0{(%? We OPIce (y) /
g{@(}g/me/?% (A///”MF'

Chapter 1 I‘*

Background
pm//fﬂ, 13

In carly 1995, TotalView's Jim Cownie and Arginne National Laboratory's Bill Gropp and
Rusty Lusk decided to gRigrpaezmdevelop debugging interfaces for use with MPICH,
one of the first widely available MPI implementations. Two interfaces were developed:
one for process discovery/acquisition and one for message queue extraction. Coined the
“MPIR"” interfaces [1. 2]. the MPI debugging interfaces eventually became de facto stan-
dards implemented by various MPI providers such as Compaq, HP, IBM, Intel. LAN/MPI,
MPI Software Technologies, Open MPI, Quadrics, SCALIL SGI, Sun/Oracle and other im- ~ * ;
plementations of MPI. a9 fevmat s/zm?[/‘aé

In 2010. the MPI Forum published (@R document which-¢ the/MPIR 2"’
Process Acquisition Interface but left out the details about about the interface for message -
24

queue extraction (MQS). This document by describing the existing
4@5 interfaces being used by most MPI debfiggers and MPI implementations today to provide
users with information about the mesghge passing state of an MPI program.

5

Rationale. Note that this dgcument does not introduce any improvements to the 28
existing de facto use of the ¥IQS interface. Nor does it addresses any shortcon
of the existing MQS interfage, such as the inability to load different debugger I)

to support an environmeny where the debugger has the different Ja from the %
target. This document is golely intended to codify the current state ¢f the art. (End — **

of rationale.) /ﬂ/af)%/\/)) ‘;,s

(/’qud//}’n@ﬂ/o* e 2000 PR docearayrt

Unofficial Draft for Comment Only 1

Chapter 2

Overview #: %™

an

The message queue interfacefis used by tocgqnd debuggers to extract information describing
the conceptual message-pasping state of MPT application so that this can be displayed
to the users. Whi le-the orjginal intent of the interface was to provide the functionality to
debuggers any ool’t at Has debugger like capabllm (e.g., providing symbol name lookup)

i SS t q message passing state. SrSwthimepeintor:
nd debugg ntcrchangahlv absHact

oY S, there are three distinct/message queue;"which
represent the MPI subsy b”cem ThC\ are: \ﬂ

1. Send Queue: represents all of the outstanding send operations.

2. Receive Queue: represents all of the outstanding receive operations.

. Unexpected Message Qucuw&zﬁs all the messages that have a
process, but have not been = vet Zl: 3{},6/)

The send and receive queues store information aboutf all of
receive operations that the process-has started within
result either from hlockm %10 such @, andQPI_Recy or nonblocking
operations such as MPI_Isend &® /I)I/Drecv Each en 1\ on one of these queues contains the
information that was passe the function call tM itiated)the operation. Nonblocking
opera,tlonb will remain on these queues until theyf haxégﬁf)"m eted

by -a-seiilsle MPI_Wait, MPI_Test, or onc of the rolated multiple completion routines. The
unepxectcd message queue represents a different class of information, since the clements on
this queue have been created by MPT calls in other processes. Therefore, less information
is available about these elements (c.g.. the datatype that was used by the sender). In all
cases the order of the queues represents the order that the MPI subsystem will perf
matching (this is important where many entries could match. for instance wlen ;Cﬁ
tag or source is used in a receive operation).

Note that these queues are conceptual: they are a description of how a user can think
about the progression of messages through an MPI program. The number aé)sf‘ %Equeues
is 1mplcmontaendent The interface described here adednesseshatosto—emtsact: these
conceptual queucs fonrtheipslementasion so that they can be presented to the user inde-
pendently of the particular MPI implementation. For example. an MPI implementation may
maintain only two queues. the Receive Queue and the Unexpected Message Queue. There
is no explicit queue of send operations; instead all of the information about an incomplete
send operation is maintained in the associated MPI_Request.

w

Unofficial Draft for Comment Only

8]

send and CBQg

These might 754

Chapter 3

Definitions

24U
3.1 MPI Pgbdcess Definition

proccssesg. For example. the phrase "MPI rank 0 process™ denotes the process that is rank

0 in MPI_COMM_WORLD. .
ﬁc/om{‘ //c%é’/ O d/cf/

3.2 “Starter” Process Defipition N7l (f/ Oé)%‘/ﬁp

may be a separate process that is not part of the MPI application, or
I rank Q/ﬁroco&s may act as a starter process. By definition, the starter process
contains ctions. data structures. and symbol table information for the NMPIR Process
Acquisition Interface.

