of the official MPI specification
1
2
3
4
5
[image: image6.png]

6
Chapter 3
8
9
[image: image7.png]

10
Definitions
12
13
[image: image8.png]

14
3.1
MPI Process Definition
16
An MPI process, or process in the scope of this document, is defined to be a process that is
17
part of the MPI application as described in the MPI standard.
18

21
22

23
3.2
Image
Definition
24
25
An image is an executable or shared library file that was loaded into the address space of a process. For
26
SIMD-style programs, all MPI processes use the same executable image file. For MIMD-style programs,
27
MPI processes might have different executable image files.
28
29
3.3
“Starter” Process Definition

30
31
The starter process is the process that is responsible for launching the MPI job. The starter
32
process may be a separate process that is not part of the MPI application, or any MPI
33
process may act as a starter process. By definition, the starter process contains functions,
34
data structures, and symbol table information for the MPIR Process Acquisition Interface.
35
The MPI implementation determines which launch discipline is used, as described in
36
the following subsections.
37
38
The MPI Process as the Starter Process
39
40
An MPI implementation might implement its launching mechanism such that an MPI pro-
41
cess, e.g., the MPI_COMM_WORLD rank 0 process, launches the remaining MPI processes of the MPI
42
application. In such implementation, the MPI process that started the other MPI processes
43
is the starter process.
44
45
A Separate mpiexec as the Starter Process
[image: image9.png]

[image: image10.png]

Many MPI implementations use a separate mpiexec process that is responsible for launching the MPI processes. In these implementations, the mpiexec process is the starter process.
48
Unofficial Draft for Comment Only
4

Note that the name of the starter process executable varies by implementation; mpirun is a
name commonly used by several implementations, for example. Other names include (but are not limited to) srun, aprun, orterun, and prun.
3.4
MQD Host and Target Node Definitions
For the purposes of this document, the host node is defined to be the node running the tool process, and a target node is defined to be a node running the target application processes the tool is controlling. A target node might also be the host node; that is, the target application processes might be running on the same node as the tool process.
5
The interface described in this document is not part of the official MPI specification
1
2
3
4
5
[image: image11.png]

6
Chapter 4
8
9
[image: image12.png]

10
Debugger/MPI Interaction Model
12
13
[image: image13.png]

14
4.1
Debug DLL

16
The debugger gains access to the message queue functionality by loading a shared library
17
provided by the MPI implementation, the debug DLL. This allows the debugger to be
18
insulated from the internals of the MPI library so that it can support multiple MPI im-
19
plementations. Furthermore, MPI implementations can provide their users with debugging
20
support without requiring source access to the debugger. The debugger learns about the
21
location of this shared library by reading the variable MPIR_dll_name from the MPI starter
22
process.
23
All calls to the debug DLL from the debugger are made from entry points whose names
24
are known to the debugger. However, all calls from the DLL to the debugger are made
25
through a table of function pointers that is passed to the initialization entry point of the
26
debug DLL. This procedure ensures that the debug DLL is independent of any particular
27
debugger or debugger version.
28
For efficiency, it is important that the debug DLL be able to easily associate informa-
29
tion with some of these debugger-owned objects. For instance, it is convenient to extract
30
information about the address of a global variable of interest to the debug DLL only once
31
for each process being debugged, rather than every time the debug DLL needs to access
32
the variable. Similarly, the offset of a field in a structure that the debug DLL needs to
33
lookup is constant within a specific executable image, and again should only be looked
34
up once. Therefore, callbacks are provided by the debugger to allow the debug DLL to
35
store and retrieve information associated with image and process objects. Since retrieving
36
the information is a callback, the debugger has the option of either extending its internal
37
data structures to provide space for an additional pointer or of implementing a hash table

38
to associate the information with the process key.
39
40
Advice to implementors.
Since the DLL will run within the code space of the
41
debugger, the implementation of the debug DLL should avoid any calls that might
42
block or sleep for a long period of time. Such call will make the debugger become
43
unresponsive to user interaction. (End of advice to implementors.)
44
45
4.2
Debugger/Debug DLL Interaction Use Case
46
47
Figure
4.1 illustrates the interaction between the debugger and the debug DLL to iterate over the
48
messages within the message queues. This example assumes that there are n MPI processes
Unofficial Draft for Comment Only
6

Tool Process
Debugging Subsystem

Tool daemon launch/protocol
Symbol Table Information (ELF, DWARF,
6

etc). mqs_put_image_info();

Process Control (ptrace, /proc, etc.)

Tool Daemon Process
Process Control
(ptrace, /proc, etc.)

Tool Daemon Process
[image: image14.png]

…
Process Control
(ptrace, /proc, etc.)
mqs_put_process_info();
Interaction

Attach
Attach
1
through callbacks

2
Load

3
[image: image15.png]

Symbol loading

MPI process “a.out”

R/W
DLL providing MQD functionality
3
DLL callbacks
4
mqs_version_string();

Executable(s) & DLLs
5
mqs_setup_basic_callbacks();
mqs_setup_image();
7
mqs_image_has_queues();
mqs_setup_process();
8
mqs_process_has_queues();
9
mqs_dll_error_string();
mqs_update_communicator_list()
10
mqs_setup_communicator_iterator();
0
mqs_get_communicator();
mqs_next_communicator();
11
mqs_setup_operation_iterator();
0
mqs_next_operation();

MPI “r a n k[0] ” Process char MPIR_dll_name[];

