DRAFT

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

April 18, 2013
This work was supported in part by NSF and ARPA under NSF contract
CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 17

Language Bindings

17.1 Fortran Support

17.1.1 Overview

17.1.2 Fortran Support Through the mpi_£08 Module
17.1.3 Fortran Support Through the mpi Module

17.1.4 Fortran Support Through the mpif.h Include File

17.1.5 Interface Specifications, Linker Names and the Profiling Interface

The Fortran interface specifications of each MPI routine specifies the routine name that
must be called by the application program, and the names and types of the dummy ar-
guments together with additional attributes. The Fortran standard enables that a given
Fortran interface can be implemented with several methods, e.g., within or outside of a
module, with or without BIND(C), or the buffers with or without TS29113. Such imple-
mentation decisions imply different binary interfaces and different linker names. Several
implementation schemes together with the rules for the linker names and its implications
for the profiling interface are specified within this section.

Advice to users. The profiling PMPI interface provides the possibility to intercept
MPI routines (e.g., MPI_ISEND) by providing an additional MPI_ISEND (the profiling
wrapper) that is called by the application and internally calls PMPI_SEND. There
are two typical use cases: A profiling layer that is developed independently from the
application and the MPI library, and profiling routines that are part of the application
and have access to the application data. With MPI-3.0, new Fortran interfaces and
implementation schemes were introduced that have several options on how Fortran

Unofficial Draft for Comment Only 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 17. LANGUAGE BINDINGS

MPI routines are internally implemented and optimized. For profiling layers, these
schemes imply that several internal interfaces may need to be intercepted. Especially
with the implementation scheme B (see below), the interception is done at the MPI
C interface, which makes it hard for interception as part of a Fortran application.
Therefore, for wrapper routines that are part of a Fortran application it may be more
convenient to make the name shift within the application, i.e., to substitute the call
to the MPI routine (e.g., MPI_ISEND) by a call to a the user written profiling wrapper
with a new name (e.g., X_MPI_ISEND) and to call the Fortran MPI_ISEND from this
wrapper. Only for the mpi module and the mpi.h include file it is still guaranteed to
have interceptable Fortran interfaces, see below implementation scheme A. (End of
advice to users.)

Rationale. This section was introduced in MPI-3.0 on Sep. 21, 2012. The major
goals for implementing the three Fortran support methods have been:

e Portable implementation of the wrappers from the MPI Fortran interfaces to the
MPI routines in C.

e Binary backward compatible implementation path when switching
MPI_SUBARRAYS_SUPPORTED from .FALSE. to .TRUE..

e The Fortran PMPI interface need not to be backward compatible, but a method
must be included that a tools layer can examine the MPI library about the used
linker names and interfaces.

e No performance drawbacks.

e Consistent for all routine groups, as defined below.

e Consistent between all three Fortran support methods.
e Consistent with Fortran 2008 + T'S 29113.

The design expected that all dummy arguments in the MPI Fortran interfaces are in-
teroperable with C according to Fortran 2008 + TS 29113. This expectation was not
fulfilled. The LOGICAL arguments are not interoperable with C, mainly because the
values for .FALSE. and .TRUE. are compiler dependent. The provided interface was
mainly based on BIND(C) interfaces and therefore inconsistent with Fortran. To be
consistent with Fortran, the BIND(C) had to be removed from the callback procedure
interfaces and the predefined callbacks, see the routine group MPI_COMM_DUP_FN
defined below. Non-BIND(C) procedures are also not interoperable with C, and
therefore the BIND(C) had to be removed from all routines with PROCEDURE argu-
ments, see the routine groups MPI_OP_CREATE, MPI_REGISTER_DATAREP, and
MPI_COMM_CREATE_KEYVAL below.

Therefore, this section was rewritten in an erratum. It defines three implementation
schemes. Scheme A removes all BIND(C) from the interface definitions. Scheme B
provides the rules for implementing the Fortran interface with wrappers that call the
MPI routines defined in C. Both schemes can be combined. This combination must be
reported to the implementers of profiling layers through special macro definitions in
mpi.h. For a maximum of backward compatibility, scheme A is required for the mpi
module and mpif.h. Scheme A together with B allows a portable implementation of
the Fortran wrappers for all three Fortran support methods and fulfills most of the
original goals. A and B are therefore needed to solve the inconsistency problems with
the LOGICAL arguments.

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 3

With the mpi_f08 module, it is also possible to use scheme B without A for per-
formance reasons, i.e., the wrappers may be contained in the module and may be
therefore inlined into the calling application by the compilers.

Scheme C is an additional scheme only for the mpi_f08 module. It uses BIND(C) for
the routine groups as long as the dummy arguments are interoperable with C, i.e.,
with limited consistency. Scheme C is similar to the interface introduced in MPI-3.0
on Sep. 21, 2012.

All schemes include a backward compatibility path for MPI_SUBARRAYS_SUPPORTED
through the sub-schemes 1 and 2. For the development of portable profiling layers,
all schemes report in mpi.h their availability within the corresponding MPI library.
(End of rationale.)

