
MPI: A Message-Passing Interface Standard

Version 3.0 > (Fin2)

⊥ (Fin2)

Message Passing Interface Forum

Draft January 27th, 2011

Contents

1 Tool Interfaces for MPI 1
1.1 Introduction . 1
1.2 Profiling Interface . 1
1.3 MPIT Performance Interface . 1

1.3.1 Verbosity Levels . 2
1.3.2 Binding of MPIT Variables to MPI Objects 3
1.3.3 String Arguments . 3
1.3.4 Initialization and Finalization . 4
1.3.5 Datatype System . 4
1.3.6 Control Variables . 7

Control Variable Query Functions 7
Handle Allocation and Deallocation 9
Control Variable Access Functions 10

1.3.7 Performance Variables . 11
Performance Variable Classes . 11
Performance Variable Query Functions 12
Performance Experiment Sessions . 14
Handle Allocation and Deallocation 15
Starting and Stopping of Performance Variables 16
Performance Variable Access Functions 17

1.3.8 Variable Categorization . 19
1.3.9 Return and Error Codes . 21
1.3.10 Profiling Interface . 22

Bibliography 24

Examples Index 25

MPIT Constant and Predefined Handle Index 25

MPIT Declarations Index 27

MPIT Callback Function Prototype Index 27

MPIT Function Index 27

ii

List of Figures

iii

List of Tables

1.1 MPIT verbosity levels. 2
1.2 Constants to identify associations of MPIT control variables. 3
1.3 Predefined MPIT datatypes and their MPI equivalents. 5
1.4 MPIT datatype classes. 5
1.5 Scopes for MPIT control variables. 9
1.6 Return and error codes used MPIT functions. 23

Chapter 1

Tool Interfaces for MPI

1.1 Introduction

This chapter discusses a set of interfaces that allows debuggers, performance analyzers, and
other tools to extract information about the operation of MPI processes. Specifically, this
chapter defines both the PMPI profiling interface (Section 1.2) for transparently intercepting
and inspecting any MPI call, and the MPIT tool information interface (Section 1.3) for
querying MPI control and performance variables. The interfaces described in this chapter
are all defined in the context of an MPI process, i.e., are callable from the same code that
invokes other MPI functions.

1.2 Profiling Interface

THIS SECTION IS INTENDED TO DEFINE THE EXISTING PMPI INTERFACE US-
ING THE CURRENT TEXT FROM THE PROFILING CHAPTER. THIS WILL BE
ADDED TO THE DOCUMENT ONCE THE MINOR CHANGES FOR THIS CHAPTER
HAVE PASSED THE MPI FORUM VOTING PROCESS.

1.3 MPIT Performance Interface

To optimize MPI applications or their runtime behavior, it is often advantageous to un-
derstand the performance switches an MPI implementation offers to the user as well as to
monitor properties and timing information from within the MPI implementation.

The MPIT interface described in this section provides a mechanism for the MPI im-
plementation to expose a set of variables, each of which represent a particular property,
setting, or performance measurement from within the MPI implementation. The MPIT
interface provides the necessary routines to find all variables that exist in the particular
MPI implementation, query their properties, retrieve descriptions about their meaning and
access and, if appropriate, alter their values.

The interface is split into two parts: the first part provides information about control
variables used by the MPI implementation to fine tune its configuration. The second part
provides access to performance variables that can provide insight into internal performance
information of the underlying MPI implementation.

To avoid restrictions on the MPI implementation, the MPIT interface allows the im-
plementation to specify which control and performance variables exist. Additionally, the

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT interface can obtain metadata about each available variable, such as its datatype and
size, a textual description, etc.

To avoid conflicts between the standard MPI functionality and the tools-oriented func-
tionality introduced with MPIT, the MPIT interface is contained in its own name space. All
identifiers covered by this interface carry the prefix MPIT and can be used independently
from the MPI functionality. This includes initialization and finalization of MPIT, which is
provided through a separate set of routines. Consequently, MPIT routines can be called
before MPI_INIT and after MPI_FINALIZE.

On success, all MPIT routines return MPIT_SUCCESS, otherwise they return an appro-
priate error code. Details on error codes can be found in Section 1.3.9. However, errors
returned by the MPIT interface are not fatal and do not have any impact on the execution
of MPI routines.

Advice to users. The number and type of control variables and performance variables
can vary between MPI implementations, platforms, and even different builds of the
same implementation on the same platform. Hence, any application relying on a
particular variable will not be portable.

This interface is primarily intended for performance monitoring tools, support tools,
and libraries controlling the application’s environment. Application programmers
should either avoid using the MPIT interface or avoid being dependent on the existence
of a particular control or performance variable. (End of advice to users.)

Since the MPIT interface mostly focuses on tools and support libraries, MPIT imple-
mentations are only required to provide C bindings. Except where otherwise noted, all
conventions and principles governing the C bindings of the MPI API also apply to the
MPIT interface. The MPIT interface is available by including the mpi.h header file.

1.3.1 Verbosity Levels

The MPIT interface provides users access to internal configuration and performance infor-
mation through a set of control and performance variables, defined by the MPIT implemen-
tation. Since some implementations may export a large number of variables, variables are
classified by a verbosity level that categorizes both their intended audience (end users, per-
formance tuners or MPI implementation developers) and a relative measure of complexity
(basic, detailed or verbose). See Table 1.1.

