
Tools and Debugging Interfaces to MPI

Version 1.0

MPI Forum Working Group on Tools
Accepted by the Message Passing Interface Forum

(date tbd.)

Acknowledgments

Author
John Hancock

Contributing Authors
Furby F. Furby, Godzilla, and Katniss

Editor
Octocat

Reviewers
Murphy

Contents

1 Introduction 1

2 Background 2

3 Overview 3

4 Definitions 4
4.1 MPI Process Definition . 4
4.2 “Starter” Process Definition . 4

The MPI Rank 0 Process as the Starter Process 4
A Separate mpiexec as the Starter Process 4

4.3 MPIR Node Definitions . 5

5 Debugger/MPI Interaction Model 6

6 Interface Specifications 8
6.1 mpimsgq_dll_locations . 8
6.2 mqs_tword_t . 8
6.3 mqs_taddr_t . 8
6.4 mqs_target_type_sizes . 8
6.5 Opaque Types Passed Through the Interface 9
6.6 mqs_process_info . 9
6.7 Constants and Enums . 9

6.7.1 mqs_lang_code . 9
6.7.2 mqs_interface_version . 9
6.7.3 mqs_result . 10
6.7.4 mqs_error . 10
6.7.5 mqs_op_class . 10
6.7.6 mqs_status . 10

6.8 Concrete Objects Passed Through the Interface 10
6.8.1 mqs_communicator . 10
6.8.2 mqs_pending_operation . 11

6.9 Callbacks Provided by the Debugger . 11
6.9.1 mqs_basic_callbacks . 11

mqs_malloc_ft . 12
mqs_free_ft . 12
mqs_errorstring_ft . 12
mqs_put_image_info_ft . 12

ii
The interface described in this document is not part of the official MPI specification

mqs_get_image_info_ft . 12
mqs_put_process_info_ft . 12
mqs_get_process_info_ft . 12

6.9.2 mqs_image_callbacks . 12
mqs_get_type_sizes_ft . 12
mqs_find_function_ft . 12
mqs_find_symbol_ft . 12
mqs_find_type_ft . 12
mqs_field_offset_ft . 12
mqs_sizeof_ft . 12

6.9.3 mqs_process_callbacks . 12
mqs_get_global_rank_ft . 13
mqs_get_image_ft . 13
mqs_fetch_data_ft . 13
mqs_target_to_host_ft . 13

6.10 Callbacks Provided by the DLL . 13
6.10.1 mqs_setup_basic_callbacks . 13
6.10.2 mqs_version_string . 13
6.10.3 mqs_version_compatibility . 13

6.11 Miscellaneous . 13
6.12 mqs_dll_taddr_width . 13
6.13 mqs_dll_error_string . 13
6.14 Executable Image Related Functions . 13

6.14.1 mqs_setup_image . 13
6.14.2 mqs_image_has_queue . 13

6.15 Query Functions . 13
6.15.1 mqs_update_communicator_list . 14
6.15.2 mqs_setup_communicator_iterator 14
6.15.3 mqs_get_communicator . 14
6.15.4 mqs_get_comm_group . 14
6.15.5 mqs_next_communicator . 14
6.15.6 mqs_setup_operation_iterator . 14
6.15.7 mqs_next_operation . 14

7 The MPI Handle Introspection Interface 15

Bibliography 16

iii
The interface described in this document is not part of the official MPI specification

iv
The interface described in this document is not part of the official MPI specification

Chapter 1

Introduction

A wonderful introduction will be here.
Put a citation here so that bibtex is happy: [1]

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

Background

Need some background here.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 2

Chapter 3

Overview

The message queue interface is used by tools and debuggers to extract information describing
the conceptual message-passing state of the MPI application so that this can be displayed
to the user.

Within each MPI communication space, there are three distinct message queues, which
represent the MPI subsystem. They are:

1. Send Queue: represents all of the outstanding send operations.

2. Receive Queue: represents all of the outstanding receive operations.

3. Unexpected Message Queue: represents all the messages that have arrived at the
process, but have not been received yet.