MPI “r a n k[n -1]” Process
…
char MPIR_dll_name[];
Figure 4.1: Example collaboration diagram for Debugger/DLL interaction
that were launched running the image “a.out”.
1. The debugger looks for the global symbol MPIR_dll_name in the target process. If the symbol exists, it is expected to be a null terminated character string of the name of the shared library (the shared object or DLL providing MQD functionality) to dynamically load into the debugger. If the symbol does not exist, the debugger might attempt to a hardcoded shared library name. If no library exists, MQD functionality is disabled.
2. The debugger attempts to dynamically load the DLL.
3. Once the debugger has loaded the DLL it will check for version compatibility by calling mqs_version_string() to inquire the version of the DLL. It should also call mqs_- version_compatibility() to inquire whether the DLL requires a different version of the debugger. Lastly, during this pre-initialization phase, the debugger should call mqs_dll_taddr_width() so that it knows the bitness
with which the DLL was
compiled.
4. The debugger initializes the DLL by calling mqs_setup_basic_callbacks() and pass a pointer to the structure containing the pointers to the basic callback functions provided by the debugger. The DLL is expected to save the pointer
to the callback structure.
7
The interface described in this document is not part of the official MPI specification
5. For
 each executable image that is used by the MPI processes, the debugger calls mqs_- setup_image and provide it with a pointer to callback structure containing image
related callbacks.
6. The DLL will initialize any data structure that is necessary to store image specific information and will call mqs_put_image_info to have the debugger associate the
image
with the allocated data structure.
7. Once mqs_setup_image completes successfully, the debugger calls mqs_image_has_- queues to indicate whether the image
has message queues support or not. If the image has message queue dumping support, the function will return mqs_ok, otherwise it will return an error. For each image that has queue support
, the debugger should call mqs_- setup_process on each process that is an instance of the image and subsequently calls mqs_setup_process_info to allow the DLL to initialize data structure that it
uses to store process specific information. For each of the aforementioned process, the debugger also calls mqs_process_has_queues to inquire whether the process has
message queue dumping support enabled.
8. If the DLL returns an error for any of the callbacks, the debugger should call mqs_- dll_error_string to get more obtain more information about the error. On the
other hand, if the debugger returns an error for any of the callbacks, the DLL should call mqs_errorstring_fp (part of the mqs_basic_callbacks structure) to get more
information on the error.
9. Before querying the message queues the debugger calls the function mqs_update_- communicator_list() to verify that it has the latest information about the active
communicator in a specific process and refreshes it if necessary.
10. The debugger then iterates over each communicator by first asking the DLL to setup the internal iterator to iterate over the active communicator list by calling mqs_- setup_communicator_iterator(). Then it calls mqs_get_communicator() to ob-
tain each communciator in the list and moves the iterator to the next communicator by calling mqs_next_communicator(). mqs_next_communicator() returns mqs_ok if there is another element to look at; otherwise it should return mqs_end_of_list.
11. Within each communicator, the debugger iterates over the message queues by first calling mqs_setup_operation_iterator() and indicate the queues it wants to iterate over. The debugger then calls mqs_next_operation to start iterating the messages
within the requested queue.
8
The interface described in this document is not part of the official MPI specification
1
2
3
4
5
[image: image16.png]

Chapter 5
6
8
9
[image: image17.png]

Interface Specifications

10
The MPI Message Queue Dumping Interface is specified as a set of C-language definitions.

The following sections enumerate those definitions.
12
13
[image: image18.png]

Unless otherwise noted, all definitions are required.
14
15
16
5.1
MPIR_dll_name

17
[image: image19.png]

[image: image20.png]

18
Global variable definition:
char MPIR_dll_name[];

Definition is required.

Definition is contained within the address space of the MPI process.

Variable is written by the MPI process, and read by the tool.
MPIR_dll_name is a null-terminated character string that contains the file system path name of the MQD DLL provided by the MPI implementa-
[image: image21.png]

tion. If this symbol is not present in the MPI process, the debugger might attempt to load a default shared library, which is implementation dependent. If this also fails, MQD support is disabled.
23
Advice to implementors. On some platforms it might be necessary to take additional
24
efforts during compiling or linking to prevent this variable from being removed because
25
it is usually not referenced from with the MPI implementation. (End of advice to
26
implementors.)
27

28
5.2
Types for Target Independence
29
	
	30

	Since the code in the debug DLL is running inside the debugger, it could be running on a
	31

	completely different platform than the target platform where the debugged process is running. For example, the DLL might be compiled as a 32-bit shared library, but the target MPI process might be compiled as 64-bit application.
	32

	Therefore, the interface uses explicit types to describe target types, rather than canonical
	33

	C types.
	34

	
	35

	5.2.1
mqs_tword_t

	36

37
mqs_tword_t is a target independent typedef name that is the appropriate type for the
38
DLL to use on the host to hold a target word (long).
39
40
5.2.2
mqs_taddr_t

41
mqs_taddr_t is a target independent typedef name that is the appropriate type for the
42
DLL to use on the host to hold a target address (void*)
43
44
5.2.3
mqs_target_type_sizes
45
46
Type definition:
47
48
Unofficial Draft for Comment Only
9

typedef struct
{
int short_size; int int_size; int long_size;
int long_long_size;
int pointer_size;
} mqs_target_type_sizes;
mqs_target_type_sizes is a type definition for a struct that holds the size of common types in the target architecture. The debug DLL will use the callback mqs_get_type_- sizes_ft provided by the debugger, which takes a variable of type mqs_target_type_- sizes, and populates it with the size information that it has based on the target host:
• short_size holds the size of the type short in the target architecture.
• int_size holds the size of the type int in the target architecture.
• long_size holds the size of the type long in the target architecture.
• long_long_size holds the size of the type long long in the target architecture.
• pointer_size holds the size of a pointer (void *) in the target architecture.
5.3
Opaque Types Passed Through the Interface

The debugger exposes several objects to the debug DLL: the image
, a specific process, and named types. In order to avoid exposing the debugger’s internal representations of these types to the debug DLL, which has no need to see the internal structure of these
objects, these objects are defined in the interface file as typedefs of undefined (opaque) structures
and are always passed by reference (as a pointer to the opaque structure). The use of these opaque types allows the debugger freedom to either pass true pointers to its internal data structures or to pass some other key
to the debug DLL from which it can later retrieve the internal object. The use of typedefs

provides more compile-time checking than the use of void * for objects.
The following are opaque types defined within the debugger and are exposed to the debug DLL as undefined typedefs. The debug DLL uses these types as keys to identify
objects of interest, or to be passed back to the debugger through some callback.
• mqs_image identifies an image.
• mqs_process identifies an MPI process.
• mqs_type identifies a named target type symbol.
The following are opaque types defined within the debugger and are cast to explicit types within the debug DLL for the debug DLL’s internal processing. These types exist so that the debug DLL can associate some information with the debugger-owned objects.
• mqs_image_info is used to associate information pertaining to an object of type
mqs_image.
• mqs_process_info is used to associate information pertaining to an object of type
mqs_process.
10
The interface described in this document is not part of the official MPI specification
5.4
Constants and Enums