MPIT_VERBOSITY_USER_BASIC Basic information of interest for end users
MPIT_VERBOSITY_USER_DETAILED Detailed information of interest for end users
MPIT_VERBOSITY_USER_VERBOSE All information of interest for end users

MPIT_VERBOSITY_TUNER_BASIC Basic information required for tuning
MPIT_VERBOSITY_TUNER_DETAILED Detailed information required for tuning
MPIT_VERBOSITY_TUNER_VERBOSE All information required for tuning

MPIT_VERBOSITY_MPIDEV_BASIC Basic low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_DETAILED Detailed low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_VERBOSE All low-level information for MPI developers

Table 1.1: MPIT verbosity levels.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 3

Advice to implementors. If an MPIT implementation chooses to use only a single
verbosity level for all variables, it is recommended that MPI_VERBOSITY_USER_BASIC

is used. If an MPIT implementation only uses a single complexity value for all
variables in each target audience, it is recommended that all variables be assigned to
corresponding BASIC level. (End of advice to implementors.)

1.3.2 Binding of MPIT Variables to MPI Objects

Each MPIT variable provides access to a particular control setting or performance property
provided by the MPI implementation. These variables can apply globally to the entire MPI
library or can refer to a particular MPI object such as a communicator, dataytype, or one-
sided communication window. In the latter case, the variable must be bound to exactly one
MPI object before it can be used. Table 1.2 lists all MPI objects types to which an MPIT
variable can be bound, together with matching constant that are used by MPIT routines to
identify the object type.

Constant MPI object

MPIT_BIND_GLOBAL N/A; applies globally to entire MPI process
MPIT_BIND_MPI_COMMUNICATOR MPI communicators
MPIT_BIND_MPI_DATATYPE MPI datatypes
MPIT_BIND_MPI_ERRORHANDLER MPI error handlers
MPIT_BIND_MPI_FILE MPI file handles
MPIT_BIND_MPI_GROUP MPI groups
MPIT_BIND_MPI_OPERATOR MPI reduction operators
MPIT_BIND_MPI_REQUEST MPI requests
MPIT_BIND_MPI_WINDOW MPI windows for one-sided communication

Table 1.2: Constants to identify associations of MPIT control variables.

Rationale. Some variables have meanings tied to a specific MPI object. Examples
include the number of send or receive operations using a particular datatype, the
number of times an error handler has been called, or or the communication protocol
and “eager limit” used for a particular communicator. Creating a new MPIT variable
for each MPI object could cause the number of variables to grow without bound since
they cannot be reused to avoid naming conflicts. By associating MPIT variables with
a specific MPI object, only a single variable must be specified and maintained by
the MPI implementation, which can then be reused on as many MPI objects of the
respective type as created during the program’s execution. (End of rationale.)

1.3.3 String Arguments

Several MPIT function return one or more strings. These functions have two arguments for
each string to be returned: one that identifies a pointer to the buffer in which the string will
be returned, and one to pass the length of the buffer. The latter is used as an IN/OUT
argument. The user is responsible for the memory allocation of the buffer and must pass
the size of the buffer as the length argument. Let n be the length value specified to the
function. On return, the function writes at most n − 1 of the string’s characters into the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. TOOL INTERFACES FOR MPI

buffer, followed by a null terminator. If the returned string’s length is greater than or equal
to n, the string will be truncated to n− 1 characters. In this case, the length of the string
plus one (for the terminating null character) is returned in the length argument. The
buffer is always null-terminated. If the user passes the null pointer as the buffer argument
or passes 0 as the length argument, the function does not return the string and only returns
the length of the string plus one in the length argument.

MPIT does not specify the character encoding of strings in the interface. The only
requirement is that strings are terminated with a null character. MPIT reserves all datatype,
enumeration datatype item, variables and category names with the prefix MPIT for its own
use.

1.3.4 Initialization and Finalization

Since the MPIT interface is implemented in a separate name space and hence is independent
of the core MPI functions, it requires a separate set of initialization and finalization routines.

MPIT_INIT()

int MPIT_Init(void)

All programs or tools that use the MPIT interface must initialize the MPIT interface
before calling any other MPIT routine. A user can initialize the MPIT interface by calling
MPIT_INIT, which can be called multiple times.

MPIT_FINALIZE()

int MPIT_Finalize(void)

This routine finalizes the use of the MPIT interface and may be called as often as the
corresponding MPIT_INIT routine up to the current point of execution. Calling it more
times is erroneous. As long as the number of calls to MPIT_FINALIZE is smaller than the
number of calls to MPIT_INIT up to the current point of execution, the MPIT interface
remains initialized and calls to all MPIT routines are permissible. Further, additional calls
to MPIT_INIT after one or more calls to MPIT_FINALIZE are permissible.

Once MPIT_FINALIZE is called the same number of times as the routine MPIT_INIT
up to the current point of execution, the MPIT interface is no longer initialized. Further,
the call to MPIT_FINALIZE that ends the initialization of MPIT may clean up all MPIT
state, invalidate all open sessions (for the concept of Sessions see Section 1.3.7), and all
handles that have been allocated by MPIT. MPIT can be reinitialized by subsequent calls
to MPIT_INIT.

At the end of the program execution, unless MPI_ABORT is called, an application must
have called MPIT_INIT and MPIT_FINALIZE an equal number of times.