The linker name of a Fortran routine is defined as the name that a C routine would
have if both routines would have the same name visible for the linker. A typical linker name
of the Fortran routine FOOfoo is foofoo__. In the case of BIND(C,NAME="...’), the linker
name is directly defined through the external name given by the string.

Similar MPI routines are grouped together for linker symbol scheme classification. If
the peer routine of a group is available within an MPI library with one of its possible linker
names then all of the routines in this group must be provided according to the same linker
name scheme. If the peer routine is not available through a linker name scheme then all
other routines in the group must not be available through this scheme. Peer routines and
their routine groups are listed Table 17.1 on page 3.

MPI_TEST All MPI routines that have a LOGICAL dummy
argument and that are not callbacks and do not
have callback dummy arguments.

MPI_ALLOC_MEM MPI_ALLOC_MEM, MPI_WIN_ALLOCATE,
MPI_WIN_ALLOCATE_SHARED, and
MPI_WIN_SHARED_QUERY.

MPI_FREE_MEM Only this routine is in this group.
MPI_GET_ADDRESS Only this routine is in this group.
MPI_F_SYNC_REG Only this routine is in this group.
MPI_SEND All other routines with choice buffer arguments

that are not declared as ASYNCHRONQUS within
the mpi_£08 module.

MPI_ISEND All other routines with choice buffer arguments
that are declared as ASYNCHRONQUS within the
mpi_f08 module.

MPI_OP_CREATE Only this routine is in this group.

MPI_REGISTER_DATAREP Only this routine is in this group.

MPI_COMM_CREATE_KEYVAL All other routines with callback function argu-
ments.

MPI_COMM_DUP_FN All predefined callback routines.

MPI_COMM_RANK All other MPI routines.

Table 17.1: Fortran routine groups.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 17. LANGUAGE BINDINGS

Advice to implementors. Removed interfaces (see Chapter 16) are in the same routine
group as their corresponding replacement functions. (End of advice to implementors.)

Different implementation and linker name schemes can be chosen independently for
each routine group within each Fortran support method. The Fortran linker names are
always based on the routine name (respectively the linker name base) combined with a
suffix:

e If the implementation scheme does not use BIND(C) then the linker name mapping

of the Fortran compiler is applied. For example, MPI_Send together with the suffix
_f08 may be mapped to mpi_send_f08__. Prototype example:

INTERFACE MPI_Send
SUBROUTINE MPI_Send_£08¢(...)

e If the implementation scheme uses BIND(C), then the linker name is a combination

of the C name and a suffix, e.g., MPI_Send_£08. Prototype example:

INTERFACE
SUBROUTINE MPI_Send(...) BIND(C,NAME="MPI_Send_£08’)

There are three implementation schemes available:

A. The Fortran MPI routines are implemented outside of a module and without BIND(C).

The linker name mapping of the Fortran compiler is applied to a name that is the
routine name plus a suffix.

Special suffixes apply for the three routine groups MPI_SEND, MPI_ISEND,
MPI_GET_ADDRESS, and MPI_F_SYNC_REG if they are implemented with TYPE (*) ,
DIMENSION(..), i.e, with TS 29113. The suffixes are listed in columns Al and A2 in
Table 17.2 on page 6.

. No Fortran linker name is specified, but the Fortran MPI routines must be imple-

mented as (thin) wrappers that call the corresponding C interfaces, see column B1 in
Table 17.2 on page 6.

If TYPE(*), DIMENSIONC(..),i.e., T'S 29113 is used in the routine groups MPI_SEND,

MPI_ISEND, MPI_GET_ADDRESS, and MPI_F_SYNC_REG, then the wrappers call a

C MPI routine with its name appended with the suffix “_cdesc”, e.g., MPI_Send_cdesc,
see column B2. In the interface of these routines, the void* buffer arguments are

substituted by const CFI_cdesc_t* buffer, see TS 29113 [1].

The wrappers in the routine groups MPI_OP_CREATE, MPI_REGISTER_DATAREP,
and MPI_COMM_CREATE_KEYVAL also call C MPI routines with special suffixes,
see column B3. Here, the MPI_xxx_function* xxx_fn argument is substituted by
void* xxx_fn to hold the Fortran function pointer or function descriptor pointer,
which represent the callback routines with their different interfaces in the mpi_£08
module, respectively mpi and mpif.h.

For profiling, the C MPI interface must be intercepted and the corresponding C
PMPI_..._cdesc routines must be called. C PMPI routines must be provided also for
the C routines with these special suffixes.

Unofficial Draft for Comment Only

17.1.

C.

FORTRAN SUPPORT 5

The Fortran MPI routines are implemented with BIND(C). The linker name is defined
by the corresponding C routine name plus a suffix listed in column C1 in Table 17.2
on page 6.

Special suffixes apply for the three routine groups MPI_SEND, MPI_ISEND,
MPI_GET_ADDRESS, and MPI_F_SYNC_REG if they are implemented with TYPE (%),
DIMENSIONC(..), i.e, with TS 29113, see column C2.