The send and receive queues store information about all of the unfinished send and
receive operations that the process has started within the commnunicator. These might
result either from blocking operations such as MPI_Send and MPI_Recv or nonblocking
operations such as MPI_Isend or MPI_Irecv. Each entry on one of these queues contains
the information that was passed to the funciton call that tinitiated the operation. Non-
blocking operations will remain on these queues until they have completed and have been
collected by a suitable MPI_Wait, MPI_Test, or one of the related multiple completion
routines. The unepxected message queue represents a different class of information, since
the elements on this queue have been created by MPI calls in other processes. Therefore,
less information is available about these elements (e.g., the datatype that was used by the
sender). In all cases the order of the queues represents the order that the MPI subsystem
will perform matching (this is important where many entries could match, for instance when
wild-card tag or source is used in a receive operation).

Note that these queues are conceptual: they are a description of how a user can think
about the progression of messages through an MPI program. The number of actual queues
is implementation dependent. The interface described here addresses how to extract these
conceptual queues from the imlementation so that they can be presented to the user inde-
pendently of the particular MPI implementation. For example, the MPICH implemetation
of MPI maintains only two queues, the Receive Queue and the Unexpected Message Queue.
There is no explicit queue of send operations; instead all of the information about an in-
complete send operation is maintained in the associated MPI_Request. I don’t think this is
true anymore within MPICH. If compiled with HAVE_DEBUGGER_SUPPORT, MPICH
chains the send requests into a list, but Dave can confirm.

Unofficial Draft for Comment Only 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 4

Definitions

4.1 MPI Process Definition

An MPI process is defined to be a process that is part of the MPI application as described
in the MPI standard.

In this document, the rank of a process is assumed to be relative to MPI_COMM_-

WORLD (recall that this version of the MPIR interface does not support MPI-2 dynamic
processes). For example, the phrase “MPI rank 0 process” denotes the process that is rank
0 in MPI_COMM_WORLD.

4.2 “Starter” Process Definition

The starter process is the process that is primarily responsible for launching the MPI job.
The starter process may be a separate process that is not part of the MPI application, or
the MPI rank 0 process may act as a starter process. By definition, the starter process
contains functions, data structures, and symbol table information for the MPIR Process
Acquisition Interface.

The MPI implementation determines which launch discipline is used, as described in
the following subsections.

The MPI Rank 0 Process as the Starter Process

The MPICH-1 p4 channel is implemented such that the MPI rank 0 process launches the
remaining MPI processes of the MPI application. In the MPICH-1 p4 channel implemen-
tation, the MPI rank 0 process is the starter process.

A Separate mpiexec as the Starter Process

Most MPI implementations use a separate mpiexec process that is responsible for launching
the MPI processes. In these implementations, the mpiexec process is the starter process.
Note that the name of the starter process executable varies by implementation; mpirun is a
name commonly used by several implementations, for example. Other names include (but
are not limited to) srun and prun.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 4

4.3 MPIR Node Definitions

For the purposes of this document, the host node is defined to be the node running the tool
process, and a target node is defined to be a node running the target application processes
the tool is controlling. A target node might be the host node, that is, the target application
processes might be running on the same node as the tool process.

5
The interface described in this document is not part of the official MPI specification

Chapter 5

Debugger/MPI Interaction Model

The debugger will have access to the message queue functionality by loading a shared
library provided by the MPI implementation. This allows the debugger to be insulated
from the internals of the MPI library so that it can support multiple MPI implementations.
Furthermore, MPI implementations can provide their users with debugging support without
requiring source access to the debugger. The debugger learns about the location of this
shared library by reading variable mpimsgq_dll_locations from the MPI Starter Process.
The symbol is guaranteed to be NULL before the MPI Starter Process initializes it with a
list of shared library names that it provides. The debugger should search this list and find
one that is compatible to it (e.g., 32 bit vs 64 bit). More specifically:

1. At any time, the debugger searches for the public symbol mpimsgq_dll_locations
in the MPI starter process (type (char**))

2. If the symbol is found and the symbol’s value is NULL, try again later (meaning: the
MPI implementation has not yet filled in relevant information)

3. If the symbol’s value is non-NULL, the debugger goes through the NULL-terminated
filenames in the string array (the last entry in the array will be NULL) and tries to
dynamically load the DLL filename. This step assumes that dlopen() (or equiva-
lent) will safely fail to load any DLL that is not suitable for the current platform
(e.g., wrong endian, wrong bitness, wrong OS, ...etc.). If the load is successful and
the DLL is suitable (e.g., the debugger can check the mqs_version_string() and
mqs_version_compatibility() outputs), the debugger can continue with its logic.
Otherwise (the load is unsuccessful), the debugger should continue down the list of
dll names and repeat the loading process for each DLL name until it is successful.