1.3.5 Datatype System

Since the initialization of MPIT is separate from the initialization of MPI, it can not be guar-
anteed that MPI datatypes are available at any time during the usage of MPIT. Therefore,
the MPIT interface provides a separate datattype system. All datatypes are represented by

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 5

a variable or constant of type MPIT_Datatype and are classified into two datatype classes:
predefined and enumeration datatypes. The Table 1.3 lists all available constants that can
be used to describe a predefined datatype for MPIT calls.

MPIT_DATATYPE_GET_CLASS(datatype, datatypeclass)

IN datatype MPIT datatype to be queried

OUT datatypeclass class of the datatype passed in

int MPIT_Datatype_get_class(MPIT_Datatype datatype, int *datatypeclass)

This routine returns the datatype class for the datatype provided by the argument
datatype. This allows users of MPIT to distinguish whether a datatype is an enumeration
datatype, e.g., to represent the state of a resource, or is one of the predefined datatypes
listed in Table 1.3. On return, the typeclass argument is set to one of the constants listed
in Table 1.4, if datatype represents a valid datatype.

MPIT Datatype Equivalent MPI Datatype

MPIT_LOGICAL MPI_LOGICAL

MPIT_BYTE MPI_BYTE

MPIT_SHORT MPI_SHORT

MPIT_INT MPI_INT

MPIT_LONG MPI_LONG

MPIT_LONG_LONG MPI_LONG_LONG

MPIT_CHAR MPI_CHAR

MPIT_FLOAT MPI_FLOAT

MPIT_DOUBLE MPI_DOUBLE

Table 1.3: Predefined MPIT datatypes and their MPI equivalents.

MPIT_DATATYPECLASS_PREDEFINED the datatype is a predefined datatype

MPIT_DATATYPECLASS_ENUMERATION the datatype is an enumeration datatype

Table 1.4: MPIT datatype classes.

Conforming implementations of MPIT must ensure that the MPIT datatypes are equiv-
alent to the listed MPI datatypes for any section of the code in which both MPI and MPIT
can be used. In particular, this requires that the sizes of an MPIT datatype and its equiv-
alent MPI datatype are equal and that it is possible to communicate a particular MPIT
datatype using the equivalent MPI datatype through regular MPI operations.

Rationale. The concept of equivalent MPIT and MPI datatypes allows to safely com-
municate values of MPIT datatypes using regular MPI messages. (End of rationale.)

The function MPIT_DATATYPE_GET_SIZE can be used to query the storage size for
each MPIT datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_DATATYPE_GET_SIZE(datatype, size)

IN datatype MPIT datatype to be queried

OUT size Number of bytes required to store a value of datatype

size

int MPIT_Datatype_get_size(MPIT_Datatype datatype, int *size)

The second datatype class, enumeration datatypes, describes variables with a fixed
set of discrete values. These datatypes are represented through integer variables and have
MPI_INT as their equivalent MPI datatype. Their values range from 0 to N −1, with a fixed
N that can be queried using MPIT_DATATYPE_ENUM_GET_INFO.

MPIT_DATATYPE_ENUM_GET_INFO(datatype, num, name, name_len)

IN datatype MPIT datatype to be queried

OUT num number of discrete values represented by this enumer-

ation datatype

OUT name buffer to return the name of the enumeration datatype

INOUT name_len length of the string and/or buffer for name

int MPIT_Datatype_enum_get_info (MPIT_Datatype datatype, int *num, char

*name, int *name_len)

This routine returns, if datatype represents a valid enumeration datatype, the size of
the enumeration as well as a name for it.

The arguments name and name_len are used to return the name of the datatype as
described in Section 1.3.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT datatypes used by the MPI
implementation.

Names for the individual items in each enumeration datatype can be queried using
MPIT_DATATYPE_ENUM_GET_ITEM.

MPIT_DATATYPE_ENUM_GET_ITEM(datatype, item, name, name_len)

IN datatype MPIT datatype to be queried

IN item item number in the MPIT datatype to be queried

OUT name buffer to return the name of the enumeration item

INOUT name_len length of the string and/or buffer for name

int MPIT_Datatype_enum_get_item (MPIT_Datatype datatype, int item, char

*name, int *name_len)

The arguments name and name_len are used to return the name of the enumeration
item as described in Section 1.3.3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 7

If completed successfully, the routine is required to return a name of at least length one,
which is unique with respect to all other names of items for the same MPIT enumeration
datatype.

1.3.6 Control Variables

The routines described in this section of the MPIT interface specification focus on the ability
to list, query, and possibly set all exposed control variables used by the MPI implementation.
These variables can typically be used by the user to fine tune properties and configuration
settings of the MPI implementation. On many systems, such variables can be set using
environment variables, although many other configuration mechanisms might be used, like
configuration files or central configuration registries. A typical example that is available
in several existing MPI implementations is the ability to specify an “eager limit”, i.e., an
upper bound on the message size that allows the transmission of messages using an eager
protocol.

Control Variable Query Functions

Each MPI implementation exports a set of N control variables through MPIT. If N is zero,
then the MPIT implementation does not export any control variables, otherwise the provided
control variables are indexed from 0 to N − 1. This index number is used in subsequent
MPIT calls to identify the individual variables.

An MPIT implementation is allowed to increase the number of control variables during
the execution of an MPI application, e.g., when new variables become available through
dynamic loading. However, MPIT implementations are not allowed to change the index of
a control variable or delete a variable once it has been added to the set.