If the Fortran BIND(C) interface defines a string argument with a fixed size, e.g.,
CHARACTER (LEN=xxxx),... :: arg, then this definition must be substituted by

CHARACTER (LEN=1) ,DIMENSION (xxxx),... :: arg. Both definitions have the same

meaning for the calling MPI application, but only the second one is interoperable with
C (since Fortran 2003).

If a Fortran support method is provided, then at least one of the three schemes must

be provided for each routine group within that support method:

e For the Fortran support through the mpi module and mpif .h it is additionally required

The

that each routine group in mpif .h is provided at least with the implementation scheme
A. Additionally, the implementation scheme B can be combined with A. Scheme C
cannot be applied. Therefore, the entries for scheme C1 and C2 in the last two rows
of Table 17.2 are currently not used.

For the Fortran support through the mpi_f08 module, an implementor can freely
choose between the schemes A, B, and C. Additionally, the implementation scheme B
can be combined with A or C.

implementation scheme A and B are available for all routine groups and all Fortran

support methods.

Rationale. Scheme C is not provided for the mpi module and mpif.h for backward
compatibility reasons with MPI-1 and MPI-2. The implementation scheme C can
be used only partially in mpif.h due to the restriction of 72 characters per line in
Fortran fixed source form, and not for the routine group MPI_COMM_DUP_FN nor for
those groups with arguments that are not interoperable with C, which are MPI_TEST,
MPI_OP_CREATE, MPI_REGISTER_DATAREP, and MPI_COMM_CREATE_KEYVAL
in Fortran 2008 + T'S 29113 due to LOGICAL and PROCEDURE arguments in some routine
interfaces. (End of rationale.)

Rationale. Within each of the columns Al, A2, C1, and C2 of Table 17.2, different
suffixes are needed due to the different Fortran interfaces. In B3, different suffixes are
needed due to different callback function interfaces. Within each row, different names
are needed between all columns; This is guaranteed through the different suffixes and
additionally the linker name mapping by the Fortran compiler in columns Al and A2.
(End of rationale.)

To set MPI_SUBARRAYS_SUPPORTED to .TRUE. within a Fortran support method, it

is required that the routine group MPI_ISEND is implemented with A2, B2, or C2.

Several implementation schemes can be included in the MPI library. An MPI library

can also include additional schemes that are currently not required by the mpi_f08 or mpi
modules or the mpif.h include file.

Unofficial Draft for Comment Only

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 17. LANGUAGE BINDINGS
Fortran Implementation schemes
support A B C
methods Al A2 B1 B2 B3 C1 C2

normal | TS 29113 | normal | TS 29113 | special | normal | TS 29113

mpi_£08 _f08 _f08ts | no suffix | _cdesc | _f08cb £08 _f08ts
mpi no suffix _fts no suffix | _cdesc _fcb _f _fts
mpif.h no suffix _fts no suffix _cdesc _fcb _f _fts

Table 17.2: Fortran linker name suffixes.

The columns “TS 29113” refer only to the

routine groups MPI_SEND, MPI_ISEND, MPI_GET_ADDRESS, and MPI_F_SYNC_REG
and apply only if TS 29113 is applied for the buffers. The column “special” ap-
plies only to the routine groups MPI_OP_CREATE, MPI_REGISTER_DATAREP, and
MPI_COMM_CREATE_KEYVAL within the implementation scheme B. The suffixes in all

other cases are shown in the columns “normal”.

Rationale. After a compiler provides the facilities from TS 29113, i.e., TYPE(*),
DIMENSIONC(. .), it is possible to change the bindings within a Fortran support method
to support subarrays without recompiling the complete application provided that the
previous interfaces are still included in the library. Of course, only recompiled routines
can benefit from the added facilities. There is no binary compatibility conflict because
each interface uses its own linker names and all interfaces use the same constants and
type definitions. (End of rationale.)

A user-written or middleware profiling routine that is written according to the same
implementation scheme will have the same linker name, and therefore, can interpose itself
as the MPI library routine. The profiling routine can internally call the matching PMPI
routine with any of its existing bindings, except for routines that have callback routine
dummy arguments. In this case, the profiling software must use the same Fortran support
method as used in the calling application program, because the C, mpi_£08 and mpi callback
prototypes are different.

In the case that a Fortran binding consists of multiple routines through function over-
loading, the base names of overloaded routines are appended by a suffix indicating the differ-
ence in the argument list. For example, MPI_ALLOC_MEM (in the mpi module and mpif.h)
has an INTEGER(KIND=...) baseptr argument without a suffix. This routine is overloaded
by a routine with TYPE(C_PTR) baseptr and the suffix _CPTR. The implied linker name base
is MPI_ALLOC_MEM_CPTR. It is mapped to the linker names MPI_Alloc_mem_cptr_f (in
C1), and, e.g., mpi_alloc_mem_cptr__ (in Al). Note that these routines are always called
via the interface name MPI_ALLOC_MEM by the application within all Fortran support
methods.

Additionally, several C preprocessor macros are available in mpi.h for each routine
group. The name of the macros are the peer routine name written as in Table 17.1 on
page 3 and appended with two suffixes.