4. If the symbol was not found, or if none of the DLLs was found to be suitable, the
debugger should search for the public symbol MPIR_dll_name in the MPI Starter
Process’ process space and attempt to load the DLL name provided by that symbol.

Rationale. While the Message Queue Display interface has not been standardized,
many MPI implementations and tool/debuggers have been relying on the existing
mechanism of using the variable MPIR_dll_name. However, this mechanism limits the
DLL names that can be chosen at compile-time, and is usually a DLL that is the same
bitness as the installed MPI. When the debugger bitness is different from that of the
MPI application it is debugging, user level workaround is usually required so that the
proper DLL can be loaded. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 6

All calls to the debug DLL from the debugger are made from entry points whose names
are known to the debugger. However, all calls back to the debugger from the debug DLL are
made through a table of function pointers that is passed to the intialization entrypoint of
the debug DLL. This procedure ensures that the debug DLL is independent of the specific
debugger from which it is being called.

7
The interface described in this document is not part of the official MPI specification

Chapter 6

Interface Specifications

Unless otherwise noted, all definitions are required and are provided in the interface header
file.

6.1 mpimsgq_dll_locations

Global variable definition:

char* mpimsgq_dll_locations

Definition is required.
Definition is contained within the address space of the starter process.
Variable is written by the starter process, and read by the tool.

mpimsgq_dll_locations is a argv-style array of DLL names populated by the starter
process. The last entry of the array must be NULL. The names indicate the location of
the list of DLLs provided by the MPI implementation that provide the message queue
functionality. The debugger/tool can iterate this list to find a suitable shared library.

6.2 mqs_tword_t

mqs_tword_t is a target independence typedef name that is the appropriate type for the
DLL to use on the host to hold a target word (long).

6.3 mqs_taddr_t

mqs_tword_t is a target independence typedef name that is the appropriate type for the
DLL to use on the host to hold a target address (void*)

6.4 mqs_target_type_sizes

Type definition:

typedef struct

{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 8

int short_size;

int int_size;

int long_size;

int long_long_size;

int pointer_size;

} mqs_target_type_sizes;

mqs_target_type_sizes is a type definition for a struct that holds the size of common
types in the target address space. The debug DLL will use the callback mqs_get_type_-

sizes_ft provided by the debugger, which takes a variable of type mqs_target_type_-

sizes) and populate it with the size information that it has based on the target host.

6.5 Opaque Types Passed Through the Interface

The following three types are opaque type that are defined within the debugger and are
exposed to the debug DLL as undefined typedef’s. The debug DLL has no need to see the
internal structure of this type, but merely uses them as keys to identify objects of interest,
or to be passed back to the debugger through some callback.

1. mqs_image

2. mqs_process

3. mqs_type

The following two types are opaque types defined within the debugger and are cast to
concrete types within the debug DLL for the debug DLL’s internal processing.

1. mqs_image_info

6.6 mqs_process_info

6.7 Constants and Enums

6.7.1 mqs_lang_code

typedef enum {

mqs_lang_c = ’c’,

mqs_lang_cplus = ’C’,

mqs_lang_f77 = ’f’,

mqs_lang_f90 = ’F’

} mqs_lang_code;

This enum is used by both the debug DLL and the debuger to deal with the different
language type that the original target code was based on.

6.7.2 mqs_interface_version

This constant defines the version of the interface header

9
The interface described in this document is not part of the official MPI specification

6.7.3 mqs_result

typedef enum {

mqs_ok = 0,

mqs_no_information,

mqs_end_of_list,

mqs_first_user_code = 100

}mqs_result;

This enum defines the various result code for the message queue functionality

6.7.4 mqs_error

enum

{

MQS_INVALID_PROCESS = -1

};

This constant provides a value for the debugger to return error indicating an invalid
process index.

