
Tools and Debugging Interfaces to MPI

Version 1.0

MPI Forum Working Group on Tools
Accepted by the Message Passing Interface Forum

(date tbd.)

Acknowledgments

Author
John Hancock

Contributing Authors
Furby F. Furby, Godzilla, and Katniss

Editor
Octocat

Reviewers
Murphy

Contents

1 Introduction 1

2 Background 2

3 Overview 3

4 Definitions 4
4.1 MPI Process Definition . 4
4.2 “Starter” Process Definition . 4

The MPI Rank 0 Process as the Starter Process 4
A Separate mpiexec as the Starter Process 4

4.3 MPIR Node Definitions . 5

5 Debugger/MPI Interaction Model 6

6 Interface Specifications 7
6.1 MPIR_dll_name . 7
6.2 mqs_tword_t . 7
6.3 mqs_taddr_t . 7
6.4 mqs_target_type_sizes . 7
6.5 Opaque Types Passed Through the Interface 8
6.6 Constants and Enums . 8

6.6.1 mqs_lang_code . 8
6.6.2 mqs_op_class . 9
6.6.3 mqs_interface_version . 9
6.6.4 mqs_status . 9
6.6.5 Other enums . 9

6.7 Concrete Objects Passed Through the Interface 9
6.7.1 mqs_communicator . 9
6.7.2 mqs_pending_operation . 10

6.8 Callbacks Provided by the Debugger . 11
6.8.1 mqs_basic_callbacks . 11

mqs_malloc_ft . 11
mqs_free_ft . 12
mqs_errorstring_ft . 12
mqs_put_image_info_ft . 12
mqs_get_image_info_ft . 12
mqs_put_process_info_ft . 12

ii
The interface described in this document is not part of the official MPI specification

mqs_get_process_info_ft . 12
6.8.2 mqs_image_callbacks . 12

mqs_get_type_sizes_ft . 13
mqs_find_function_ft . 13
mqs_find_symbol_ft . 13
mqs_find_type_ft . 13
mqs_field_offset_ft . 14
mqs_sizeof_ft . 14

6.8.3 mqs_process_callbacks . 14
mqs_get_global_rank_ft . 14
mqs_get_image_ft . 14
mqs_fetch_data_ft . 14
mqs_target_to_host_ft . 15

6.9 Callbacks Provided by the DLL . 15
6.9.1 mqs_setup_basic_callbacks . 15
6.9.2 mqs_version_string . 15
6.9.3 mqs_version_compatibility . 15
6.9.4 mqs_dll_taddr_width . 15
6.9.5 mqs_dll_error_string . 15

6.10 Executable Image Related Functions . 15
6.10.1 mqs_setup_image . 15
6.10.2 mqs_image_has_queue . 16
6.10.3 mqs_destroy_image_info . 16

6.11 Process Related Functions . 16
6.11.1 mqs_setup_process . 16
6.11.2 mqs_process_has_queue . 16
6.11.3 mqs_destroy_process_info . 16

6.12 Query Functions . 17
6.12.1 mqs_update_communicator_list . 17
6.12.2 mqs_setup_communicator_iterator 17
6.12.3 mqs_get_communicator . 17
6.12.4 mqs_get_comm_group . 17
6.12.5 mqs_next_communicator . 18
6.12.6 mqs_setup_operation_iterator . 18
6.12.7 mqs_next_operation . 18

7 The MPI Handle Introspection Interface 19

iii
The interface described in this document is not part of the official MPI specification

iv
The interface described in this document is not part of the official MPI specification

Chapter 1

Introduction

A wonderful introduction will be here.
Put a citation here so that bibtex is happy: [?]

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

Background

Need some background here.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 2

Chapter 3

Overview

The message queue interface is used by tools and debuggers to extract information describing
the conceptual message-passing state of the MPI application so that this can be displayed
to the users. While the original intent of the interface was to provide the functionality to
debuggers, any tools that has debugger-like capability (e.g., providing symbol name lookup)
can use use this interface to have access to the message passing state. From this point on,
the document might use tools and debuggers interchangably.