The following function can be used to query the number of control variables N :

MPIT_CONTROLVAR_GET_NUM(num)

OUT num returns number of control variables

int MPIT_Controlvar_get_num (int *num)

The function MPIT_CONTROLVAR_GET_INFO provides access to additional informa-
tion for each variable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_CONTROLVAR_GET_INFO(index, name, name_len, verbosity, datatype, count, desc,
desc_len, bind, attributes)

IN index index of the control variable to be queried

OUT name buffer to return the name of the control variable

INOUT name_len length of the string and/or buffer for name

OUT verbosity verbosity level of this variable

OUT datatype MPIT datatype of the information stored in the control

variable

OUT count number of elements returned

OUT desc buffer to return a description of the control vari-
able

INOUT desc_len length of the string and/or buffer for desc

OUT bind type of MPI object to which this variable must be

bound

OUT attributes additional attributes defining this variable

int MPIT_Controlvar_g et_info(int index, char *name, int *name_len, int

*verbosity, MPIT_Datatype *datatype, int *count, char *desc,

int *desc_len, int *bind, MPIT_Controlvar_attributes

*attributes)

After a successful call to MPIT_CONTROLVAR_GET_INFO for a particular variable,
subsequent calls to this routine querying information about the same variable must return
the same information. An MPIT implementation is not allowed to alter it at runtime.

The arguments name and name_len are used to return the name of the control variable
as described in Section 1.3.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT control variables used by the
MPI implementation.

The argument verbosity returns the verbosity level (see Section 1.3.1) assigned by the
MPI implementation to the variable.

The argument datatype returns the MPIT datatype in which the value for this control
variable will be returned. The value consists of count elements of this datatype.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 1.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

The parameter bind returns the type of the MPI object to which the variable must be
bound (see Section 1.3.2).

Additional information about the variable is returned through the attribute argument
using an opaque structure of type MPI_Controlvar_attributes and can be queried using
the following accessor function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 9

MPIT_CONTROLVAR_ATTR_GET_SCOPE(attributes, scope)

IN attributes attributes returned by a previous query call

OUT scope scope of when changes to this variable are possible

int MPIT_Controlvar_attr_get_scope(MPIT_Controlvar_attributes attributes,

int *scope)

The scope of a variable determines whether it might be changeable through the MPIT
interface and whether changing this variable is a local or a collective operation. On successful
return from MPIT_CONTROLVAR_ATTR_GET_SCOPE, the argument scope will be set to
one of the constants listed in Table 1.5.

Scope Constant Description

MPIT_SCOPE_READONLY read-only, cannot be written
MPIT_SCOPE_LOCAL may be writeable, writing is a local operation
MPIT_SCOPE_GLOBAL may be writeable, writing is a global operation

Table 1.5: Scopes for MPIT control variables.

Advice to users. The scope of a variable only indicates if a variable might be
changeable; it is not a guarantee that it can be changed at any time. If it cannot be
changed at a time the user tries to write to it, the MPIT implementation is allowed
to return an error code as the result of the write operation. (End of advice to users.)

Handle Allocation and Deallocation

Before reading or writing the value of a variable, a user must first allocate a handle for it by
binding it to an MPI object (see also Section 1.3.2). The type of the MPI object is returned
by a previous call to MPIT_CONTROLVAR_GET_INFO in the bind argument.

MPIT_CONTROLVAR_HANDLE_ALLOCATE(index, object, handle)

IN index index of control variable for which handle is to be al-

located

IN objhandle reference to a handle of the MPI object to which this

variable is supposed to be bound

OUT handle allocated handle

int MPIT_Controlvar_handle_allocate(int index, void *object,

MPIT_Controlvar_handle *handle)

A call to this routine, if successfully completed, allocates a handle for the control
variable specified by the argument index and binds this variable to the MPI object referenced
by the pointer to its handle passed in the argument objhandle. The type of the MPI object
passed into this routine must match the type of MPI object for this variable as returned by
a prior call to MPIT_CONTROLVAR_GET_INFO. If the type of the object is identified as

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_BIND_GLOBAL, i.e., the variable refers to the entire MPI library, the argument object
is ignored. In this case it is recommended that the user passes NULL for this argument.

MPIT_CONTROLVAR_HANDLE_FREE(handle)

INOUT handle handle to be freed

int MPIT_Controlvar_handle_free(MPIT_Controlvar_handle *handle)

If a handle is no longer needed, a user of MPIT should call
MPIT_CONTROLVAR_HANDLE_FREE to free the handle and the associated resources in
the MPIT implementation. On a successful return, MPIT sets the handle to
MPIT_CONTROLVAR_HANDLE_NULL.

Control Variable Access Functions

MPIT_CONTROLVAR_READ(handle, buf)

IN handle handle to the control variable to be read

OUT buf initial address of storage location for variable value

int MPIT_Controlvar_read(MPI_Controlvar_handle handle, void* buf)

The MPIT_CONTROLVAR_READ queries the value of the control variable identified
by the argument handle and stores the result in the buffer buf. The user is responsible
to ensure that the buffer is of the appropriate size and fits the entire value of the control
variable (based on the returned datatype and count from a prior corresponding call to
MPIT_CONTROLVAR_GET_INFO).