6.7.5 mqs_op_class

typedef enum

{

mqs_pending_sends,

mqs_pending_receives,

mqs_unexpected_messages

} mqs_op_class;

This enum is used by the debugger to indicate which queue it is interested in.

6.7.6 mqs_status

typedef enum

{

mqs_st_pending, mqs_st_matched, mqs_st_complete

} mqs_status;

This enum is used to indicate the status of a message in the message queue.

6.8 Concrete Objects Passed Through the Interface

6.8.1 mqs_communicator

Type definition:

typedef struct

{

mqs_taddr_t unique_id; /* A unique tag for the communicator */

10
The interface described in this document is not part of the official MPI specification

mqs_tword_t local_rank;/* The rank of this process Comm_rank */

mqs_tword_t size; /* Comm_size */

char name[64]; /* the name if it has one */

} mqs_communicator;

6.8.2 mqs_pending_operation

Type defintion:

typedef struct

{

mqs_status status;

mqs_tword_t desired_local_rank;

mqs_tword_t desired_global_rank;

int tag_wild;

mqs_tword_t desired_tag;

mqs_tword_t desired_length;

int system_buffer;

mqs_taddr_t buffer;

/* Fields valid if status >= matched or it is a send */

mqs_tword_t actual_local_rank;

mqs_tword_t actual_global_rank;

mqs_tword_t actual_tag;

mqs_tword_t actual_length;

char extra_text[5][64];

} mqs_pending_operation;

This structure contains enough information to allow the debugger to provide the user
with details about both of the arguments to a receive and of the incoming message that
matched it. All refereces to other processes are available in the mqs_pending_operation

structure both as indices into the group associated with the communicator and as indices
into MPI_COMM_WORLD. This avoids any need for the debugger to concern itself explicitly
with this mapping

6.9 Callbacks Provided by the Debugger

6.9.1 mqs_basic_callbacks

Type definition:

typedef struct mqs_basic_callbacks

{

mqs_malloc_ft mqs_malloc_fp;

mqs_free_ft mqs_free_fp;

mqs_errorstring_ft mqs_errorstring_fp;

mqs_put_image_info_ft mqs_put_image_info_fp;

mqs_get_image_info_ft mqs_get_image_info_fp;

11
The interface described in this document is not part of the official MPI specification

mqs_put_process_info_ft mqs_put_process_info_fp;

mqs_get_process_info_ft mqs_get_process_info_fp;

} mqs_basic_callbacks;

mqs_malloc_ft

mqs_free_ft

mqs_errorstring_ft

mqs_put_image_info_ft

mqs_get_image_info_ft

mqs_put_process_info_ft

mqs_get_process_info_ft

6.9.2 mqs_image_callbacks

Type definition:

typedef struct mqs_image_callbacks

{

mqs_get_type_sizes_ft mqs_get_type_sizes_fp;

mqs_find_function_ft mqs_find_function_fp;

mqs_find_symbol_ft mqs_find_symbol_fp;

mqs_find_type_ft mqs_find_type_fp;

mqs_field_offset_ft mqs_field_offset_fp;

mqs_sizeof_ft mqs_sizeof_fp;

} mqs_image_callbacks;

mqs_get_type_sizes_ft

mqs_find_function_ft

mqs_find_symbol_ft

mqs_find_type_ft

mqs_field_offset_ft

mqs_sizeof_ft

6.9.3 mqs_process_callbacks

Type definition:

typedef struct mqs_process_callbacks

{

mqs_get_global_rank_ft mqs_get_global_rank_fp;

mqs_get_image_ft mqs_get_image_fp;

mqs_fetch_data_ft mqs_fetch_data_fp;

mqs_target_to_host_ft mqs_target_to_host_fp;

} mqs_process_callbacks;

12
The interface described in this document is not part of the official MPI specification

mqs_get_global_rank_ft

mqs_get_image_ft

mqs_fetch_data_ft

mqs_target_to_host_ft

6.10 Callbacks Provided by the DLL

6.10.1 mqs_setup_basic_callbacks

6.10.2 mqs_version_string

6.10.3 mqs_version_compatibility

6.11 Miscellaneous

6.12 mqs_dll_taddr_width

6.13 mqs_dll_error_string

6.14 Executable Image Related Functions

6.14.1 mqs_setup_image

Setup debug information for a specific image, this must save the callbacks, and use those
functions for accessing this image. The DLL should use the mqs_put_image_info and mqs_-

get_image_info functions to associate the information it wants to keep with the image. The
debugger will call mqs_destroy_image_info when it no longer wants to keep information
about the given executable. This will be called once for each executable image in the parallel
program.