Within each MPI communication space, there are three distinct message queues, which
represent the MPI subsystem. They are:

1. Send Queue: represents all of the outstanding send operations.

2. Receive Queue: represents all of the outstanding receive operations.

3. Unexpected Message Queue: represents all the messages that have arrived at the
process, but have not been received yet.

The send and receive queues store information about all of the unfinished send and
receive operations that the process has started within the commnunicator. These might
result either from blocking operations such as MPI_Send and MPI_Recv or nonblocking
operations such as MPI_Isend or MPI_Irecv. Each entry on one of these queues contains the
information that was passed to the function call that initiated the operation. Nonblocking
operations will remain on these queues until they have completed and have been collected
by a suitable MPI_Wait, MPI_Test, or one of the related multiple completion routines. The
unepxected message queue represents a different class of information, since the elements on
this queue have been created by MPI calls in other processes. Therefore, less information
is available about these elements (e.g., the datatype that was used by the sender). In all
cases the order of the queues represents the order that the MPI subsystem will perform
matching (this is important where many entries could match, for instance when wild-card
tag or source is used in a receive operation).

Note that these queues are conceptual: they are a description of how a user can think
about the progression of messages through an MPI program. The number of actual queues
is implementation dependent. The interface described here addresses how to extract these
conceptual queues from the imlementation so that they can be presented to the user inde-
pendently of the particular MPI implementation. For example, an MPI implementation may
maintain only two queues, the Receive Queue and the Unexpected Message Queue. There
is no explicit queue of send operations; instead all of the information about an incomplete
send operation is maintained in the associated MPI_Request.

Unofficial Draft for Comment Only 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 4

Definitions

4.1 MPI Process Definition

An MPI process is defined to be a process that is part of the MPI application as described
in the MPI standard.

In this document, the rank of a process is assumed to be relative to MPI_COMM_-

WORLD (recall that this version of the MPIR interface does not support MPI-2 dynamic
processes). For example, the phrase “MPI rank 0 process” denotes the process that is rank
0 in MPI_COMM_WORLD.

4.2 “Starter” Process Definition

The starter process is the process that is primarily responsible for launching the MPI job.
The starter process may be a separate process that is not part of the MPI application, or
the MPI rank 0 process may act as a starter process. By definition, the starter process
contains functions, data structures, and symbol table information for the MPIR Process
Acquisition Interface.

The MPI implementation determines which launch discipline is used, as described in
the following subsections.

The MPI Rank 0 Process as the Starter Process

An MPI implementation might also implement its launching mechanism such that the MPI
rank 0 process launches the remaining MPI processes of the MPI application. In such
implementation, the MPI rank 0 process is the starter process.

A Separate mpiexec as the Starter Process

Most MPI implementations use a separate mpiexec process that is responsible for launching
the MPI processes. In these implementations, the mpiexec process is the starter process.
Note that the name of the starter process executable varies by implementation; mpirun is a
name commonly used by several implementations, for example. Other names include (but
are not limited to) srun and prun.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 4

4.3 MPIR Node Definitions

For the purposes of this document, the host node is defined to be the node running the tool
process, and a target node is defined to be a node running the target application processes
the tool is controlling. A target node might be the host node, that is, the target application
processes might be running on the same node as the tool process.

5
The interface described in this document is not part of the official MPI specification

Chapter 5

Debugger/MPI Interaction Model

The debugger will have access to the message queue functionality by loading a shared
library provided by the MPI implementation. This allows the debugger to be insulated
from the internals of the MPI library so that it can support multiple MPI implementations.
Furthermore, MPI implementations can provide their users with debugging support without
requiring source access to the debugger. The debugger learns about the location of this
shared library by reading variable MPIR_dll_name from the MPI Starter Process.

All calls to the debug DLL from the debugger are made from entry points whose names
are known to the debugger. However, all calls back to the debugger from the debug DLL are
made through a table of function pointers that is passed to the intialization entrypoint of
the debug DLL. This procedure ensures that the debug DLL is independent of the specific
debugger from which it is being called.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 6

Chapter 6

Interface Specifications

Unless otherwise noted, all definitions are required and shall be provided in the interface
header file.

6.1 MPIR_dll_name

Global variable definition:

char* MPIR_dll_name

Definition is required.
Definition is contained within the address space of the starter process.
Variable is written by the starter process, and read by the tool.