MPIT_CONTROLVAR_WRITE(handle, buf)

IN handle handle to the control variable to be written

IN buf initial address of storage location for variable value

int MPIT_Controlvar_write(MPI_Controlvar_handle handle, void* buf)

The MPIT_CONTROLVAR_WRITE sets the value of the control variable identified by
the argument handle to the data stored in the buffer buf. The user is responsible to ensure
that the buffer is of the appropriate size and fits the entire value of the control variable
(based on the returned datatype and count from a prior corresponding call to
MPIT_CONTROLVAR_GET_INFO.)

If the variable has a global scope (as returned by a prior corresponding
MPIT_CONTROLVAR_ATTR_GET_SCOPE call), any write call to this variable must be
issued on all connected MPI processes. The user is responsible to ensure that the writes in
all processes are consistent.

If it is not possible to change the variable at the time the call is made, the function
returns either MPIT_ERR_SETNOTNOW, if there may be a later time at which the variable

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 11

could be set, or MPIT_ERR_SETNEVER, if the variable cannot be set for the remainder of
the application’s execution.

1.3.7 Performance Variables

The following section focuses on the ability to list and query performance variables provided
by the MPI implementation. Performance variables provide insight into MPI implementa-
tion specific internals and can represent information such as the state a component is in,
aggregated timing data for submodules, or queue sizes and lengths.

Performance Variable Classes

Each reported performance variable is associated with a class of performance variables
describing its the basic semantics. The class of a variable also defines its basic behavior,
when and how an MPI implementation can change its value and what the initial or starting
value of this variable is when it is either used for the first time or reset. Further, it also
defines which datatypes can be used to represent it. These classes are defined by the
following constants:

• MPIT_PERFVAR_CLASS_STATE

A performance variable in this class represents a set of discrete states the MPI imple-
mentation or a component of the MPI implementation is in. Variables of this class
are expected to be represented by an enumeration datatype and can be set by the
MPI implementation at any time. The default starting value is the current state of
the implementation.

• MPIT_PERFVAR_CLASS_RESOURCE_LEVEL

A performance variable in this class represents a value that describes the utiliza-
tion level of a resource within the MPI implementation. The value of a variable
of this class can change at any time to match the current utilization level of the
resource. Values returned from variables in this class are represented by one of
the following datatypes: MPIT_BYTE, MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT or MPIT_DOUBLE. The default starting
value is the current utilization level of the resource.

• MPIT_PERFVAR_CLASS_RESOURCE_PERCENTAGE

The value of a performance variable in this class represents the percentage utilization
of a finite resource in the MPI implementation. The value of a variable of this class can
change at any time to match the current utilization level of the resource. It should be
returned as an MPIT_FLOAT or MPIT_DOUBLE datatype. The value must always
be between 0.0 (resource not used at all) and 1.0 (resource completely used). The
default starting value is the current percentage utilization level of the resource.

• MPIT_PERFVAR_CLASS_RESOURCE_HIGHWATERMARK

A performance variable in this class represents a value that describes the high wa-
termark utilization of a resource within the MPI implementation. The value of a
variable of this class is monotonically growing (from the initialization or reset of the
variable). It can be represented by one of the following datatypes: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 1. TOOL INTERFACES FOR MPI

or MPIT_DOUBLE. The default starting value is the current utilization level of the
resource.

• MPIT_PERFVAR_CLASS_RESOURCE_LOWWATERMARK

A performance variable in this class represents a value that describes the low wa-
termark utilization of a resource within the MPI implementation. The value of a
variable of this class is monotonically decreasing (from the initialization or reset of
the variable). It can be represented by one of the following datatypes: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value is the current utilization level of the
resource.

• MPIT_PERFVAR_CLASS_EVENT_COUNTER

A performance variable in this class counts the number of occurrences of a specific
event during the execution time of an application (e.g., the number of memory al-
locations within an MPI library). The value of a variable of this class is monotoni-
cally increasing (from the initialization or reset of the performance variable) by one
for each specific event that is observed. Values must be non-negative and repre-
sented by one of the following datatypes: MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG. The default starting value for variables of this class is 0.

• MPIT_PERFVAR_CLASS_EVENT_AGGREGATE

The value of a performance variable in this class is an an aggregated value that repre-
sents a sum of arguments processed during a specific event (e.g., the amount of mem-
ory allocated by all memory allocations). This class is similar to the counter class,
but instead of counting individual events, the value can be incremented by arbitrary
amounts. The value of a variable of this class is monotonically increasing (from the
initialization or reset of the performance variable). It must be non-negative and repre-
sented by one of the following datatypes: MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT, MPI_DOUBLE. The default starting value for
variables of this class is 0.

• MPIT_PERFVAR_CLASS_EVENT_TIMER

The value of a performance variable in this class represents the aggregated time that
the MPI implementation spends executing a particular event. This class has the same
basic semantics as MPIT_PERFVAR_CLASS_EVENT_AGGREGATE, but explic-
itly records a timing value. The value of a variable of this class is monotonically
increasing (from the initialization or reset of the performance variable). It must
be non-negative and represented by one of the following datatypes: MPIT_INT,
MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT, MPIT_DOUBLE. The default
starting value for variables if this class is 0.

Performance Variable Query Functions

Each MPI implementation exports a set of N performance variables through MPIT. If N is
zero, then the MPIT implementation does not export any performance variables, otherwise
the provided performance variables are indexed from 0 to N −1. This index number is used
in subsequent MPIT calls to identify the individual variables.