5.4.1
mqs_lang_code

typedef enum { mqs_lang_c
= ’c’, mqs_lang_cplus = ’C’, mqs_lang_f77
= ’f’, mqs_lang_f90
= ’F’
} mqs_lang_code;
This enum is used by both the debug DLL and the debuger to identify the language type on which the original target code was based.
5.4.2
mqs_op_class

typedef enum
{
mqs_pending_sends, mqs_pending_receives, mqs_unexpected_messages

} mqs_op_class;
This enum is used by the debugger to indicate the queue in which it is interested.
5.4.3
mqs_interface_version

This constant defines the version of the interface header.
/***

 * Version of the interface this header represents

 */

enum

{

 MQS_INTERFACE_COMPATIBILITY = 2

};
5.4.4
mqs_status
enum mqs_status
{
mqs_st_pending, mqs_st_matched, mqs_st_complete

};
This enum is used to by the DLL to indicate the status of a message in the message queue.
5.4.5
Result code enum
enum {
mqs_ok = 0, mqs_no_information, mqs_end_of_list, mqs_first_user_code = 100
};
11
The interface described in this document is not part of the official MPI specification
This enum defines the various result codes for the message queue dumping functionality. This enum is used by both the DLL and the debugger.
5.4.6
 Invalid MPI Process Rank enum
enum
{
MQS_INVALID_PROCESS = -1
};
This constant provides a value indicating an invalid MPI process rank.
5.5
Concrete Objects Passed Through the Interface
To allow the debugger to obtain useful information from the debug DLL, concrete types are defined to describe a communicator and a specific element on a message queue.
The information in the mqs_communicator structure includes the communicator’s size,
the local rank of the process within the communicator, and the name of the communicator as defined by the MPI implementation or set by the user using the MPI-2 function MPI_- COMM_SET_NAME, which was added to the standard to aid in debugging and profiling.
The mqs_pending_operation structure contains enough information to allow the de-
bugger to provide the user with details both of the arguments to a receive and of the incoming message that matched it. All references to other processes are available in the
mqs_pending_operation structure both as indices into the group associated with the com-
municator and as indices into MPI_COMM_WORLD.
5.5.1
mqs_communicator

Type definition:
typedef struct
{
mqs_taddr_t unique_id; mqs_tword_t local_rank; mqs_tword_t size;
char
name[64];
} mqs_communicator;
The debugger uses this type definition to represent an MPI communicator.
• unique_id uniquely identifies a communicator.
• local_rank identifies the rank of the current MPI process.
• size holds the size of the communicator.
• name contains the name of the communicator if it was given one.
12
The interface described in this document is not part of the official MPI specification
5.5.2
mqs_pending_operation
Type definition:
typedef struct
{
/* Fields for all messages */

int
status;
mqs_tword_t desired_local_rank; mqs_tword_t desired_global_rank; int
tag_wild;
mqs_tword_t desired_tag; mqs_tword_t desired_length; int
system_buffer; mqs_taddr_t buffer;
/* Fields valid if status >= matched or it is a send */
mqs_tword_t actual_local_rank; mqs_tword_t actual_global_rank; mqs_tword_t actual_tag; mqs_tword_t actual_length;
/* Additional strings which can be filled in if the DLL has more

 * info. (Uninterpreted by the debugger, simply displayed to the

 * user).

 *

 * Can be used to give the name of the function causing this request,

 * for instance.

 *

 * Up to five lines each of 64 characters.

 */
char extra_text[5][64];
} mqs_pending_operation;
This structure contains enough information to allow the debugger to provide the user with details about both of the arguments to a receive and of the incoming message that
matched it. All references to other processes are available in the mqs_pending_operation
structure both as indices into the group associated with the communicator and as indices into MPI_COMM_WORLD. This avoids any need for the debugger to concern itself explicitly with this mapping
• status stores the status of the message. The value of this field should be either mqs_- st_pending, mqs_st_matched, or mqs_st_complete as described in the enumeration mqs_status (section 5.4.4).
• desired_local_rank stores the rank of the target or the source for the communicator from which this message was initiated.
• desired_global_rank stores the rank of the target or the source with respect to
MPI_COMM_WORLD.
• tag_wild is a boolean that identifies whether this message is a posted receive with tag MPI_ANY_TAG.
• desired_tag holds the tag of the message. This field is only meaningful if tag_wild
is not set.
• desired_length holds the length of the message buffer in bytes.
• system_buffer is a boolean that identifies whether this is a user or a system buffer.
13
The interface described in this document is not part of the official MPI specification
• buffer holds the address to the beginning of the message data.
The following fields are only meaningful if the message is a send or if the status fields indicates that this message is either matched (mqs_st_matched), or completed (mqs_st_- complete).
• actual_local_rank holds the actual local rank (after the message has matched).
• actual_global_rank holds the actual local rank with respect to MPI_COMM_WORLD.

• actual_tag holds the actual tag of the message.
• actual_length holds the actual length of the message buffer in bytes.
• extra_text can be used by the DLL to provide more information to the user. The debugger does not interpret this field and can display it to the user.
5.6
Callbacks Provided by the Debugger
The debugger provides several callbacks that will be called by the DLL to extract informa- tion pertaining to the runtime state of the execution. All the callbacks are grouped into
three different groups based on their functionalities: mqs_basic_callbacks, mqs_image_-
callbacks, and mqs_process_callbacks.
5.6.1
mqs_basic_callbacks

Type definition:
typedef struct mqs_basic_callbacks
{
mqs_malloc_ft
mqs_malloc_fp; mqs_free_ft
mqs_free_fp;
mqs_dprints_ft
mqs_dprints_fp
;
mqs_errorstring_ft
mqs_errorstring_fp; mqs_put_image_info_ft
mqs_put_image_info_fp; mqs_get_image_info_ft
mqs_get_image_info_fp; mqs_put_process_info_ft mqs_put_process_info_fp; mqs_get_process_info_ft mqs_get_process_info_fp;
} mqs_basic_callbacks;
mqs_malloc_ft
Function type definition:
typedef void* (*mqs_malloc_ft) (size_t size);