First suffix:

_mpi_f08 To report the implementation scheme(s) used in the mpi_£08 module.
_mpi To report the implementation scheme(s) used in the mpi module.
_mpifh To report the implementation scheme(s) used in the mpif .h include file.

Unofficial Draft for Comment Only

17.1.

FORTRAN SUPPORT 7

Second suffix:

_Al Available for all routine groups.
_A2 Available only for the routine groups MPI_SEND, MPI_ISEND,

MPI_GET_ADDRESS, and MPI_F_SYNC_REG.

Bl Available for all routine groups, except for the routine groups

MPI_OP_CREATE, MPI_REGISTER_DATAREP, and
MPI_COMM_CREATE_KEYVAL.

_B2 Available only for the routine groups MPI_SEND, MPI_ISEND,

MPI_GET_ADDRESS, and MPI_F_SYNC_REG.

_B3 Available only for the routine groups MPI_OP_CREATE,

MPI_REGISTER_DATAREP, and MPI_COMM_CREATE_KEYVAL.

_C1 Available for all routine groups, except the routine group

MPI_COMM_DUP_FN.

_C2 Available only for the routine groups MPI_SEND, MPI_ISEND,

MPI_GET_ADDRESS, and MPI_F_SYNC_REG.

If a combination of a Fortran support method and an implementation scheme can be

10

11

12

13

14

15

16

17

used for a routine group then the appropriate macro must be available, e.g., MPT_TEST _mpi_f08_A}.
If an implementation scheme is not available for a routine group the macro must not be
available, e.g., MPT_TEST _mpi_f08_A2.

The
0

1
2

value of the macros indicate:

The Routine group is not available in this Fortran support method with
this implementation scheme.

Available in the MPI library but not used in the module or include file.
Available in the MPI library and used in the module or include file.

In the examples in Table 17.3 on page 8, the values in column “A14+A2” show that

e the routines in the MPI_SEND group are only available through their Fortran linker

names (e.g., mpi_send_f08__, mpi_send__, mpi_recv_f08__, mpi_recv__, ...),

e the routines in the MPI_ISEND group are available through several interfaces: a call

to MPI_ISEND

— with the mpi_f08 module is mapped to, e.g., mpi_isend_f08ts__,
— with the mpi module is mapped to, e.g., mpi_isend_fts__,

— with the mpif.h include file is mapped to, e.g., mpi_isend_fts__.

All three Fortran support methods provide TS 29113 quality, i.e.,
MPI_SUBARRAYS_SUPPORTED equals .TRUE.. The MPI library additional contains,
e.g., mpi_isend_f08__, mpi_isend__ to support binary applications that were com-
piled with an older MPI library version with MPI_ISEND_mpi_f08_A1l,
MPI_ISEND_mpi_Al, and MPI_ISEND_mpifh_Al set to 2, and
MPI_ISEND_mpi_f08_A2, MPI_ISEND_mpi_A2, and MPI_ISEND_mpifh_A2 set to 0.

Note that for the routines with callback procedure arguments, e.g., in the routine group
MPI_OP_CREATE, the macros ..._B1 are substituted by ..._B3. For the predefined call-
backs, the implementation scheme C1 does not exist because the interfaces must fit to the

Unofficial Draft for Comment Only

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 17. LANGUAGE BINDINGS

Used implementation schemes: Al1+A2 Al A1/2 A1+4+A2
+Bl1 | +B1/2 | +B1+B2

Implied values for
MPI_SUBARRAYS_SUPPORTED: .TRUE. | .FALSE. | .TRUE. .TRUE.

/* Values for the Fortran support method with the mpi_£08 module */
#define MPI_TEST_mpi_fO08_A1 2 2 2 2
#define MPI_TEST _mpi_f08_B1 0 2 2 2
#define MPI_TEST _mpi_£f08_C1 0 0 0 0

. (same for routine groups MPI_ALLOC_MEM and MPI_FREE_MEM)
#define MPI_SEND_mpi_fO08_A1 2 2 0 1
#define MPI_SEND_mpi_fO08_A2 0 0 2 2
#define MPI_SEND_mpi_£fO08_B1 0 2 0 1
#define MPI_SEND_mpi_£f08_B2 0 0 2 2
#define MPI_SEND_mpi_£f08_C1 0 0 0 0
#define MPI_SEND_mpi_£f08_C2 0 0 0 0

. (same for routine groups MPI_GET_ADDRESS and MPI_F_SYNC_REG)
#define MPI_ISEND_mpi_fO08_A1l 1 2 0 1
#define MPI_ISEND _mpi_fO08_A2 2 0 2 2
#define MPI_ISEND_mpi_f08_B1 0 2 0 1
#define MPI_ISEND _mpi_fO08_B2 0 0 2 2
#define MPI_ISEND_mpi_f08_C1 0 0 0 0
#define MPI_ISEND_mpi_£08_C2 0 0 0 0
#define MPI_OP_CREATE_mpi_fO08_A1 2 2 2 2
#define MPI_OP_CREATE_mpi_f08_B3 0 2 2 2
#define MPI_QOP_CREATE_mpi_£08_C1 0 0 0 0
. (same for MPI_REGISTER_DATAREP and MPI_COMM_CREATE_KEYVAL)

#define MPI_COMM_DUP_FN_mpi_£fO08_A1 2 2 2 2
#define MPI_COMM_DUP_FN_mpi_£08_B1 0 2 2 2
#define MPI_COMM_RANK_mpi_fO08_A1 2 2 2 2
#define MPI_COMM_RANK_mpi_£08_B1 0 2 2 2
#define MPI_COMM_RANK_mpi_£08_C1 0 0 0 0

/* Values for the Fortran support method with the mpi module */
. (and the same values for macros MPI_XXX_mpi_A/B/C.)