An MPIT implementation is allowed to increase the number of performance variables
during the execution of an MPI application, e.g., when new variables become available

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 13

through dynamic loading. However, MPIT implementations are not allowed to change the
index of a performance variable or delete a variable once it has been added to the set.

The following function can be used to query the number of performance variables N :

MPIT_PERFVAR_GET_NUM(num)

OUT num returns number of performance variables

int MPIT_Perfvar_get_num(int *num)

The function MPIT_PERFVAR_GET_INFO provides access to additional information
for each variable.

MPIT_PERFVAR_GET_INFO(index, name, name_len, verbosity, varclass, datatype, count,
desc, desc_len, bind, attributes)

IN index index of the performance variable to be queried

OUT name buffer to return the name of the performance vari-
able

INOUT name_len length of the string and/or buffer for name

OUT verbosity verbosity level of this variable

OUT varclass class of performance variable

OUT datatype MPIT datatype of the information stored in the per-

formance variable

OUT count number of elements returned

OUT desc buffer to return a description of the performance
variable

INOUT desc_len length of the string and/or buffer for desc

OUT bind type of MPI object to which this variable must be

bound

OUT attributes additional attributes defining this variable

int MPIT_Perfvar_get_info(int num, char *name, int *name_len, int

*verbosity, int *varclass, MPIT_Datatype *datatype, int

*count, char *desc, int *desc_len, int *bind,

MPIT_Perfvar_attributes *attributes)

After a successful call to MPIT_PERFVAR_GET_INFO for a particular variable, subse-
quent calls to this routine querying information about the same variable must return the
same information. An MPIT implementation is not allowed to alter it at runtime.

The arguments name and name_len are used to return the name of the performance
variable as described in Section 1.3.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT performance variables used
by the MPI implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 1. TOOL INTERFACES FOR MPI

The argument verbosity returns the verbosity level (see Section 1.3.1) assigned by the
MPI implementation to the variable.

The class of the performance variable is returned in the parameter varclass and can be
one of the constants defined in Section 1.3.7.

The argument datatype returns the MPIT datatype in which the value for this perfor-
mance variable will be returned. The value consists of count elements of this datatype.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 1.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return from this function.

The parameter bind returns the type of the MPI object to which the variable must be
bound (see Section 1.3.2).

Additional information about the variable is returned through the attribute argument
using an opaque structure of type MPI_Perfvar_attributes and can be queried using the
following accessor functions.

MPIT_PERFVAR_ATTR_GET_READONLY(attributes, readonly)

IN attributes attributes returned by a previous query call

OUT readonly flag indicating whether a variable can be written/reset

int MPIT_Perfvar_attr_get_readonly(MPIT_Perfvar_attributes attributes, int

*readonly)

Upon return, the argument readonly will be set to zero if the variable can be written
or reset by the user, or one if the variable is only initialized at MPIT_INIT and can only be
read after that.

MPIT_PERFVAR_ATTR_GET_CONTINUOUS(attributes, continuous)

IN attributes attributes returned by a previous query call

OUT continuous flag indicating whether a variable can be started and

stopped or is continuously active

int MPIT_Perfvar_attr_get_continuous(MPIT_Perfvar_attributes attributes,

int *continuous)

Upon return, the argument continuous will be set to zero if the variable can be started
and stopped by the user, or one if the variable is automatically active and can not by
stopped by the user.

Performance Experiment Sessions

Within a single program, multiple components can use the MPIT interface. To avoid col-
lisions with respect to accesses to performance variables, users of the MPIT interface must
first create a session. All subsequent calls accessing performance variables are then within

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 15

the context of this session. Any call executed in a session must not influence the results in
any other session.

MPIT_PERFVAR_SESSION_CREATE(session)

OUT session identifier of performance experiment session

int MPIT_Perfvar_session_create(MPIT_Perfvar_session *session)

This call creates a new session for accessing performance variables. An identifier of the
current section is returned in session using the type MPIT_Perfvar_session.

MPIT_PERFVAR_SESSION_FREE(session)

INOUT session identifier of performance experiment session

int MPIT_Perfvar_session_free(MPIT_Perfvar_session *session)

This call frees an existing session, i.e., calls to MPIT can no longer be made within the
context of the freed session. This call also frees all handles that have been allocated within
the specified session — see below for handle allocation and freeing. On a successful return,
MPIT sets the session identifier to MPIT_PERFVAR_SESSION_NULL.

Handle Allocation and Deallocation

Before using a performance variable, a user must first allocate a handle for it by binding
it to an MPI object (see also Section 1.3.2). The type of the MPI object is returned by a
previous call to MPIT_PERFVAR_GET_INFO in the bind argument.