IN
size
number of bytes to allocate
Allocates a block of memory with the specified size. Note that because the debugger might operate within certain assumptions about memory allocation, the DLL cannot call any
normal allocation routine (e.g., malloc or strdup); it has to use this function for allocation memory.
The debugger guarantees that if the allocation fails, a NULL pointer will be returned. Memory allocated by mqs_malloc_fp must be deallocated with mqs_free_fp.
14
The interface described in this document is not part of the official MPI specification
mqs_free_ft
Function type definition:
typedef void (*mqs_free_ft) (void* buf);
INOUT
buf
buffer to be freed
Frees a previously allocated memory buffer. Similarly to mqs_malloc_fp, the DLL has to use this function to free any memory allocated by mqs_malloc_fp (which is the only way
to allocate memory from the DLL).
/* Print a message (intended for debugging use *ONLY*). */

typedef void (*mqs_dprints_ft
) (const char *);
mqs_errorstring_ft
Function type definition:
typedef char* (*mqs_errorstring_ft) (int errno
);
IN
errno
the error code for corresponding the error string
Converts an error code from the debugger into an error message. The function returns a null terminated error string that corresponds to the given error code
. The returned error string is owned by the debugger and must not be deallocated by the DLL.
mqs_put_image_info_ft
Function type definition:
typedef void (*mqs_put_image_info_ft) (mqs_image* image, mqs_image_info* image_info);
	IN
	image
	the image to receive the image info

	IN
	image_info
	the image info to associate with the image

Associates the given image information with the given image. This allows the DLL to cache the information associated with the image (e.g., the pointer to the callbacks structure
provided by the debugger) so that it can retrieve it later (using mqs_get_image_info_fp) when
the debugger needs to invoke image-related functionalities (e.g., mqs_image_has_queues –
see section 5.8.2). See section 5.8.1 for more details
.
mqs_get_image_info_ft
Function type definition:
typedef mqs_image_info* (*mqs_get_image_info_ft) (mqs_image* image);
IN
image
the image to extract the image info from
Returns the image information associated with the given image.
15
The interface described in this document is not part of the official MPI specification
mqs_put_process_info_ft
Function type definition:
typedef void (*mqs_put_process_info_ft) (mqs_process* process,
 mqs_process_info process_info*);
IN
process
the process to receive the process info
IN
process_info
the process info to associate with the process
Associates the given process information with the given process. This allows the DLL to cache the information associated with the process (e.g., the pointer to the callbacks structure
provided by the debugger) so that it can retrieve it later (using mqs_get_process_info_fp)
when the debugger needs to invoke process-related functionalities (e.g., mqs_process_has_
queues – see section 5.9.2). See section 5.8.1 for more details
.
mqs_get_process_info_ft
Function type definition:
typedef mqs_process_info* (*mqs_get_process_info_ft) (mqs_process* process);
IN
process
the process to extract the process info from
Returns the process information associated with the given process.
5.6.2
mqs_image_callbacks

Type definition:
typedef struct mqs_image_callbacks
{
mqs_get_type_sizes_ft
mqs_get_type_sizes_fp; mqs_find_function_ft
mqs_find_function_fp; mqs_find_symbol_ft
mqs_find_symbol_fp; mqs_find_type_ft
mqs_find_type_fp; mqs_field_offset_ft
mqs_field_offset_fp; mqs_sizeof_ft
mqs_sizeof_fp;
} mqs_image_callbacks;
mqs_get_type_sizes_ft
Function type definition:
16
The interface described in this document is not part of the official MPI specification
typedef void (*mqs_get_type_sizes_ft) (mqs_process
* process, mqs_target_type_sizes* sizes);
	IN
	process
	the process to get the sizes from

	OUT
	sizes
	the pointer to the structure to receive for the sizes

Retrieves the size information about common data types for the process and stores them in the structure pointed to by sizes. See section 5.2.3 for the definition of mqs_target_type_sizes.
mqs_find_function_ft
Function type definition:
typedef int (*mqs_find_function_ft) (mqs_image* image, char* fname, mqs_lang_code lang, mqs_taddr_t* addr);
	IN
	image
	the image to search for the function

	IN
	fname
	the name of the function to search for

	IN
	lang
	the language code

	OUT
	addr
	the address of the function

Given an image, returns the address of the specified function
. The function returns

msq_ok if successful and mqs_no_information if the function cannot be found.
mqs_find_symbol_ft

Function type definition:
typedef int (*mqs_find_symbol_ft) (mqs_image* image, char* sname, mqs_taddr_t* addr);
	IN
	image
	the image to search for the symbol

	IN
	sname
	the name of the symbol to search for

	OUT
	addr
	the address of the symbol

Given an image, returns the address of the specified symbol. The function returns
msq_ok if successful and mqs_no_information if the symbol cannot be found.
mqs_find_type_ft
Function type definition:
17
The interface described in this document is not part of the official MPI specification
typedef mqs_type* (*mqs_find_type_ft) (mqs_image* image, char* tname, mqs_lang_code
lang);
	IN
	image
	the image to search for the type

	IN
	tname
	the name of the type to search for

	IN
	lang
	the language code

Given an image, returns the type associated with the given named type. The function either returns a type handle (a pointer to an opaque mqs_type structure), or NULL if the type cannot be found.
Advice to implementors.
Since the debugger may load debug information lazily and/or the linker may remove such type information during optimization, the MPI run time library should ensure that the type definitions required occur in a file whose debug information will already have been loaded. For instance, by placing them in the same file as the startup breakpoint function.
 (End of advice to implementors.)
mqs_field_offset_ft

Function type definition:
typedef int (*mqs_field_offset_ft) (mqs_type* type, char* fname);
	IN
	type
	the type that contains the field