MPIR_dll_name contains the location of debugger DLL provided by the MPI imple-
mentation.

6.2 mqs_tword_t

mqs_tword_t is a target independence typedef name that is the appropriate type for the
DLL to use on the host to hold a target word (long).

6.3 mqs_taddr_t

mqs_tword_t is a target independence typedef name that is the appropriate type for the
DLL to use on the host to hold a target address (void*)

6.4 mqs_target_type_sizes

Type definition:

typedef struct

{

int short_size;

int int_size;

int long_size;

Unofficial Draft for Comment Only 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

int long_long_size;

int pointer_size;

} mqs_target_type_sizes;

mqs_target_type_sizes is a type definition for a struct that holds the size of common
types in the target architecture. The debug DLL will use the callback mqs_get_type_-

sizes_ft provided by the debugger, which takes a variable of type mqs_target_type_-

sizes) and populate it with the size information that it has based on the target host.
short_size holds the size of the type short in the target architecture.
int_size holds the size of the type int in the target architecture.
long_size holds the size of the type long in the target architecture.
long_long_size holds the size of the type long long in the target architecture.
pointer_size holds the size of a pointer in the target architecture

6.5 Opaque Types Passed Through the Interface

The following three types are opaque type that are defined within the debugger and are
exposed to the debug DLL as undefined typedef’s. The debug DLL has no need to see the
internal structure of this type, but merely uses them as keys to identify objects of interest,
or to be passed back to the debugger through some callback.

1. mqs_image identifies an executable image.

2. mqs_process identifies an MPI process.

3. mqs_type identifies a named target type.

The following two types are opaque types defined within the debugger and are cast
to concrete types within the debug DLL for the debug DLL’s internal processing. These
types exist so that the debug DLL can associate some information with the debugger owned
objects.

1. mqs_image_info is used to associate information pertaining to an object of type
mqs_image.

2. mqs_process_info is used to associate information pertaining to an object of type
mqs_process.

6.6 Constants and Enums

6.6.1 mqs_lang_code

typedef enum {

mqs_lang_c = ’c’,

mqs_lang_cplus = ’C’,

mqs_lang_f77 = ’f’,

mqs_lang_f90 = ’F’

} mqs_lang_code;

This enum is used by both the debug DLL and the debuger to deal with the different
language type that the original target code was based on.

8
The interface described in this document is not part of the official MPI specification

6.6.2 mqs_op_class

typedef enum

{

mqs_pending_sends,

mqs_pending_receives,

mqs_unexpected_messages

} mqs_op_class;

This enum is used by the debugger to indicate which queue it is interested in.

6.6.3 mqs_interface_version

This constant defines the version of the interface header

6.6.4 mqs_status

enum mqs_status

{

mqs_st_pending, mqs_st_matched, mqs_st_complete

};

This enum is used to indicate the status of a message in the message queue.

6.6.5 Other enums

enum {

mqs_ok = 0,

mqs_no_information,

mqs_end_of_list,

mqs_first_user_code = 100

};

This enum defines the various result code for the message queue functionality

enum

{

MQS_INVALID_PROCESS = -1

};

This constant provides a value for the debugger to return error indicating an invalid
process index.

6.7 Concrete Objects Passed Through the Interface

6.7.1 mqs_communicator

Type definition:

9
The interface described in this document is not part of the official MPI specification

typedef struct

{

mqs_taddr_t unique_id;

mqs_tword_t local_rank;

mqs_tword_t size;

char name[64];

} mqs_communicator;

unique_id uniquely identifies a communicator.
local_rank identifies the rank of the current MPI process.
size holds the size of the communicator
name contains the name of the communicator if it was given one.