MPIT_PERFVAR_HANDLE_ALLOCATE(session, index, objhandle, handle)

IN session identifier of performance experiment session

IN index index of performance variable for which handle is to

be allocated

IN objhandle reference to a handle of the MPI object to which this

variable is supposed to be bound

OUT handle allocated handle

int MPIT_Perfvar_handle_allocate(MPIT_Perfvar_session session, int index,

void *objhandle, MPIT_Perfvar_handle *handle)

A call to this routine, if successfully completed, allocates a handle for the performance
variable specified by the argument index and binds this variable to the MPI object referenced
by the pointer to its handle passed in the argument objhandle. The type of the MPI object
passed into this routine must match the type of the MPI object for this variable as returned
by a prior call to MPIT_PERFVAR_GET_INFO. If the type of the object is identified as
MPIT_BIND_GLOBAL, i.e., the variable refers to the entire MPI library, the argument object
is ignored. In this case it is recommended that the user passes NULL for this argument.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_PERFVAR_HANDLE_FREE(session,handle)

IN session identifier of performance experiment session

INOUT handle handle to be freed

int MPIT_Perfvar_handle_free(MPIT_Perfvar_session session,

MPIT_Perfvar_handle *handle)

If a handle is no longer needed, a user of MPIT should call
MPIT_PERFVAR_HANDLE_FREE to free the handle and the associated resources in the
MPIT implementation. On a successful return, MPIT sets the handle to
MPIT_PERFVAR_HANDLE_NULL.

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating once a handle has been allocated and can be queried any time.
They cannot be stopped or paused by the user. All other variables are in a stopped state
after their handle has been allocated, i.e., their values are not updated as the program
executes, and must be started by the user.

MPIT_PERFVAR_START(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_start(MPIT_Perfvar_session session, MPIT_Perfvar_handle

handle)

This functions starts the performance variable with the handle handle in the session
session.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implemen-
tation attempts to start all variables within the session identified by session for which
handles have been allocated. In this case, the routine returns MPI_SUCCESS if all variables
are started successfully, otherwise MPIT_ERR_NOSTARTSTOP is returned. Continuous vari-
ables and variables that are already started are ignored when used with
MPIT_PERFVAR_ALL_HANDLES.

MPIT_PERFVAR_STOP(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_stop(MPIT_Perfvar_session session, MPIT_Perfvar_handle

handle)

This functions stops the performance variable with the handle handle in the session
session.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 17

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to stop all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPI_SUCCESS if all variables are
stopped successfully, otherwise MPIT_ERR_NOSTARTSTOP is returned. Continuous vari-
ables and variables that are already stopped are ignored when used with
MPIT_PERFVAR_ALL_HANDLES.

Performance Variable Access Functions

MPIT_PERFVAR_READ(session, handle, buf)

IN session identifier of performance experiment session

IN handle handle of a performance variable

OUT buf initial address of storage location for variable value

int MPIT_Perfvar_read(MPIT_Perfvar_session session, MPIT_Perfvar_handle

handle, void* buf)

The MPIT_PERFVAR_READ call queries the value of the performance variable with
the handle handle in the session session and stores the result in the buffer buf. The user is
responsible to ensure that the buffer is of the appropriate size and fits the entire value of
the performance variable (based on the returned datatype and count during the
MPIT_PERFVAR_GET_INFO call).

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_READ, since this would require the function to
return a set of variable values instead of just one.

MPIT_PERFVAR_WRITE(session,handle, buf)

IN session identifier of performance experiment session

IN handle handle of a performance variable

IN buf initial address of storage location for variable value

int MPIT_Perfvar_write(MPIT_Perfvar_session session, MPIT_Perfvar_handle

handle, void* buf)

The MPIT_PERFVAR_WRITE call attempts to write the value of the performance vari-
able with the handle handle in the session session. The value to be written is passed in the
buffer buf. The user is responsible to ensure that the buffer is of the appropriate size and
fits the entire value of the performance variable (based on the returned datatype and count
during the MPIT_PERFVAR_GET_INFO call).

If it is not possible to change the variable the function returns
MPIT_ERR_PERFVAR_WRITE.

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_WRITE, since this would require the function to
accept a set of variable values instead of just one.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_PERFVAR_RESET(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_reset(MPIT_Perfvar_session session, MPIT_Perfvar_handle

handle)

The MPIT_PERFVAR_RESET call sets of the performance variable with the handle
handle to its default starting value (as specified in Section 1.3.7). If it is not possible to
change the variable the function returns MPIT_ERR_PERFVAR_WRITE.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to reset all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPIT_SUCCESS if all variables are reset
successfully, otherwise MPIT_ERR_NOWRITE is returned. Readonly variables are ignored
when used with MPIT_PERFVAR_ALL_HANDLES .

MPIT_PERFVAR_READRESET(session, handle, buf)

IN session identifier of performance experiment session

IN handle handle of a performance variable

OUT buf initial address of storage location for variable value

int MPIT_Perfvar_readreset(MPIT_Perfvar_session session,

MPIT_Perfvar_handle handle, void* buf)

The MPIT_PERFVAR_READRESET call atomically queries the value of the performance
variable, stores the result in the buffer buf, and then sets the value of the performance
variable to its default starting value (as specified in Section 1.3.7). The user is responsible to
ensure that the buffer is of the appropriate size and fits the entire value of the performance
variable (based on the returned datatype and count during the query call). If it is not
possible to change the variable the function returns MPIT_ERR_PERFVAR_WRITE. In this
case, the value returned in buf is the same as if the variable would have been read by the
MPIT_PERFVAR_READ call.

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_READRESET, since this would require the function
to return a set of variable values instead of just one.