	IN
	fname
	the field name to retrieve the offset

Given the type handle for a struct type, returns the byte offset of the named field. If the
field cannot be found, the function returns -1.
mqs_sizeof _ft
Function type definition:
typedef int (*mqs_sizeof _ft) (mqs_type* type);
IN
type
the type to get the size for
Given the type handle for a type, returns the size of the type in bytes.
5.6.3
mqs_process_callbacks

Type definition:
typedef struct mqs_process_callbacks
{
mqs_get_global_rank_ft
mqs_get_global_rank_fp; mqs_get_image_ft
mqs_get_image_fp; mqs_fetch_data_ft
mqs_fetch_data_fp; mqs_target_to_host_ft
mqs_target_to_host_fp;
} mqs_process_callbacks;
18
The interface described in this document is not part of the official MPI specification
mqs_get_global_rank_ft
Function type definition:
typedef int (*mqs_get_global_rank_ft) (mqs_process* process);
IN
process
the process to get the global rank for
Given a process, returns its rank in MPI_COMM_WORLD. Returns MQS_INVALID_PROCESS if the rank of the process is not known.
mqs_get_image_ft
Function type definition:
typedef mqs_image* (*mqs_get_image_ft) (mqs_process* process);
IN
process
the process to get the image for
Given a process, returns the image
of which it is an instance.
mqs_fetch_data_ft
Function type definition:
typedef int (*mqs_fetch_data_ft) (mqs_process* process, mqs_taddr_t addr, int size, void*

buf);
	IN
	process
	the process to fetch the data from

	IN
IN OUT
	addr size buf
	the virtual address in the process’ virtual address space the number of bytes to read
the buffer to store the data

Fetches data from the process into the specified buffer. The function returns msq_ok if
the data could be fetched successfully. Otherwise, it returns mqs_no_information.
The data returned in the buffer is in the same format as data stored in the target process when accessed as a byte array. The DLL must call mqs_target_to_host_fp to do any necessary byte reordering for multi-byte types, such as short, int, void*, double, etc.
mqs_target_to_host_ft
It is possible that although the debugger is running locally on the same machine as the target process, the target process may have different properties from the debugger. For example, on some operating systems it is possible to execute both 32- and 64-bit processes. To handle this situation, the debugger provides a callback that returns type size information for a specific process. To handle the possibility that the byte ordering may be different between the debug host and the target, the debugger provides a callback to perform any necessary byte reordering when viewing the target store as an object of a specific size. This callback enables the debug DLL to be entirely independent of the target process.
Function type definition
19
The interface described in this document is not part of the official MPI specification
typedef void (*mqs_target_to_host_ft) (mqs_process* process, const void* indata, void* out-
data, int size);
	IN
	process
	the process where the original data is from

	IN
	indata
	the data to convert

	OUT
	outdata
	the buffer to store the converted data

	IN
	size
	the number of bytes to convert

Converts data from target representation to host representation.
5.7
Callbacks Provided by the DLL

5.7.1
mqs_setup_basic_callbacks

Function declaration:
extern void mqs_setup_basic_callbacks(const mqs_basic_callbacks* cb);
IN
cb
the basic callbacks table to provide to the DLL
This function is called by the debugger to the DLL to provide the DLL with the basic callbacks table. The DLL need only save the pointer to the mqs_basic_callbacks object. The debugger must ensure the structure of function pointers remain valid for as long as the DLL is in use. The structure is owned by the debugger, and should not be modified or deallocated by the DLL. This rule applies to all of the callback structures.
5.7.2
mqs_version_string

Function declaration:
extern char* mqs_version_string();
Returns the DLL version. This allows the debugger to check
whether the debugger’s MQD support is compatible with this version of the DLL (e.g., whether the user needs a newer version of the DLL). The returned version string is owned by the DLL and must not be deallocated by the debugger.
5.7.3
mqs_version_compatibility

Function declaration:
extern int mqs_version_compatibility();
Returns the DLL compatibility level, that is, the value of MQS_INTERFACE_COMPATIBILITY when the DLL was compiled. This allows the debugger to check whether this version of the DLL’s MQD support is compatible with the debugger’s version (e.g., whether the user needs a newer version of the debugger).
5.7.4
mqs_dll_taddr_width

Function declaration:
20
The interface described in this document is not part of the official MPI specification
extern int mqs_dll_taddr_width();
Returns the sizeof(mqs_taddr_t) that has been compiled into the DLL. It is not the width of an address or pointer for the target process, which could be a different size from an mqs_taddr_t. This function is useful, for example, when the DLL was compiled with a 32-bit mqs_addr_t type, but the debugger was compiled with a 64-bit mqs_addr type.
5.7.5
mqs_dll_error_string

Function declaration:
extern char* mqs_dll_error_string(int error_code);
IN
error_code
the error code that corresponds to the error string
Provides a null-terminated text string for an error code. This function provides a means for the debugger to get the string associated with an error returned from the DLL. The returned error string is owned by the DLL and must not be deallocated by the debugger.

Note that this function complements the function mqs_errorstring_fp, which provides a means for the DLL to get
the string associated with an error code returned from the debugger.
5.8
Executable Image Related Functions
These functions are provided by the DLL and are called by the debugger.
5.8.1
mqs_setup_image

Function declaration:
extern int mqs_setup_image(mqs_image* image, const mqs_image_callbacks* cb);
	IN
	image
	the image to setup the callbacks table

	IN
	cb
	the image callbacks table

Sets up debug information for a specific image. This function must cache the provided callbacks and use those functions for accessing this image. The DLL should use the mqs_- put_image_info and mqs_get_image_info functions to associate information to keep with the image. The debugger will call mqs_destroy_image_info when the information about
the given image is no longer needed. This will be called once for each executable image in the parallel program.