6.7.2 mqs_pending_operation

Type defintion:

typedef struct

{

int status;

mqs_tword_t desired_local_rank;

mqs_tword_t desired_global_rank;

int tag_wild;

mqs_tword_t desired_tag;

mqs_tword_t desired_length;

int system_buffer;

mqs_taddr_t buffer;

/* Fields valid if status >= matched or it is a send */

mqs_tword_t actual_local_rank;

mqs_tword_t actual_global_rank;

mqs_tword_t actual_tag;

mqs_tword_t actual_length;

char extra_text[5][64];

} mqs_pending_operation;

This structure contains enough information to allow the debugger to provide the user
with details about both of the arguments to a receive and of the incoming message that
matched it. All refereces to other processes are available in the mqs_pending_operation

structure both as indices into the group associated with the communicator and as indices
into MPI_COMM_WORLD. This avoids any need for the debugger to concern itself explicitly
with this mapping

status stores the status of the message. The value of this field should be either
mqs_st_pending, mqs_st_matched, or mqs_st_complete as described in the enumeration
mqs_status.

desired_local_rank stores the rank of the target or the source for the communicator
from which this message was initiated.

10
The interface described in this document is not part of the official MPI specification

desired_global_rank stores the rank of the target or the source with respect to MPI_-

COMM_WORLD.
tag_wild identifies whether this message is a posted receive with tag being MPI_ANY_-

TAG

desired_tag holds the tag of the message. This field is only meaningful if tag_wild

is not set.
desired_length holds the length of the message buffer.
system_buffer identifies whether this is a user or a system buffer.
buffer holds the address to the beginning of the message data.
The following fields are only meaningful if the message is a send or if the status fields

indicates that this message is either matched (mqs_st_matched), or completed (mqs_st_-
complete).

actual_local_rank holds the actual local rank (after the message has matched).
actual_global_rank holds the actual local rank with respect to MPI_COMM_WORLD.
actual_tag holds the actual tag.
actual_length holds the actual length.
extra_text can be used by the DLL to provide more information to the user. The

debugger does not interpret this field and simply displays it to the user.

6.8 Callbacks Provided by the Debugger

The debugger provides several callbacks that will be called by the DLL to extract informa-
tion pertaining to the runtime state of the execution. All the callbacks are grouped into
three different groups based on their functionalities: mqs_basic_callbacks, mqs_image_-
callbacks, and mqs_process_callbacks.

6.8.1 mqs_basic_callbacks

Type definition:

typedef struct mqs_basic_callbacks

{

mqs_malloc_ft mqs_malloc_fp;

mqs_free_ft mqs_free_fp;

mqs_errorstring_ft mqs_errorstring_fp;

mqs_put_image_info_ft mqs_put_image_info_fp;

mqs_get_image_info_ft mqs_get_image_info_fp;

mqs_put_process_info_ft mqs_put_process_info_fp;

mqs_get_process_info_ft mqs_get_process_info_fp;

} mqs_basic_callbacks;

mqs_malloc_ft

Function type definition:
typedef void* (*mqs_malloc_ft) (size_t);

Allocates a block of memory. The size (in bytes) of this block shall be given as an
argument to the function.

11
The interface described in this document is not part of the official MPI specification

mqs_free_ft

Function type definition:
typedef void (*mqs_free_ft) (void*);

Frees a previously allocated memory. The pointer to the beginning of the allocated
block of memory shall be given as an argument to the function.

mqs_errorstring_ft

Function type definition:
typedef char* (*mqs_errorstring_ft) (int);

Converts an error code fromt the debugger into an error message. The error code is
given as an argument to the function.

mqs_put_image_info_ft

Function type definition:
typedef void (*mqs_put_image_info_ft) (mqs_image*, mqs_image_info*);

Associates the given image information with the given image. The image as well as the
image information, in the order mentioned, shall be given as arguments to the function.

mqs_get_image_info_ft

Function type definition:
typedef mqs_image_info* (*mqs_get_image_info_ft) (mqs_image*);

Returns the image information associated with the given image. The image shall be
given as the argument to the function.

mqs_put_process_info_ft

Function type definition:
typedef void (*mqs_put_process_info_ft) (mqs_process*, mqs_process_info*);

Associates the given process information with the given process. The process as well
as the process information, in the order mentioned, shall be given as arguments to the
function.

mqs_get_process_info_ft

Function type definition:
typedef mqs_process_info* (*mqs_get_process_info_ft) (mqs_process*);

Returns the process information associated with the given process. The process shall
be given as the argument to the function.