/* Values for the Fortran support method with mpif.h */
. (and the same values for macros MPI_XXX_mpith_A/B/C.)

Table 17.3: C preprocessor macros and possible values.

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 9

callback function prototypes, which are defined without BIND(C) in all Fortran support
methods.

Whithin each macro block that contains the macros for one routine group with one
Fortran support method, one macro must have the value 2. A second macro can be set to 2
only if A or C is implemented with (thin) wrappers according to B. All other macros must
be set to 1 or 0.

The column “A1+B1” reflects an implementation without TS 29113 that uses the
schemes A and B together. The column “A1/24+B1/2” uses A and B and provides full TS
29113 quality, but the old A1l and B1 binaries are removed from the library.

Advice to implementors. 1f all following conditions are fulfilled (which is the case for
most compilers):

e the handles in the mpi_f08 module occupy one Fortran numerical storage unit
(same as an INTEGER handle),

e the internal argument passing mechanism used to pass an actual ierror argument
to a non-optional ierror dummy argument is binary compatible to passing an
actual ierror argument to an ierror dummy argument that is declared as OPTIONAL,

e the internal argument passing mechanism for ASYNCHRONOUS and non-
ASYNCHRONQOUS arguments is the same,

e the internal routine call mechanism is the same for the Fortran and the C com-
pilers for which the MPI library is compiled,

e the compiler does not provide TS 29113,

then for the routine groups, the implementor may use the same internal routine
implementations for all Fortran support methods but with several different linker
names. For TS 29113 quality, new routines are needed only for the routine group of
MPI_ISEND. (End of advice to implementors.)

Advice to implementors. The implementation scheme Al and A2 can be also im-
plemented for all routines in the Fortran support method mpif.h with compile-time
argument checking. For mpif.h, the argument names are not specified through the
MPI standard, i.e., only positional argument lists are defined, and not key-word based
lists. Due to the rule that mpif.h must be valid for fixed and free source form, the sub-
routine declaration is restricted to one line with 72 characters. To keep the argument
lists short, each argument name can be shortened to a minimum of one character.
With this, the two longest subroutine declaration statements in A1 are

SUBROUTINE PMPI_Dist_graph_create_adjacent(a,b,c,d,e,f,g,h,i,j,k)
SUBROUTINE PMPI_Rget_accumulate(a,b,c,d,e,f,g,h,i,j,k,1,m,n)

with 71 and 66 characters, and the longest interface definition in A2 is

INTERFACE PMPI_Rget_accumulate
SUBROUTINE PMPI_Rget_accumulate_fts(a,b,c,d,e,f,g,h,i,j,k,1,m,n)

with 70 characters. In principle, continuation lines would be possible in mpif.h (spaces
on columns 73-131, & on column 132, and on column 5 of the continuation line) but

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 17. LANGUAGE BINDINGS

this would not be valid if the source line length is extended with a compiler flag to 132
characters. Column 133 is also not available for the continuation character because
lines longer than 132 characters are invalid with some compilers by default.

The longest linker name in Al is derived from PMPI_Dist_graph_create_adjacent_f08
and in A2 from PMPI_File_write_ordered_begin_f08ts both with 35 characters in the
mpi_f08 module.

The implementation scheme B the longest linker names is
PMPI_File_write_ordered_begin_cdesc in B2 with 35 characters, and
PMPI_Comm_create_errhandler_f08cb in B3 with 33 characters.

The implementation scheme A together with B can be implemented with portable
wrappers. Routine interface declarations are:

MODULE mpi_£08
INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)
SUBROUTINE MPI_Comm_rank_f08(comm, rank, ierror)
TYPE(MPI_Comm) , INTENT(IN) :: comm
INTEGER, INTENT(IN) :: rank
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
END SUBROUTINE
END INTERFACE
END MODULE mpi_£08

MODULE mpi
INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)
SUBROUTINE MPI_Comm_rank(comm, rank, ierror)
INTEGER, INTENT(IN) :: comm ! The INTENT may be added although
INTEGER, INTENT(IN) :: rank ! it is not defined in the
INTEGER, INTENT(OUT) :: ierror ! official routine definition.
END SUBROUTINE
END INTERFACE
END MODULE mpi

And probably in mpif.h (outside of any module) and in fixed source format:
123456789012345678901234567890123456789012345678901234567890123456789012

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)
SUBROUTINE MPI_Comm_rank(comm, rank, ierror)

INTEGER, INTENT(IN) :: comm ! The argument names may be
INTEGER, INTENT(IN) :: rank ! shortened that the subroutine
INTEGER, INTENT(OUT) :: ierror ! line fits to the maximum

END SUBROUTINE ! of 72 characters.