The MPI implementation determines which launch discipline is used. as described in
the following subsections.

The MPI Rank 0 Process as the Starter Process

An MPI implementation might«#88. implement its launching mechanism such that the MPI
rank O process launches the remaining MPI processes of the MPI application. In such
implementation, the MPI rank 0 process is the starter process.

//Separate mpiexec as the Starter Process
375

MPI implementations use a separate mpiexec process that is responsible for launching
the MPI processes. In these implementations, the mpiexec process is the starter process.
Note that the name of the starter process executable varies by implementation: mpirun is a
name commonly used by several implementations, for example. Other names include (but
arc not limited to) srun and prun.

Unofficial Draft for Comment Only 3

3.3 MPIR Node Definitions
\esm) \ernm

For the purposes af this document. th defined to be the node running the tool
b

process, and a< odd is defined to be a node running the target application processes
the tool is controlling. A target node might,be the host node. that is. the target application
processes might be running on the same npde as the tool process.

alse

4

The interface described in this document is not nart of the official MPT snecification

Chapter 4

Debugger/MPI Interaction Model

The debugger will have access to the message queue functionality by loading a shared
library provided by the MPI implementation. This allows the debugger to be insulated
from the internals of the MPT library so that it can support multiple MPI implementations.
Furthermore, MPI implementations can provide their users with debugging support without
requiring source access to the debugger. The debugger learns about t ation of this
shared library by reading variable MPIR_d11_name from the MPI&Tarter Process.
All calls to the debug DLL from the debugger are made from entyy points whose names
arc known to the debugger. However, all calls back to the debugger ffom the debug DLL are
made through a table of function pointers that is passed to the in :
the debug DLL. This procedure ensures that the debug DLL is independent of tle specific
debugger from which it is being called. ?A

%’7 7 S0 Blze.

Cnless G o JF

Cﬂﬁsrs*@/? ¥4, i
71/@ %é -

Unofficial Draft for Comment Only 5

—- W (SR

o3]

-4

%

4/7‘%»715 i+ wocld be @/M .y e
cm%w /wf/v ~feve pmﬁmﬂ% (awcé //‘cgf@,}
’/// srol <cheme, Lelel du
%ﬁé j];gi/// we i 7‘74@\%7

Chapter 5

Interface Specifications

Unless otherwise noted, all definitions are required and shall be provided in the interface

header file. /
_Jeacer e
U

5.1 MPIR_dIl_name @ 22

~ e
Global variable definition: %f 764/& W- ﬁ‘é /B

P
char* MPIR_d11l e T : 7%‘5 H
efinition is required. wﬁ/ ag/)r V25 71'/713 C(/@ﬁ)“'f{ 7%79/7’0% 7t;(]m
Definition is contained within the address Space of the starter proceag%o/ /f/oj?Q céc_

Variable is written by tHe starter process, and read by the tool.

MPIR_dII= ontains the location of debugger DLL provided by the MPI imple-
mcntatlon F /fi PO
l/”’éO/ 'S YIPF pveseat /n Fe s torter process
5.2 mqs two)

mgs_tword_t is a target independence typedef name that is the appropriate type for the
DLL to use on the host to hold a target word (long).