5.8.2
mqs_image_has_queues

Function declaration:
21
The interface described in this document is not part of the official MPI specification
extern int mqs_image_has_queues(mqs_image* image, char** message);
	IN
	image
	the image to query MQD functionality

	OUT
	message
	buffer to store message from the DLL

Returns whether this image has the necessary symbols to allow access to the message queues. This function is called by the debugger once for each image
, and the information is cached within
the debugger. The function returns mqs_ok if MQD support can be provided by this image.
If *message is set to non-NULL, it must be a printf-style string returned by the DLL to provide additional information about the result of the call. A non-NULL string may be returned on success or failure. The string must contain at most one printf-style “%s” token for where the image name will be substituted, and no other printf-style tokens. For example, the debugger can print the message string using “printf(message,image_name);”. The returned message string, if any, is owned by the DLL and must not be deallocated by the debugger.
5.8.3
mqs_destroy_image_info

Function declaration:
extern int mqs_destroy_image_info(mqs_image_info* image_info);
IN
image_info
the image info to free
Allows the DLL to clean up when the image information is no longer needed by the debugger.
5.9
Process Related Functions
These functions are provided by the DLL and are called by the debugger.
5.9.1
mqs_setup_process

Function declaration:
extern int mqs_setup_process(mqs_process* process, const mqs_process_callbacks* cb);
	IN
	process
	the process to setup the callbacks table

	IN
	cb
	the process callbacks table

Sets up process specific information.
5.9.2
mqs_process_has_queues

Function declaration:
extern int mqs_process_has_queues(mqs_process* process, char** message);
	IN
	image
	the process to query mqs functionality

	OUT
	message
	buffer to store message from the DLL

Similar to the mqs_process_has_queues function, this allows for querying whether
a process has support for message queue dumping. This function should only be called if the image claims to provide message queue dumping. For example, the image might have enabled message
22
The interface described in this document is not part of the official MPI specification
queue support if only certain environment variables are set at launch time. This function checks at runtime whether message queue dumping support is enabled for this specific process.
If *message is set to non-NULL, it must be a printf-style string returned by the DLL to provide additional information about the result of the call. A non-NULL string may be returned on success or failure. The string must contain at most one printf-style “%s” token for where the process name will be substituted, and no other printf-style tokens. For example, the debugger can print the message string using “printf(message,process_name);”. The returned message string, if any, is owned by the DLL and must not be deallocated by the debugger.
5.9.3
mqs_destroy_process_info

Function declaration:
extern int mqs_destroy_process_info(mqs_process_info* processinfo);
IN
processinfo
the process info to free
Allows the DLL to clean up when the process information is no longer needed by the debugger.
5.10
Query Functions
These functions provide the message queue query functionality. The model is that the debugger calls down to the DLL to initialize an iteration over a specific class of items,
and then keeps calling the iterating function until it gets mqs_false. The DLL internally
keeps track of the item being iterated (similar to a file cursor). For communicators, the stepping is separated from extracting information because the debugger will need the state
of the communicator iterator to qualify the selections of the operation iterator. mqs_true
is returned when the description has been updated; mqs_false means there is no more
information to return, and therefore the description contains no useful information. There is only one of each type of iteration running at once; the DLL should save the iteration
state in the mqs_process_info.
5.10.1
mqs_update_communicator_list

Function declaration:
extern int mqs_update_communicator_list(mqs_process* process);
IN
process
the process to refresh the list of active communicators
Given a process, refreshes the list of active communicators. Ideally this list is cached somewhere within the DLL and the debugger invokes it when necessary.
 The function
returns msq_ok if the operation succeeds.
5.10.2
mqs_setup_communicator_iterator

Function declaration:
extern int mqs_setup_communicator_iterator(mqs_process* process);
IN
process
the process to prepare the iterator
Given a process, prepares the iterator to walk the active communicator list.
The function returns msq_ok if the operation succeeds.
23
The interface described in this document is not part of the official MPI specification
5.10.3
mqs_get_communicator
Function declaration:
extern int mqs_get_communicator(mqs_process* process, mqs_communicator* mqs_comm);
	IN
	process
	the process to retrieve the communicator

	OUT
	mqs_comm
	the buffer to receive the communicator data

Extracts information about the current communicator. The function returns msq_ok
if the operation succeeds. See section 5.5.1 for the definition of mqs_communicator.
5.10.4
mqs_get_comm_group

Function declaration:
extern int mqs_get_comm_group(mqs_process* process, int* ranks);
	IN
	process
	the process to obtain the group information

	OUT
	ranks
	the buffer to receive the rank mapping

Extracts the group from the current communicator. The debugger already knows the size of the communicator, so it will allocate a suitably sized array for the result. The result
is an array in which the element at index i contains the MPI_COMM_WORLD rank of the i-th rank
in the current communicator. The function returns msq_ok if the operation succeeds.
5.10.5
mqs_next_communicator

Function declaration:
extern int mqs_next_communicator(mqs_process* process);
IN
process
the process to get the next communicator
Moves the internal iterator to the next communicator in this process. The function returns mqs_ok if the operation succeeds.
Example 5.1
/* Iterate over each communicator displaying the messages */
mqs_communicator comm;
for (dll->setup_communicator_iterator (process);
dll->get_communicator (process, &comm) == mqs_ok;
dll->next_communicator(process)){
/* Do something on each communicator, described by comm */
}
24
The interface described in this document is not part of the official MPI specification
5.10.6
mqs_setup_operation_iterator
Function declaration
extern int mqs_setup_operation_iterator(mqs_process* process, int opclass);
	IN
	process
	the process to setup the operation

	IN
	opclass
	the type of operation requested

Prepares to iterate over the pending operations in the currently active communicator in this process. op should be one of the operations specified in mqs_op_class (see section
5.4.2 for the definition of mqs_op_class). The function returns msq_ok if the operation
succeeds.
5.10.7
mqs_next_operation

Function declaration:
extern int mqs_next_operation(mqs_process* process, mqs_pending_operation* op);
	IN
	process
	the process to fetch the operation

	OUT
	op
	the buffer to receive the operation data

Fetches information about the next appropriate pending operation in the current com- municator. The function returns mqs_false when there is no more operation to iterate.
25
The interface described in this document is not part of the official MPI specification
1

2
3
4
5
[image: image22.png]

7
Bibliography
8
9
10
11
[1] mpi-debug: Finding Processes. http://www-unix.mcs.anl.gov/mpi/mpi-debug/.
[image: image23.png]

[image: image24.png]

[image: image25.png]

12
[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Message
Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 51–58, Barcelona, Spain, September 1999.