END INTERFACE
The Fortran declaration for the existing MPI C library routine is:

MODULE mpi_X_C_interfaces
INTERFACE
FUNCTION MPI_X_Comm_rank_C(comm,rank) &
BIND(C, name=’MPI_Comm_rank’) RESULT(ierror_c)
USE, INTRINSIC :: iso_c_binding, only: c_int
USE :: mpi_X_FC_wrappers, only: MPI_C_COMM_KIND
INTEGER (KIND=MPI_C_COMM_KIND) ,VALUE,INTENT(IN) :: comm

Unofficial Draft for Comment Only

17.1.

FORTRAN SUPPORT 11

INTEGER (KIND=c_int) , INTENT (OUT) 11 rank
INTEGER (KIND=c_int) :: ierror_c
END FUNCTION
END INTERFACE
END MODULE mpi_X_C_interfaces
The implementation of the Fortran MPI_Comm_rank subroutine for the mpi_£08 mod-
ule as a wrapper to the C routine is:

SUBROUTINE MPI_Comm_rank_fO08(comm, rank, ierror)
USE,INTRINSIC :: iso_c_binding, only: c_int
USE :: mpi_X_f08_types, only: MPI_Comm
USE :: mpi_X_FC_wrappers, only: MPI_C_COMM_KIND, MPI_Comm_f2c
USE :: mpi_X_C_interfaces, only: MPI_X_Comm_rank_C

TYPE(MPI_Comm) , INTENT(IN) :: comm
INTEGER, INTENT(IN) :: rank
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
INTEGER (KIND=MPI_C_COMM_KIND) 11 comm_c
INTEGER (KIND=c_int) :: rank_c
INTEGER (KIND=c_int) :: ierror_c

comm_c = MPI_Comm_f2c (comm)MPI_VAL
ierror_c = MPI_X_Comm_rank_C(comm_c, rank_c)
rank = rank_c
IF (PRESENT(ierror)) ierror = ierror_c
END SUBROUTINE

The implementation of the Fortran MPI_COMM_RANK subroutine for the mpi module
and mpif.h as a wrapper to the C routine is:

SUBROUTINE MPI_COMM_RANK(comm, rank, ierror)
INTEGER, INTENT(IN) :: comm

comm_c = MPI_Comm_f2c(comm)
ierror_c = MPI_X_Comm_rank_C(comm_c, rank_c)
rank = rank_c
ierror = ierror_c
END SUBROUTINE

If these wrapper subroutines are implemented outside of the mpi_f08 and mpi mod-
ules, i.e., without CONTAINS, then this implementation is a valid implementation ac-
cording to scheme A. It is also a valid scheme B implementation because the call to the
interface MPI_X_Comm_rank_C is mapped to a call to the C routine MPI_Comm_rank
as specified in the mpi_X_C_interfaces module.

Scheme B can also be used together with scheme C (instead of A). In this case, the
interface and the wrapper routine of MPI_Comm_rank are defined as BIND(C), and
in the mpi module and mpif.h, the routine name is appended with the suffix _f,
and in the mpi_f08 module with the suffix _£08. The interface names are always
MPI_Comm_rank, and due to BIND(C), the compiler’s name mangling does not apply.

For the mpi module and mpif.h, the implementation must be outside of a module.
If the mpi_f08 module CONTAINS the wrapper subroutine then the compiler may

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12

CHAPTER 17. LANGUAGE BINDINGS

inline the wrapper code into the application and the application binary directly calls
the MPI C routine without any additional subroutine call overhead for this wrapper.
In this case, implementation scheme A does not apply because the compiler uses an
internal name mangling for the linker names.

The module names mpi_X_£f08_types, mpi_X_C_wrappers, and mpi_X_C_interfaces,

and the function name MPI_X_Comm_rank_C are implementation dependent.

For subroutines with buffers, the scheme B2 applies if TS 29113 is available. Without
TS 29113, B1 applies.

Here an example with A2 together with B2. Routine interface declarations are:

MODULE mpi_£08
INTERFACE MPI_Irecv ! (arguments as defined in Chapter 3)

SUBROUTINE MPI_Irecv_f08ts(buf,count,datatype,source,tag,comm,request,ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

END SUBROUTINE
END INTERFACE
END MODULE mpi_f£08

The corresponding C interface definition of the MPI C library function is:

#include "ISO_Fortran_binding.h"
int MPI_Irecv_cdesc(const CFI_cdesc_t *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

This C library routine exists only if B2 is used. The corresponding Fortran declaration
of the C library function is:

MODULE mpi_X_C_interfaces
INTERFACE
FUNCTION MPI_Irecv_cdesc(buf,count,datatype,source,tag,comm,request) &
BIND(C, name=’MPI_Irecv_cdesc’) RESULT(ierror_c)