5.3 mgs_taddr_t

mgs_tword_t is a target independence typedef name that is the appropriate type for the
DLL to use on the host to hold a target address (voidx)

54 maqs_target_type_sizes

Type definition:

typedef struct

{
int short_size;
int int_size;
int long_size;

Unofficial Draft for Comment Only 6

int long_long_size;
int pointer_size;
} mgs_target_type_sizes;

mqgs_target_type_sizes is a type definition for a struct that holds the size of common
s-in_the target architecture. The debug DLL will use the callback mgs_get_type_-
sigZeg_ft provided by the debugger, which takes a variable of type mgs_target_ tii -

s zes?a, 1 populate it with the size information that it has based on the target hos
shéTt_size holds the size of the type short in the target architecture.
int_size holds the size of the type int in the target architecture.

long_size holds the size of the type long in the target architecture.
long_long_size holds the size of the type long long in the target architecture.
pointer_size holds the size of a pointer in the target architecture

5.5 Opaque Types Passed Through the Interface

The following REEZZEES arc opaque ty@w defined within the debugger and are
exposed to the debu L as undefined typedef’s. The debug DLL has no need to see the
internal structure of & iyut merely uses them as keys to identify objects of interest,
or to he passed back to the debugger through some callback.

1. mqs_image identifies an executable image.
2. mgs_process identifies an MPI process.

3. mgs_type identifies a named target type.

g; z fo%lpvv ing gAYAFER arc opaque types defined within the debugger and are cast
to types within the debug DLL for the debug DLL’s internal proccssmi ihc:ac

types exist so that the debug DLL can associate some information with the debugg ed
objects.

1. mqs_image_info is used to associate information pertaining to an object of type
mgs_image.

2. mqs_process_info is used to associate information pertaining to an object of type
mgs_process

5.6 Constants and Enums
5.6.1 mgs_lang_code

typedef enum {
mqgs_lang_c = Aer,
mgs_lang_cplus = ’C’,
mgs_lang_£77 o L
mqgs_lang_£90 'F?
} mgs_lang_code;

Aentitze Fh
This enum is used by both the debug DLL and the debuger to : 3

language type that the original target code was based on.

7

The interface described in this document is not nart of the official MPIT snecification.

5.6.2 mqgs_op_class

typedef enum
{
mgs\| pending_sends,
ndd\ pending_receives,
mgs\|_unexpected_messages
} mqs_op_class;
He i ewhich 17 S Ap

This enum is used by the debugger to indicate & #h queuc 4= interested @

5.6.3 maqs_interface_version

This constant defines the version of the interface hc@

5.6.4 mqgs_status
enum mgs_status /77635;
separot® /i

{
mqs_st_pending%qs_st_matched ,/ mgqs_st_complete
};

This enum is used to indicate the status of a message in the message queue.

5.6.5 Other enums

enum {
mgs_ok = 0,
mgs_no_information,
mqgs_end_of_list,
mgs_first_user_code = 100

¥
refem
This enum defines the various sessst co@r the message queue functionality
enum
{
MQ@B\ _ ALID_PROCESS = -1
53

This constant provides a value for the debugger to return error indicating an invalid
process index.

5.7 Concrete Objects Passed Through the Interface

5.7.1 mgs_communicator

Type definition:

3
The interface deseribed in this document is not nart of the official MPIT snecification

e

{ =t

typedef struct

{
mqgs_taddr_t unique_id;
mgs_tword_t local_rank; -
mgs_tword_t size; : é@_ {7(%/) @4\-
char name [64] ; \(@ / -) f@f}(f/ I’o ‘

} mgs_communicator; 10in &) é‘,, SV

A unique_id uniquely identifics a communicator.
local_rank identifics the rank of the current MPI process.
size holds the size of the communicat@
name contains the name of the communitator if it was given one.

5.7.2 mgs_pending_operation

Type defintion:

typedef struct

{
int status;
mgs_tword_t desired_local_rank;
mqgs_tword_t desired_global_rank;
int tag_wild;
mgs_tword_t desired_tag;
mgs_tword_t desired_length;
int system_buffer;
mqgs_taddr_t buffer;

/* Fields valid if status >= matched or it is a send */
mgs_tword_t actual_local_rank;

mgs_tword_t actual_global_rank;

mgs_tword_t actual_tag;

mgs_tword_t actual_length;

char extra_text[5] [64];
} mgs_pending_operation;

This structure contains enough information to allow the debugger to provide the user
with details about both of the arguments to a receive and of the incoming message that
matched it. All refereces to other processes are available in the mgs_pending_operation
structure both as indices into the group associated with the communicator and as indices
into MPI_COMM_WORLD. This avoids any need for the debugger to concern itself explicitly
with this mapping

status stores the status of the message. The value of this field should be either
mgs_st_pending. mqs_st_matched, of mgs_st_complete as described in the enumeration
mqs_status. Z/p‘;t sa=tion #)

desired_local_rank stores the rank of the target or the source for the communicator
from which this message was initiated.