[image: image26.png]

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Unofficial Draft for Comment Only
26
William Gropp wrote:

> Page 6. Why describe the DLL as a shared library instead of a

> dynamically linked library? There can be subtle differences, and DLL

> is the correct choice.

I found this comment interesting, mostly because I've found everyone is loosey-goosey with the terminology, including myself. Wikipedia has several discussions on the distinction between a dynamic-linked library, a DLL, a shared object file, a shared library, a dynamic loaded library, and a few other terms. I never know who to believe when I read stuff on Wikipedia, but at least one article claims that a "Dynamic-link library", or DLL, is a term from OS/2 and Windows. It explicitly says, "Not to be confused with Dynamically loaded library.".

The article at: <http://en.wikipedia.org/wiki/Library_%28computing%29> does a pretty good job with the terminology...

Under the "Dynamic linking" section it says: "Dynamic linking or late binding refers to linking performed while a program is being loaded (load time) or executed (run time), rather than when the executable file is created. A dynamically linked library (dynamic-link library or DLL under Windows and OS/2; dynamic shared object or DSO under Unix-like systems) is a library intended for dynamic linking. Only a minimum amount of work is done by the linker when the executable file is created; it only records what library routines the program needs and the index names or numbers of the routines in the library. The majority of the work of linking is done at the time the application is loaded (load time) or during execution (run time). The necessary linking program, called a dynamic linker or linking loader, is actually part of the underlying operating system."

Under the "Dynamic loading" section it says: "Dynamic loading, a subset of dynamic linking, involves a dynamically linked library loading and unloading at run time on request. Such a request may be made implicitly at compile time or explicitly at run time. Implicit requests are made at compile time when a linker adds library references that include file paths or simply file names. Explicit requests are made when applications make direct calls to an operating system's API at run time. Most operating systems that support dynamically linked libraries also support dynamically loading such libraries via a run-time linker API. For instance, Microsoft Windows uses the API functions LoadLibrary, LoadLibraryEx, FreeLibrary and GetProcAddress with Microsoft Dynamic Link Libraries; POSIX based systems, including most UNIX and UNIX-like systems, use dlopen, dlclose and dlsym. Some development systems automate this process."

So, I think that tools using message queue interface want dynamic loading. In other words, in the most general case, the tool wants to be able to dynamically load the message queue library at runtime, which allows it to support many different MPI implementations. Whether the tool is loading a shared object, DLL, etc. is a detail of the operating system, and is not pertinent to the discussion. The paper should make it clear that the tools want it as dynamic as possible within the constraints of the operating systems. But that said, is there any operating system left that still matters that does not support dynamic loading? I can't think of any.

Cheers, John D.

> Bill

>

> William Gropp

> Director, Parallel Computing Institute Deputy Director for Research

> Institute for Advanced Computing Applications and Technologies Thomas

> M. Siebel Chair in Computer Science University of Illinois

> Urbana-Champaign

>

>

>

>

> On May 8, 2013, at 1:27 PM, Anh Vo wrote:

>

>> Hi John and Bill,

>> Thanks to Jeff and Kathryn’s feedbacks, I’ve managed to get the MQS

>> proposal to a state that is not too embarrassing to send out for your

>> review (since you two have a lot of background and knowledge in this

>> interface). Would you be able to give me feedbacks by Wednesday May

>> 15^th ? We’re going to have the Tools working group call on 16 and

>> depending on your feedbacks, we might attempt to have this sent out

>> to the wider audience to prepare for first reading for the MPI forum

>> meeting in San Jose in June (the proposal will have to be sent out on

>> May 27^th to be eligible for first reading)

>>

>> Known issues:

>> 1) I have a duplicate number 3 in the figure. The number 3

>> indicating the symbol loading will be removed.

>> 2) I think we need an acknowledgement section somewhere (should

>> it be in a chapter or should it be part of background?). A lot of the

>> text is paraphrased from the eurompi paper and from the comments in

>> the code itself. Most of it are probably written by James, I believe.

>> Thanks

>> --Anh

>> <mqs.pdf>

>

7

11

7

11

25

7

11

15

46

47

7

11

15

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7

11

21

19

20

22

6

13

14

15

16

�Shouldn’t the title of this document be “The MPI Message Queue Display Interface” or “The MPI Message Queue Dumping Interface”? Here’s why: The “MPIR Process Acquisition Interface” spec references the “Message Queue Display” Interface at the bottom of page 2. Even though the names in the header files start with “mqs_”, the interface has historically been called “MQD”. Now, is that Message Queue Display or Dumping? One of the original documents has “Dumping” in the title, see here: <� HYPERLINK "http://www.mcs.anl.gov/research/projects/mpi/mpi-debug/README" �http://www.mcs.anl.gov/research/projects/mpi/mpi-debug/README�>. That file also uses the term “message queue dumping interface” consistently, but in one or two places the term “message queue display” is used, but not as the name of the interface. Therefore, I think that the name of the interface is “The MPI Message Queue Dumping Interface” and the acronym should be “MQD”; the MPIR Process Acquisition Interface spec should get fixed.

�I hope I get a nod too (

�The MPIR Process Acquisition Interface is not standardized. Like this document, it is not part of the official MPI specification.

�Here’s a general comment that applies to the whole document… Perhaps this is an artifact of converting the document from LaTex to Word, but the document has a lot of hyphenated identifiers at the end of a line. I find this particularly disturbing for the MQD API identifiers. Is there a way to prevent hyphenating the identifiers?

�The second paragraph is not relevant to the MQD interface

�As I mention later in my comments, I think we should define terms for “shared object”, “dynamic-link library (DLL)”, “dynamic linking”, “dynamic loading”, and “shared library”. Also, the concepts of “image link address”, “image load address”, and “runtime image relocation”.

�I think we should be more general with the term “image” to mean executable or shared library. The reason is that we do not want to require symbols to reside in the executable. We should allow symbols to reside in shared libraries.

Also, I think we need to define the “address space” of a process, and an “image list” as a collection of image files that have been loaded in the address space, and possibly relocated at runtime.