TYPE (*) ,DIMENSION(. .),ASYNCHRONQUS :: buf

END FUNCTION
END INTERFACE
END MODULE mpi_X_C_interfaces

The wrapper subroutine is:

SUBROUTINE MPI_Irecv_f08ts(buf,count,datatype,source,tag,comm,request,ierror)
TYPE(*), DIMENSION(..), ASYNCHRONQUS :: buf

ierror_c=MPI_Irecv_cdesc(buf,count_c,datatype_c,source_c,tag_c,comm_c,request_c)

requestMPI_VAL = request_c
if (present(ierror)) ierror = ierror_c
END SUBROUTINE

Note that the MPI_Irecv_f08ts routine is not contained in the module, i.e., the example

fulfills the naming rules for A. In the mpi module and in mpif.h, the routine name
MPI_Irecv_f08ts has to be substituted by MPI_lrecv_fts.

Unofficial Draft for Comment Only

17.1.

FORTRAN SUPPORT 13

If the mpi module or mpif.h does not provide TYPE(*), DIMENSION(..) for choice
buffers, or if the mpi_£08 module is preliminarily implemented without T'S 29113 then
the operation can be implemented according to Al and B1 with the following nterface
specifications and wrapper routine:

MODULE mpi_£08
INTERFACE MPI_Irecv ! (arguments as defined in Chapter 3)
SUBROUTINE MPI_Irecv_f08(buf,count,datatype,source,tag,comm,request,ierror)

'non-standardized declaration of buf, e.g.,

! TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
IDEC$ ATTRIBUTES NO_ARG_CHECK :: buf
I'$PRAGMA IGNORE_TKR buf
IDIR$ IGNORE_TKR buf
1IBM* IGNORE_TKR buf
INTEGER, DIMENSION(*), ASYNCHRONQUS :: buf ! choice-dummy-argument

END SUBROUTINE
END INTERFACE
END MODULE mpi_£08

Note that if such non-standard extensions are not provided by the compiler then
exceptions apply, i.e., within the mpi module and mpif.h, implicit interfaces must be
used, and it is recommended to provide the mpi_£08 module only if TS 29113 or such
extensions exist, for further details see Section 17.1.6 on page 14. Note that TYPE(*),
DIMENSION (*) must not be used because it does not support actual arguments that
are non-array variables. Overloading with a second interface with a non-array buffer
is possible, but would prevent profiling through the scheme Al.

The corresponding Fortran declaration of the C library function MPI_lrecv is:

MODULE mpi_X_C_interfaces
INTERFACE
FUNCTION MPI_X_Irecv_C(buf,count,datatype,source,tag,comm,request) &
BIND(C, name=’MPI_Irecv’) RESULT(ierror_c)
TYPE(*) ,DIMENSION (*) ,ASYNCHRONOUS :: buf
! which may be substituted (if TS 29113 is not available) by:
! INTEGER,DIMENSION (*) ,ASYNCHRONOUS :: buf

END FUNCTION
END INTERFACE
END MODULE mpi_X_C_interfaces

The wrapper subroutine is:

SUBROUTINE MPI_Irecv_£08(buf,count,datatype,source,tag,comm,request,ierror)
'non-standardized declaration of buf, e.g.,

ierror_c=MPI_X_Irecv_C(buf,count_c,datatype_c,source_c,tag_c,comm_c,request_c)

END SUBROUTINE

In the mpi module and in mpif.h, the routine name MPI_Irecv_f08 has to be substi-
tuted by MPI_lrecv.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 17. LANGUAGE BINDINGS

Special care must be taken in the wrapper routines for arguments of type LOGICAL and
CHARACTER. With LOGICAL arguments the non-standardized binary representations of
.TRUE. and .FALSE. must be mapped to 1 and 0 in C. Character string arguments
must be converted between the space filled strings with explicit length information in
Fortran and the \0-terminated strings in C.

(End of advice to implementors.)

17.1.6 MPI for Different Fortran Standard Versions

17.1.7 Requirements on Fortran Compilers

17.2 Language Interoperability

17.2.1 Introduction
17.2.2 Assumptions
17.2.3 Initialization

17.2.4 Transfer of Handles

Within the mpi_£08 and mpi modules and mpif.h, additional Fortran interfaces are defined
with BIND(C) to access the C wrappers defined within this section, for example:

INTERFACE
FUNCTION MPI_Comm_f2c(comm) &
BIND(C, name=’MPI_Comm_f2c’) RESULT(comm_c)
INTEGER,VALUE, INTENT (IN) :: comm
INTEGER (KIND=MPI_C_COMM_KIND) :: comm_c
END FUNCTION
END INTERFACE

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 15

The Fortran kind-specification MPI_C_COMM_KIND reflects the integer size needed to store
a C MPI_Comm handle. Other C handle kind parameters are MPI_C_DATATYPE_KIND,
MPI_C_ERRHANDLER_KIND, MPI_C_FILE_KIND, MPI_C_GROUP_KIND,

MPI_C_INFO_KIND, MPI_C_MESSAGE_KIND, MPI_C_OP_KIND, MPI_C_REQUEST_KIND, and
MPI_C_WIN_KIND. They are available in Fortran only, and there with all Fortran sup-
port methods. In the same way, interfaces must be provided for the PMPI_..._f2c and
PMPI_..._c2f routines.