9

The interface described in this document is not nart of the official MPT snecification

desired_global_rank stores the rank of the target or the source with respect to MPI_-
COMM_WORLD.
tag_wild identifies whether this message is a posted receive with tag being MPI_ANY_-

TAC —D 5 1+ o beoleon?

desired_tag holds the tag of the message. This field is only meaningful if tag_wild

is not set.

desired_length holds the length of the message buffer. —2 / ” éyf

system_buffer identifies whether this is a user or a system buffel 6&3’/\000 %%

buffer holds the address to the beginning of the message data.

The following fields are only meaningful if the message is ndor if the status fields
indicates that this message is either matched (mgs_st_matc edWo completed (mgs_st_-
complete).

actual_local_rank holds the actual local rank (after the-essage has matched).

actual_global_rank holds the actual local ranl\ with rcspcct to MPI_COMM_WORLD.

actual_tag holds the actual tag. Ofﬁk

actual_length holds the actual length. —= é‘{

extra_text can be used by the DLL to prov 1(10 more mfmmation to the user. The
debugger does not interpret this field and s displayé it to the user.

g

5.8 Callbacks Provided by the Debugger

The debugger provides several callbacks that will be called by the DLL to extract informa-
tion pertaining to the runtime state of the execution. All the callbacks are grouped into
three different groups based on their functionalities: mqs_basic_callbacks. mqs_image_-
callbacks. and mgs_process_callbacks.

5.8.1 mqs_basic_callbacks {j P
Type definition: 4 mﬁ{ \/f?
typedef struct mgs_basic_callbacks

‘ i /
mqgs_malloc_ft mqgs_malloc_£fp; &f_@r / (4@)
mqs_free_ft mgs_free_£fp; //ZML = ~W

' ' C[Q?C

mgs_errorstring_ft mgs_errorstring_fp;

mgs_put_image_info_ft mqgs_put_image_info_£fp; C&;{j@é
mgs_get_image_info_ft mqgs_get_image_info_£fp; //, 6 VL\}OW
mgs_put_process_info_ft mqgs_put_process_info_fp; /%

mgs_get_process_info_ft mgs_get_process_info_fp; a/\f/\
} mgs_basic_callbacks;

mgs_malloc_ft

Function type definition:

10

The interface deseribed in this document is not nart of the official MPT snecification

typedef void* (*mqs_malloc_ft) (size_t size)

IN size number of bytes to allocate

B
Allocates a block of memory with the specified size. & G/em 7%0% ﬁl/@a/ //'
pot afleed, fo coll normal @l
mas_free_ft yﬁ[/%_ln,@é ///é_d/ /7%&«//&3 = J~ oK
Function type definition: 7, /)/V M 7‘72 /5 7Cy,

typedef void (¥*mqs_free_ft) (void* buf)
INOUT buf buffer to be freed

Frees a previously allocated memory.

mqs_errorstring _ft

Function type definition:

typedef char* (*mqs_errorstring_ft) (int errno)

IN errno the error code to get the error string for

Converts an error code from the debugger into an error message. The function returns
a null terminated error string that corresponds to the given error code.
mqs_put_image_info_ft

Function type definition:

typedef void (*mqs_put_image_info_ft) (mgs_image* image, mgs_image_info* imageinfo)
ouT image the image to receive the image info

IN imageinfo the image info to associate with the image

Associates the given image information w 1th the glx n image. ;Z /S J/)&A’ /% w

Yo cacke intermaron . _ .

mqs_get_image_info_ft

Function type definition:

typedef mqs_image_info* (*mqs_get_image_info_ft) (mgs_image* image)

IN image the image to extract the image info from

Returns the image information associated with the given image.