6.8.2 mqs_image_callbacks

Type definition:

typedef struct mqs_image_callbacks

{

mqs_get_type_sizes_ft mqs_get_type_sizes_fp;

12
The interface described in this document is not part of the official MPI specification

mqs_find_function_ft mqs_find_function_fp;

mqs_find_symbol_ft mqs_find_symbol_fp;

mqs_find_type_ft mqs_find_type_fp;

mqs_field_offset_ft mqs_field_offset_fp;

mqs_sizeof_ft mqs_sizeof_fp;

} mqs_image_callbacks;

mqs_get_type_sizes_ft

Function type definition:
typedef void (*mqs_get_type_sizes_ft) (mqs_process*, mqs_target_type_sizes*);

Populates the size information about common datatypes from the running process. The
process and the struct to hold the sizes, in the order mentioned, shall be given as arguments
to the function.

mqs_find_function_ft

Function type definition:

typedef int (*mqs_find_function_ft) (mqs_image*, char*, mqs_lang_code, mqs_taddr_t*);

Given an image, returns the address of the specified function. The image, the function
name, the language, and the output buffer to store the address of the function, in the order
mentioned, shall be given as arguments to the function. The function returns msq_ok if
successful and mqs_no_information otherwise.

mqs_find_symbol_ft

Function type definition:
typedef int (*mqs_find_symbol_ft) (mqs_image*, char*, mqs_taddr_t*);

Given an image, returns the address of the specified symbol. The image, the function
name, and the output buffer to store the address of the symbol, in the order mentioned,
shall be given as arguments to the function. The function returns msq_ok if successful and
mqs_no_information otherwise.

mqs_find_type_ft

Function type definition:
typedef mqs_type* (*mqs_find_type_ft) (mqs_image*, char*, mqs_lang_code);

Given an image, returns the type associated with the given named type. The image,
the name of the type, and the language, in the order mentioned, shall be given as arguments
to the function, in the order mentioned. The function either returns a type handle, or NULL
if the type cannot be found.

Advice to implementors. Since the debugger may load debug information lazily, the
MPI run time library should ensure that the type definitions required occur in a file
whose debug information will already ahve been loaded. For instance, by placing them
in the same file as the startup breakpoint function. (End of advice to implementors.)

13
The interface described in this document is not part of the official MPI specification

mqs_field_offset_ft

Function type definition:
typedef int (*mqs_field_offset_ft) (mqs_type*, char*);

Given the handle for a struct type, returns the byte offset of the named field. The
handle of the type and the name of the field, in the order mentioned, shall be given as
arguments to the function. If the field cannot be found, the function returns -1.

mqs_sizeof_ft

Function type definition:
typedef int (*mqs_sizeof_ft) (mqs_type*);

Given the handle for a type, return the size of the type in bytes. The handle to the
type shall be given as an argument to the function.

6.8.3 mqs_process_callbacks

Type definition:

typedef struct mqs_process_callbacks

{

mqs_get_global_rank_ft mqs_get_global_rank_fp;

mqs_get_image_ft mqs_get_image_fp;

mqs_fetch_data_ft mqs_fetch_data_fp;

mqs_target_to_host_ft mqs_target_to_host_fp;

} mqs_process_callbacks;

mqs_get_global_rank_ft

Function type definition:
typedef int (*mqs_get_global_rank_ft) (mqs_process*);

Given a process, returns its rank in MPI_COMM_WORLD. The process shall be given as the
argument to the function.

mqs_get_image_ft

Function type definition:
typedef mqs_image* (*mqs_get_image_ft) (mqs_process*);

Given a process, returns the image of which it is an instance. The process shall be
given as the argument to the function.

mqs_fetch_data_ft

Function type definition:
typedef int (*mqs_fetch_data_ft) (mqs_process*, mqs_taddr_t, int, void*);

Fetches data from the process into the specified buffer. The process handle, the address
of the desired data, the number of bytes to read, and the specified buffer, in the order
mentioned, shall be given as arguments to the function. The function returns msq_ok if the
data could be fetched successfully. Otherwise, it returns mqs_no_information.

14
The interface described in this document is not part of the official MPI specification

mqs_target_to_host_ft

Function type definition
typedef void (*mqs_target_to_host_ft) (mqs_process*, const void*, void*, int);

Converts data from target representation to host representation. The process, the
original data, the buffer to store the converted data, and the number of bytes to convert,
in the order mentioned, shall be given as argument to the function.