Within the mpi_£08 and mpi modules, an MPI implementor can choose to provide these
interfaces with the same function name directly, i.e., without access to the C function, and
defined with or without BIND(C). Such implementations may be inlined into the application
binary. In this case, interception for profiling is not provided.

17.2.5 Status

17.2.6 MPI Opaque Objects

17.2.7 Attributes

17.2.8 Extra-State

17.2.9 Constants

17.2.10 Interlanguage Communication

Unofficial Draft for Comment Only

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

26
27
28
29
30
31
32

33

35
36
37
38
39
40
41
42
43
44
45
46
47

48

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex A

Language Bindings Summary

A.1 Defined Values and Handles

A.1.1 Defined Constants

Variable Address Size (Fortran only)

Fortran type: INTEGER

MPI_ADDRESS_KIND
MPI_COUNT_KIND
MPI_INTEGER_KIND
MPI_OFFSET_KIND
MPI_C_COMM_KIND
MPI_C_DATATYPE_KIND
MPI_C_ERRHANDLER_KIND
MPI_C_FILE_KIND
MPI_C_GROUP_KIND
MPI_C_INFO_KIND
MPI_C_MESSAGE_KIND
MPI_C_OP_KIND
MPI_C_REQUEST_KIND
MPI_C_WIN_KIND

Unofficial Draft for Comment Only

16

Bibliography

[1] International Organization for Standardization, ISO/IEC/SC22/WG5 (For-
tran), Geneva, TS 29113. TS on further interoperability with C,
2012. http://www.nag.co.uk/sc22wg5/, successfully — balloted DTS at
ftp://ftp.nag.co.uk/sc22wgh/N1901-N1950/N1917.pdf. 17.1.5

Unofficial Draft for Comment Only 17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

CONST:MPI_ADDRESS_KIND, 16 MPI_RECV_F08, 7
CONST:MPI_C_COMM_KIND, 15, 16 MPI_REGISTER_DATAREP, 27
CONST:MPI_C_DATATYPE_KIND, 15, 16 MPI_SEND, 3-7
CONST:MPI_C_ERRHANDLER_KIND, 15, MPI_SEND_F08, 7

16 MPI_TEST, 3, 5
CONST:MPI_C_FILE_KIND, 15, 16 MPI_WIN_ALLOCATE, 3
CONST:MPI_C_GROUP_KIND, 15, 16 MPI_WIN_ALLOCATE_SHARED, 3
CONST:MPI_C_INFO_KIND, 15, 16 MPI_WIN_SHARED_QUERY, 3
CONST:MPI_C_MESSAGE_KIND, 15, 16
CONST:MPI_C_OP_KIND, 15, 16 PMPI_..._c2f, 15
CONST:MPI_C_REQUEST_KIND, 15, 16 PMPI_..._cdesc, 4
CONST:MPI_C_WIN_KIND, 15, 16 PMPI_..._f2c, 15
CONST:MPI_COMM_DUP_FN, 3 PMPI_SEND, 1

CONST:MPI_COUNT_KIND, 16

CONST:MPI_INTEGER_KIND, 16

CONST:MPI_OFFSET_KIND, 16

CONST:MPI_SUBARRAYS_SUPPORTED,
2,3,5 17,8

MPI_ALLOC_MEM, 3, 6
MPI_ALLOC_MEM_CPTR, 6
MPI_COMM_CREATE_KEYVAL, 2-7
MPI_COMM_DUP_FN, 2, 3, 5, 7
MPI_COMM_F2C, 14
MPI_COMM_RANK, 3, 10, 11
MPI_COMM_RANK_F08, 10, 11
MPI_F_SYNC_REG, 3-7
MPI_FREE_MEM, 3
MPI_GET_ADDRESS, 3-7
MPI_IRECV, 12, 13
MPI_IRECV_CDESC, 12
MPI_IRECV_F08, 13
MPI_IRECV_F08TS, 12
MPI_IRECV_FTS, 12
MPI_ISEND, 1-7, 9
MPI_ISEND_F08, 7
MPI_ISEND_F08TS, 7
MPI_ISEND_FTS, 7
MPI_OP_CREATE, 2-7
MPI_RECV, 7

18

	Language Bindings
	Fortran Support
	Overview
	Fortran Support Through the mpi_f08 Module
	Fortran Support Through the mpi Module
	Fortran Support Through the mpif.h Include File
	Interface Specifications, Linker Names and the Profiling Interface
	MPI for Different Fortran Standard Versions
	Requirements on Fortran Compilers

	Language Interoperability
	Introduction
	Assumptions
	Initialization
	Transfer of Handles
	Status
	MPI Opaque Objects
	Attributes
	Extra-State
	Constants
	Interlanguage Communication

	Language Bindings Summary
	Defined Values and Handles
	Defined Constants