11

The interface deseribed in. this document is not nart of the official MPIT snecification.

mqs_put_process_info_ft

Function type definition:

typedef void (*mqgs_put_process_info_ft) (mqgs_process* process, mqs_process_info process-

info¥*)
ouT process the process to receive the process info
IN processinfo the process info to associate with the image

Associates the given process information with the gl;;n}jccss Z < ﬂ/k% 7‘4{:’/ 0{./

17 ¢ e N tormoataop

mqs_get_process_info_ft

Function type definition:

typedef mqs_process_info* (*mqs_get_process_info_ft) (mgs_process* process)

IN process the process to extract the process info from
Returns the process information associated with the given process.

5.8.2 mqs_image_callbacks

Type definition:

typedef struct mgs_image_callbacks

{
mgs_get_type_sizes_ft mqs_get_type_sizes_fp;
mgs_find_function_ft mgs_find_function_fp;
mqs_find_symbol_f£ft mqgs_find_symbol_f£fp;
mgs_find_type_ft mgs_find_type_£fp;
mqs_field_offset_ft mgs_field_offset_fp;
mgs_sizeof £t mqgs_sizeof_fp;

} mgs_image_callbacks;

mqs_get_type_sizes_ft

Function type definition:

typedef void (*mqs_get_type_sizes_ft) (mqs_process* process, mqs_target_type_sizes* sizes)

IN process the process to get the sizes from

ouT sizes the placcholder for the sizes

Retrieves the size information about common datatypes from the running process.

See Sazton For e detinrty,
o oF wps el e

The interface deseribed in this document is not nart of the official MPT snecification

mqs_find_function_ft

Function type definition:

typedef int (*mqs_find_function_ft) (mqs_image* image, char* fname, mgs_lang_code lang,
mqs_taddr_t* addr)

IN image the image to scarch for the function
IN fname the name of the function to search for
IN lang the language code

ouT addr the address of the function

Given an image, returns the address of the specified function. The function returns
msq_ok if successful and mgs_no_information if the function cannot be found.

mqs_find__symbol_ft

Function type definition:

typedef int (*mqs_find_symbol_ft) (mqgs_image* image, char* sname, mqs_taddr_t* addr)

IN image the image to search for the symbol
IN sname the name of the symbol to scarch for
ouT addr the address of the symbol

Given an image. returns the address of the specified symbol. The function returns
msq_ok if successful and mgs_no_information if the symbol cannot be found.

maqs_find_type_ft

Function type definition:

typedef mqs_type* (*mqs_find_type_ft) (mqs_image* image, char* tname, mqgs_lang_code

lang)
IN image the image to search for the type
IN tname the name of the type to scarch for
IN lang the language code

Given an image. returns the type associated with the given named type. The function
cither returns a type handle. or NULL if the type cannot be found. / ﬂﬁ%‘ ﬁ/iﬁ
Advice to implementors. Since the debugger may load debug information lazily. the / /méé’/\ /@/
MPI run time library should ensure that the type definitions required occur in a file ?0?9/‘77/&6 .
whose debug information will already o/Deen loaded. For instance, by placing them C/t% 5074
in the same file as the startup breakpoint function. (End of advice to implementors.) . X
ZIN ”/%&
(&

13 /)5071

The interface deseribed in this document is not nart of the official MPT snecification,

mqs_field_offset_ft

Function type definition:

typedef int (*mqs_field_offset_ft) (mqs_type* type, char* fname)
IN type the type that contains the field

IN fname the field name to retrieve the offset

Given the handle for a struct type. returns the byte offset of the named field. If the
field cannot be found, the function returns -1.

maqs_sizeof _ft
Function type definition:
typedef int (*mqs_sizeof _ft) (mqgs_type* type)
IN type the type to get the size for

Given the handle for a type. returns the size of the type in bytes.

5.8.3 mqs_process_callbacks

Type definition:

typedef struct mqgs_process_callbacks

i
mgs_get_global_rank_ft mgs_get_global_rank_f£fp;
mgs_get_image ft mgs_get_image_fp;
mgs_fetch_data_ft mqgs_fetch_data_fp;
mgs_target_to_host_ft mgs_target_to_host_fp;

} mgs_process_callbacks;

mqs_get_global_rank_ft

Function type definition:

typedef int (*mqs_get_global_rank_ft) (mqs_process* process)

IN process the process to get the global rank for

< o
Given a process, returns its rank i MPIm WORLP'. 4//7 . /}%

mqs_get_image_ft

Function type definition:

14

The interface deseribed in this document is not nart of the official MPT snecification

typedef mgs_image* (¥mqgs_get_image_ft) (mqgs_process* process)

IN process the process to get the image for

Given a process. returns the image of which it is an instance.

maqs_fetch_data_ft

Function type definition:

typedef int (*mqs_fetch_data_ft) (mqs_process* process, mqgs_taddr_t addr, int size, void*

buf)
IN process the process to fetch the data from
IN addr the virtual address in the process’ virtual address space
IN size the number of bytes to read
ouT buf the buffer to store the data

Fotches data from the process into the specified buffer. The function returns msq_ok if
the data could be fetched successfully. Otherwise. it returns mqs_no_information.

mgs_target_to_host_ft

Function type definition

typedef void (*mgs_target_to_host_ft) (mgs_process* process, const void* indata, void* out-
data, int size)

IN process the process where the original data is from
[N indata the data to convert

ouT outdata the buffer to store the converted data

IN size the number of bytes to convert

Converts data from target representation to host representation.

5.9 Callbacks Provided by the DLL

5.9.1 maqgs_setup_basic_callbacks

Function type definition: 0 Q)C'?l”@ S/M@S arl 000’_{ / 0‘”&

extern void mqs_setup_basic_callback gt mqs_basic_callbacks*@/y
IN cb the basic callbacks table to provide to the DLL

This function is called by the debugger to the DLL to provide the DLL with the basic
callbacks table.

15

The interface deseribed in this document is not nart of the official MPI snecification

5.9.2 maqs_version_string

Function type definition:

extern char®* mqs_version_string()
Returns the DLL version.

5.9.3 mqs_version_compatibility

Function type definition:

extern int mqgs_version_compatibility()

/
Returns the DLL compatibility level. ""7 [(/////,0:71/ arc A
504 ms_dll_taddr_width Dﬂ/’é 62 ’\&%Vf“”l—oﬂ/ ‘

Function type definition:

extern int mas_dll_taddr_width()

Gives the width of an address pointer which has been compiled into the DLL, it is not
the width of a specific process. which could be different from this.
5.9.5 mqs_dll_error_string

Function type definition:

extern char* mqs_dll_error_stri gé rrmo)

IN errno the error code to get the error string for

vides a text string for an error value. Note that this function. which provides a
meaiMor the debugger to get the string associated with an error riifned from the DLL,

plements the function mqs_errorstring. which provides a n ot the DLL to get the

string associated with an error returned from the debugger.

5.10 Executable Image Related Functions

5.10.1 mgs_setup_image

Function type definition:

16

The interface deseribed in this document is not nart of the official MPT snecification.

extern int mqs_setup_ima@qs_image* image, const mqs_image_callbacks* cb)
INOUT image the image to setup the callbacks table

IN cb the image callbacks table
Yo VL‘“%

P | femctol oo pro
S 5 debug information for a specific imageg fhis muat m/ he C{bac sp pnd usc

those functions for accessing this image. The DLL should use the mgs_put_imége_info
and mgs_get_image_info functions to associate the information it wants to keep with the
image. The debugger will call mqs_destroy_image_info when it no longer wants to keep
information about the given csseeggmte. This will be called once for cach executable image

in the parallel program. Y ag,e/
5.10.2 mqgs_image_has_queue

Function type definition:
extern int mgs_image_has_queugs(migs_image* image, char** message)
IN image the image to query mqgs functionality
ouT message buffer to store message from the DLL |
S
Returns whether this image have the necessary symbols to allow acceds to the message
queues. This function is called once for each image, and the information ‘cached within the
debugger. The function returns mgs_ok if mgs support can be provided by this image.

5.10.3 mqs_destroy_image_info

Function type definition:

extern int mas_destroy_image_infd(mqs_image_info* imageinfo)

IN imageinfo the image info to free
Allows for cleaning up when the image information is no longer needed.

5.11 Process Related Functions

5.11.1 mqgs_setup_process

Function type definition:

extern int mqs_setup_process s_process* process, const mqs_process_callbacks* cb)
INOUT process the process to setup the callbacks table
IN cb the processcallbacks table

Setups process specific information.

17

The interface deseribed in this document is not nart of the official MPT snecification.