6.14.2 mqs_image_has_queue

This function returns whether this image have the necessary symbols to allow access to the
message queue. This function is called once for each image, and the information cached
within the debugger.

6.15 Query Functions

ANH: DO WE REALLY NEED THESE?
These functions provide the message queue query functionality. The model here is that

the debugger calls down to the library to initialize an iteration over a specific class of things,
and then keeps calling the ”next” function until it returns mqs_false. For communicators
the stepping is separated from extracting information, because the debugger will need the
state of the communicator iterator to qualify the selections of the operation iterator. mqs_-
true is returned when the description has been updated; mqs_false means there is no more
information to return, and therefore the description contains no useful information. There
is only one of each type of iteration running at once, so the library should save the iteration
state in the mqs_process_info.

13
The interface described in this document is not part of the official MPI specification

6.15.1 mqs_update_communicator_list

6.15.2 mqs_setup_communicator_iterator

6.15.3 mqs_get_communicator

6.15.4 mqs_get_comm_group

6.15.5 mqs_next_communicator

6.15.6 mqs_setup_operation_iterator

6.15.7 mqs_next_operation

14
The interface described in this document is not part of the official MPI specification

Chapter 7

The MPI Handle Introspection
Interface

A wonderful chapter will be here.

Unofficial Draft for Comment Only 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,
William Saphir, Tony Skjellum, and Marc Snir. MPI-2: Extending the Message-Passing
Interface. In Luc Bouge, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors,
Euro-Par ’96 Parallel Processing, number 1123 in Lecture Notes in Computer Science,
pages 128–135. Springer Verlag, 1996.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 16

	Contents
	Introduction
	Background
	Overview
	Definitions
	MPI Process Definition
	``Starter'' Process Definition
	The MPI Rank 0 Process as the Starter Process
	A Separate mpiexec as the Starter Process

	MPIR Node Definitions

	Debugger/MPI Interaction Model
	Interface Specifications
	mpimsgq_dll_locations
	mqs_tword_t
	mqs_taddr_t
	mqs_target_type_sizes
	Opaque Types Passed Through the Interface
	mqs_process_info
	Constants and Enums
	mqs_lang_code
	mqs_interface_version
	mqs_result
	mqs_error
	mqs_op_class
	mqs_status

	Concrete Objects Passed Through the Interface
	mqs_communicator
	mqs_pending_operation

	Callbacks Provided by the Debugger
	mqs_basic_callbacks
	mqs_malloc_ft
	mqs_free_ft
	mqs_errorstring_ft
	mqs_put_image_info_ft
	mqs_get_image_info_ft
	mqs_put_process_info_ft
	mqs_get_process_info_ft

	mqs_image_callbacks
	mqs_get_type_sizes_ft
	mqs_find_function_ft
	mqs_find_symbol_ft
	mqs_find_type_ft
	mqs_field_offset_ft
	mqs_sizeof_ft

	mqs_process_callbacks
	mqs_get_global_rank_ft
	mqs_get_image_ft
	mqs_fetch_data_ft
	mqs_target_to_host_ft

	Callbacks Provided by the DLL
	mqs_setup_basic_callbacks
	mqs_version_string
	mqs_version_compatibility

	Miscellaneous
	mqs_dll_taddr_width
	mqs_dll_error_string
	Executable Image Related Functions
	mqs_setup_image
	mqs_image_has_queue

	Query Functions
	mqs_update_communicator_list
	mqs_setup_communicator_iterator
	mqs_get_communicator
	mqs_get_comm_group
	mqs_next_communicator
	mqs_setup_operation_iterator
	mqs_next_operation

	The MPI Handle Introspection Interface
	Bibliography