�Bill Gropp had some comments on the use of the terms “DLL” vs. “shared library”. I appended my reply to Anh and Bill to the end of this document. It has what I think is the correct terminology. As I said in the email, if we want to be pedantic here, I think the MQD library is a “shared object” in Unix lingo and a “dynamic-link library (DLL)” in Windows or OS/2 lingo, and what the tools want to do is “dynamically load a shared object or DLL”. We should define these terms in section 3.

�Is “hash table” too specific here? Perhaps it should say “lookup scheme”.

�FYI, I haven’t studied this diagram closely enough to know if it’s completely accurate. Also, the Word version of the document seems like it might have gotten damaged a bit. For now, I’m going to skip over the details of the diagram.

�“bitness? Do you mean “bit width”?

�Hmmm... I guess I don’t know what this means. Does it mean that the DLL is supposed to copy the structure and it’s OK for the debugger to delete it, or does it means that the debugger is not allowed to delete or change the structure after passing it to the DLL.

�I think the old paradigm of calling mqs_setup_image() once per executable image does not work on modern systems. I believe that the original description was written back in the days when: (1) static linking the MP application was common so that all of the symbols needed by the DLL were in the executable image, (2) prelinking and non-uniform shared library load addresses was uncommon. To handle modern systems, I think the object that is needed for “mqs_image” is more like an “address space” containing a collection of image files, where the load addresses of the images may be different for each MPI process. IMHO, this is a major flaw in the current document.

�The uses of the word “image” must be fixed here.

�The uses of the word “image” must be fixed here.

�Given the dynamic nature of most modern systems, I think this is a flawed concept because it is over simplified. The MQD support is not necessarily dependent on the executable image or a single image file, it is dependent on the set of image files loaded into the address space of the MPI process at any given instance of the process’s lifetime. In the general case, MQD dependent on the image files loaded into the process, and not on any single image.

�We should say somewhere here that the API uses “C linkage”, thus no C++ name mangling.

�This variable should be formatted the same way that the MPIR Process Acquisition Interface formats its variable definition. At one point, I had MPIR_dll_name[] in the MPIR document, but the tools WG decided to remove it

�We should probably document the Open MPI extension for “mpimsgq_dll_locations”, which allows for a list of shared library names to be used. This is useful for resolving debugger ABI differences, such a one debugger being a 32-bit application and some other debugger being a 64-bit application. It still doesn’t handle the case of platform differences (e.g., x86 vs. ppc) but it’s better than MPIR_dll_name[] alone.

�Signed integer wide enough to hold onto a target long.

�Unsigned integer wide enough to hold onto a target address.

�As mentioned elsewhere, I think we have to generalize the term “image” to mean the collection of image files loaded into the address space of an MPI process.

�I don’t see the definition of this anywhere in the interface or TV debugger sources. I do see the definition of “MQS_INTERFACE_COMPATIBILITY” as shown below. Where did “mqs_interface_version” come from?

�I like to see one subsection per type, and not lump them together into a “Other enums” subsection.

�I found this member in the TV copy of mpi_interface.h. It was missing from this document, I wonder why.

�Each of the function signature typedefs should be terminated with a semi-colon.

�I found this in the TV copy of mpi_interface.h.

�I think it’s not nice to use “errno” as the formal parameter name, and we should use something like “error_code”.

�We should say something about who owns the string. In other words, should the DLL deallocated the string or not? NOT!

�This section reference seems wrong to me.

�This section reference seems wrong to me.

�Strangely enough, this takes a mqs_process* even though it’s an image callback.

�See the comment below on “the address of the symbol”.

�So, the usefulness of this function might be a bit subtle, and thus warrant “advice to implementers”… I’ve seen mqs_find_function_fp used in situations where the DLL wants to force the debugger to fully process all symbol table information (types, typedefs, etc.) in a compilation unit. So, the DLL would find a function defined in a compilation unit that it know also contains MPI type definitions to make sure that the debugger has fully read in the types.

�Further evidence that mqs_image as originally conceived cannot handle modern systems. Calls to mqs_find_symbol_fp are typically used to find a variable so that the DLL can read the variable’s value. For the symbol address to be useful, it must be a process load address, not a (static) link address typically found in image files.

�This doesn’t make sense anywhere other than MPICH 1, because the “startup breakpoint” is typically in the MPI starter process, not the MPI process itself. We should give advice about how to use mqs_find_function_fp on a function name inside a compilation unit where the implementer knows that type symbols are defined.

�See previous comments of the concept of “image”. On modern systems, this might want to be implemented as “return (mqs_image *)process;” or return a pointer to an object describing the set of image files loaded into the process’s address space.

�Does it? How? I don’t think this is true, because the DLL is allows to return any string it likes, so the debugger has no way of checking the string for compatibility. Instead, I think think this string is for human consumption, so that the debugger can print or display the version string so that the user can know which DLL was loaded.

�What TV actually does is pass a pointer to the address space object for the process as the “image” pointer argument. The reason is that a process has a collection of images loaded into its address space, so it doesn’t make sense to pass-in just a pointer to an executable image object. I don’t know what other debuggers do, but it seems like the description here is misleading, and needs to be clarified. In other words, the mqs_image type is an object that describes a collection of images for the process.

�AFAICT, TV is calling this once for each address space in the parallel program. I think the way it is written is misleading.

�As I’ve said repeatedly, I think it have to be called once per MPI process.

�I don’t understand what this means.

�IMHO, we should have a copy of the “mpi_interface.h” header inserted here. If that’s not desirable, we should have a reference to an official copy of the header file stored on the MPI site somewhere.

[image: image27.png]

[image: image28.png]

[image: image29.png]

[image: image30.png]

[image: image31.png]

[image: image32.png]

[image: image33.png]

[image: image34.png]

[image: image35.png]

[image: image36.png]

[image: image37.png]

[image: image38.png]

[image: image39.png]

[image: image40.png]

[image: image41.png]

[image: image42.png]

[image: image43.png]

[image: image44.png]

[image: image45.png]

[image: image46.png]

[image: image47.png]

[image: image48.png]

[image: image49.png]

[image: image50.png]

[image: image51.png]