5.11.2 mqgs_process_has_queue

Function type definition:

extern int mgs_process_has_queu s_process* process, char** message)
IN image the process to query mqs functionality
ouT message buffer to store message from the DLL

Similar to the mgs_process_has_queues function. this allows for querying whether
process has support for message queues. This function should only be called if the image
claims to provide message queues. For example. the image might have enabled message
queues suppart if only certain environment variables are set at launched. This function
checks @r at runtime, message queucs support is enabled fo;é% process.

l s a;ﬁ@c/% E
5.11.3 mgs_destroy_process_info

Function type definition:

extern int mqs_destroy_process_inf s_process_info* processinfo)

IN processinfo the process info to free

Allows for cleaning up when the process information is no longer needed.

5.12 Query Functions

These functions provide the meggage queuc query functionality. The model & is that the
debugger calls down to the_li %" to initialize an iteration over a specific class of W/M
and then keeps calling thé "péxt” function until it s mgs_false. For communicato

the stepping is separated Trom extracting informati@causc the debugger will need the

state of the communicator iterator to qualify the selections of the operation iterator. mgs_-

true is returned when the description has been updated; mqs_false means there is no more
information to return, and therefore the dcscript

contains no useful information. There
is only onc of cach type of iteration running at on # the library should save the iteration
state in the mgs_process_info.

5.12.1 mqgs_update_communicator_list

Function type definition:

extern int mqgs_update_communicator_li _process™* process)

A . . .
IN process “the process to refresh the list of active communicators

Given a process, refreshes the list of active communicators. Ideally this list is cached
somewhere within the DLL and the debugger invokes it when necessary. The function
returns msq_ok if the operation succeeds.

18

The interface describhed in this document is not nart of the official MPT snecification.

5.12.2 mqgs_setup_communicator_iterator

Function type definition:

extern int mqs_setup_communicator_iterat qs_process* process)
IN process rocess to prepare the iterator
g Ve

Given a process. prepares the iterator to walk the communicator list. The function
returns msq_ok if the operation succeeds.

5.12.3 mqgs_get_communicator

Function type definition:

extern int mqs_get_communicafor(mqs_process* process, mgs_communicator* mqgs_comm)

IN process the process to retrieve the communicator

ouT mgs_comm the buffer to receive the the communicator data

Extracts information about the current communicator. The function returns msq_ok

if the operation succeeds. &Z_p’ sec e oy 36/‘)L@ féﬁﬁ) ;/'/Qf‘ §#
, : N “ -
5.12.4 mqs_get_comm_group g cornmeriearor. -

Function type definition:

extern int mqgs_get_comm_gr mfis_process® process, int* ranks)
IN process the process to obtain the group information
ouT ranks the buffer to receive the rank mapping
e/ prevtde
Extracts the group from the currezé communicator. The debugger already knows the
size of the communciator, so it she ¢ a suitably sized array for the result. The

result is an array in which the clement at index i contains the MPI_COMM_WORLD rank
of rank i-th in the current communicator. The function returns msq_ok if the operation
succeeds.

5.12.5 mgs_next_communicator

Function type definition:

19

The interface deseribed in this document is not nart of the official MPIT snecification

extern int mqs_next_communicator(mds_process* process)

IN process the process to get the next communicator

MoweS) the internal iterator to the next communicator in this process. The function
returny¥ | mgs_ok— if the operation succeeds.

5.12.6 mqs_setup_operation_iterator

Function type definition

extern int mqs_setup_operation_iterat s_process* process, int opclass)
IN process the process to setup the operation
IN opclass the tvpe of operation requested

Prepares to iterate over the pending operations in the currently active communicator
in this process. op should be one of the operations specified in mgs_op_class. The function
returns msq_ok if the operation succeeds. (/

44

5.12.7 mqs_next_operation Scie Seefron

Function type definition:

extern int mgs_next_operatjon(' m¢is_process* process, mqs_pending_operation* op)
IN process the process to fetch the operation

ouT op the buffer to rececive the operation data

Fetches information about the next appropriate pending operation in the current com-
municator. The function returns mqs_false when there is no more operation to iterate.

20

The interface deseribed in this document is not nart of the official MPI snecification