6.9 Callbacks Provided by the DLL

6.9.1 mqs_setup_basic_callbacks

Function type definition:
extern void mqs_setup_basic_callbacks(const mqs_basic_callbacks*);

This function is called by the debugger to populate the basic callbacks table for the
DLL.

6.9.2 mqs_version_string

Function type definition:
extern char* mqs_version_string(void);

Returns the DLL version.

6.9.3 mqs_version_compatibility

Function type definition:
extern int mqs_version_compatibility(void);

Returns the DLL compatibility level.

6.9.4 mqs_dll_taddr_width

Function type definition:
extern int mqs_dll_taddr_width(void);

Gives the width of an address pointer which has been compiled into the DLL, it is not
the width of a specific process, which could be different from this.

6.9.5 mqs_dll_error_string

Function type definition:
extern char* mqs_dll_error_string(int);

Provides a text string for an error value. The error value shall be given as an argument
to the function.

6.10 Executable Image Related Functions

6.10.1 mqs_setup_image

Function type definition:
extern int mqs_setup_image(mqs_image*, const mqs_image_callbacks*);

15
The interface described in this document is not part of the official MPI specification

Setups debug information for a specific image, this must save the callbacks, and use
those functions for accessing this image. The image and the pointer to the mqs_image_-

callbacks table, in the order mentioned, shall be given as arguments to the function. The
DLL should use the mqs_put_image_info and mqs_get_image_info functions to associate
the information it wants to keep with the image. The debugger will call mqs_destroy_-
image_info when it no longer wants to keep information about the given executable. This
will be called once for each executable image in the parallel program.

6.10.2 mqs_image_has_queue

Function type definition:
extern int mqs_image_has_queues(mqs_image*, char**);

Returns whether this image have the necessary symbols to allow access to the message
queue. The image and the name of the queues, in the order mentioned, shall be given as
arguments to the function. This function is called once for each image, and the information
cached within the debugger.

6.10.3 mqs_destroy_image_info

Function type definition:
extern int mqs_destroy_image_info(mqs_image_info*);

Allows for cleaning up when the image information is no longer needed.

6.11 Process Related Functions

6.11.1 mqs_setup_process

Function type definition:
extern int mqs_setup_process(mqs_process*, const mqs_process_callbacks*);

Setups process specific information. The process and the pointer to the mqs_process_-
callbacks table, in the order mentioned, shall be given as arguments to the function.

6.11.2 mqs_process_has_queue

Function type definition:
extern int mqs_process_has_queues(mqs_process*, char**);

Similar to the mqs_process_has_queues function, this allows for querying whether
process has support for message queues. The process and the names of the queues, in the
order mentioned, shall be given as arguments to the function. This function should only be
called if the image claims to provide message queues. For example, the image might have
enabled message queues support if only certain environment variables are set at launched.
This function checks whether at runtime, message queues support is enabled for the process.

6.11.3 mqs_destroy_process_info

Function type definition:
extern int mqs_destroy_process_info(mqs_process_info*);

Allows for cleaning up when the process information is no longer needed.

16
The interface described in this document is not part of the official MPI specification

6.12 Query Functions

These functions provide the message queue query functionality. The model here is that the
debugger calls down to the library to initialize an iteration over a specific class of things,
and then keeps calling the ”next” function until it returns mqs_false. For communicators
the stepping is separated from extracting information, because the debugger will need the
state of the communicator iterator to qualify the selections of the operation iterator. mqs_-
true is returned when the description has been updated; mqs_false means there is no more
information to return, and therefore the description contains no useful information. There
is only one of each type of iteration running at once, so the library should save the iteration
state in the mqs_process_info.

6.12.1 mqs_update_communicator_list

Function type definition:
extern int mqs_update_communicator_list(mqs_process*);

Given a process, refreshes the list of active communicators. The process pointer shall be
given as an argument to the function. Ideally this list is cached somewhere within the DLL
and the debugger invokes it when necessary. The function returns msq_ok if the operation
succeeds.

6.12.2 mqs_setup_communicator_iterator

Function type definition:
extern int mqs_setup_communicator_iterator(mqs_process*);

Given a process, prepares the iterator to walk the communicator list. The process
pointer shall be given as the argument for the function. The function returns msq_ok if the
operation succeeds.

6.12.3 mqs_get_communicator

Function type definition:
extern int mqs_get_communicator(mqs_process*, mqs_communicator*);

Extracts information about the current communicator. The process pointer and pointer
to the output communicator, in the order mentioned, shall be given as arguments to the
function. The function returns msq_ok if the operation succeeds.

6.12.4 mqs_get_comm_group

Function type definition:
extern int mqs_get_comm_group(mqs_process*, int*);

Extracts the group from the current communicator. The debugger already knows the
size of the communciator, so it should allocate a suitably sized array for the result. The
result is an array in which the element at index i contains the MPI_COMM_WORLD rank
of rank i-th in the current communicator. The function returns msq_ok if the operation
succeeds.

17
The interface described in this document is not part of the official MPI specification

6.12.5 mqs_next_communicator

Function type definition:
extern int mqs_next_communicator(mqs_process*);

Moves the internal iterator to the next communicator in this process. The function
returns |mqs_ok— if the operation succeeds.

6.12.6 mqs_setup_operation_iterator

Function type definition
extern int mqs_setup_operation_iterator(mqs_process*, int);

Prepares to iterate over the pending operations in the currently active communicator in
this process. The process pointer and the type of pending operations (see mqs_op_class),
in the order mentioned, shall be given as arguments to the function. The function returns
msq_ok if the operation succeeds.

6.12.7 mqs_next_operation

Function type definition:
extern int mqs_next_operation(mqs_process*, mqs_pending_operation*);

Fetches information about the next appropriate pending operation in the current com-
municator. The process pointer and the output pointer for result, in the order mentioned,
shall be given as arguments to the function. The function returns mqs_false when there
is no more operation to iterate.

18
The interface described in this document is not part of the official MPI specification

Chapter 7

The MPI Handle Introspection
Interface

A wonderful chapter will be here.

Unofficial Draft for Comment Only 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Contents
	Introduction
	Background
	Overview
	Definitions
	MPI Process Definition
	``Starter'' Process Definition
	The MPI Rank 0 Process as the Starter Process
	A Separate mpiexec as the Starter Process

	MPIR Node Definitions

	Debugger/MPI Interaction Model
	Interface Specifications
	MPIR_dll_name
	mqs_tword_t
	mqs_taddr_t
	mqs_target_type_sizes
	Opaque Types Passed Through the Interface
	Constants and Enums
	mqs_lang_code
	mqs_op_class
	mqs_interface_version
	mqs_status
	Other enums

	Concrete Objects Passed Through the Interface
	mqs_communicator
	mqs_pending_operation

	Callbacks Provided by the Debugger
	mqs_basic_callbacks
	mqs_malloc_ft
	mqs_free_ft
	mqs_errorstring_ft
	mqs_put_image_info_ft
	mqs_get_image_info_ft
	mqs_put_process_info_ft
	mqs_get_process_info_ft

	mqs_image_callbacks
	mqs_get_type_sizes_ft
	mqs_find_function_ft
	mqs_find_symbol_ft
	mqs_find_type_ft
	mqs_field_offset_ft
	mqs_sizeof_ft

	mqs_process_callbacks
	mqs_get_global_rank_ft
	mqs_get_image_ft
	mqs_fetch_data_ft
	mqs_target_to_host_ft

	Callbacks Provided by the DLL
	mqs_setup_basic_callbacks
	mqs_version_string
	mqs_version_compatibility
	mqs_dll_taddr_width
	mqs_dll_error_string

	Executable Image Related Functions
	mqs_setup_image
	mqs_image_has_queue
	mqs_destroy_image_info

	Process Related Functions
	mqs_setup_process
	mqs_process_has_queue
	mqs_destroy_process_info

	Query Functions
	mqs_update_communicator_list
	mqs_setup_communicator_iterator
	mqs_get_communicator
	mqs_get_comm_group
	mqs_next_communicator
	mqs_setup_operation_iterator
	mqs_next_operation

	The MPI Handle Introspection Interface