Advice to implementors. Although MPI places no requirements on the interaction
with external mechanisms such as signal handlers, it is strongly recommended that all
routines to start, stop, read, write, and reset performance variables should be safe to
call in asynchronous contexts. Examples of asynchronous contexts include signal han-
dlers and interrupt handlers. Such safety permits the development of sampling-based
tools. High quality implementations should strive to make the results of any such
interactions intuitive to users, and attempt to document restrictions where deemed
necessary. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 19

1.3.8 Variable Categorization

MPI implementations can optionally group performance and control variables into cate-
gories to express logical relationships between various variables. For example, an MPIT
implementation could group all control and performance variables that refer to message
transfers in the MPI implementation and with that distinguish it from variables that refer
to local resources such as memory allocations or other interactions with the OS.

Categories can also contain other categories to form a hierarchical grouping. Categories
can never include themselves either directly or transitively within other included categories.

Rationale. The ability to include categories in other categories enables the creation
of a hierarchical grouping of variables. The restriction that categories can not include
themselves directly or transitively guarantees that this structure is strictly hierarchical
and does not contain any loops. (End of rationale.)

Expanding on the example above, this allows MPIT to refine the grouping of variables
referring to message transfers into variables to control and monitor message queues, message
matching activities and communication protocols. Each of these groups of variables would
be represented by a separate category and these categories would then be listed in a single
category representing variables for message transfers.

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories via
the MPIT interface. If N = 0, then the MPI implementation does not export any categories,
otherwise the provided performance variables are indexed from 0 to N − 1. This index
number is used in subsequent MPIT calls to identify the individual variables.

An MPI implementation is permitted to increase the number of categories during the
execution of an MPI program, such as when new categories become available through dy-
namic loading. However, MPI implementations are not allowed to change the index of a
category or delete it once it has been added to the set.

The following function can be used to query the number of control variables, N :

MPIT_CATEGORY_GET_NUM(num)

OUT num current number of categories

int MPIT_Category_get_num(int *num)

Individual category information can then be queried by calling the following function:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_CATEGORY_GET_INFO(index, name, name_len, desc, desc_len, num_controlvars, num_perfvars,
num_categories)

IN index index of the category to be queried, in the range [0, N−
1]

OUT name buffer to return the name of the category

INOUT name_len length of the string and/or buffer for name

OUT desc buffer to return the description of the category

INOUT desc_len length of the string and/or buffer for desc

OUT num_controlvars number of control variables in the category

OUT num_perfvars number of performance variables in the category

OUT num_categories number of MPIT categories contained in the category

int MPIT_Category_get_info(int index, char *name, int *name_len, char

*desc, int *desc_len, int *num_controlvar s, int

*num_perfvars, int *num_categories)

The arguments name and name_len are used to return the name of the category as
described in Section 1.3.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT categories used by the MPIT
implementation.

The arguments desc and desc_len are used to return the description of the category as
described in Section 1.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

On successful completion, the function returns the number of control variables, perfor-
mance variables and other categories contained in the queried category in the arguments
num_controlvars, num_perfvars and num_categories respectively.

Advice to implementors. To avoid confusion and to simplify the interpretation of the
categories provided by a particular implementation, it is recommended that categories
should either only contain other categories or only control and performance variables.
Mixing categories and control and performance variables within a single category is
not recommended. (End of advice to implementors.)

MPIT_CATEGORY_GET_CONTROLVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1]

IN len the length of the kinds and indices arrays

OUT indices an integer array of size len, indicating variable indices

int MPIT_Category_get_controlvars(int cat_index, int len, int indices[])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 21

MPIT_CATEGORY_GET_CONTROLVARS can be used to query which control variables
are contained in a particular category. A category may contain zero or more control vari-
ables.

MPIT_CATEGORY_GET_PERFVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1]

IN len the length of the kinds and indices arrays

OUT indices an integer array of size len, indicating variable indices

int MPIT_Category_get_perfvars(int cat_index, int len, int indices[])

MPIT_CATEGORY_GET_PERFVARS can be used to query which performance variables
are contained in a particular category. A category may contain zero or more performance
variables.

MPIT_CATEGORY_GET_CATEGORIES(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1]

IN len the length of the kinds and indices arrays

OUT indices an integer array of size len, indicating category indices

int MPIT_Category_get_categories(int cat_index, int len, int indices[])

MPIT_CATEGORY_GET_CATEGORIES can be used to query which other categories are
contained in a particular category. A category may contain zero or more other categories.

The index values returned in indices by MPIT_CATEGORY_GET_CONTROLVARS,
MPIT_CATEGORY_GET_PERFVARS or MPIT_CATEGORY_GET_CATEGORIES can be used
as input to MPIT_CONTROLVAR_GET_INFO, MPIT_PERFVAR_GET_INFO or
MPIT_CATEGORY_GET_INFO respectively.

The user is responsible for allocating the arrays passed into the functions
MPIT_CATEGORY_GET_CONTROLVARS, MPIT_CATEGORY_GET_PERFVARS and
MPIT_CATEGORY_GET_CATEGORIES. The functions will only write up to len elements
into the respective array. If the category contains more than len variables or other categories
respectively the function returns an arbitrary subset; if it contains less than len variables or
other categories respectively, all will be returned and the remaining array entries will not
be modified.

1.3.9 Return and Error Codes

All MPIT functions return a return or error code. The constants in Table 1.6 are defined for
this purpose. None of the error codes returned by an MPIT routine are fatal to the overall
MPI implementation or invoke an MPI error handler. In any case, the execution of the MPI
program continues as if the call would have succeeded. However, the MPIT implementation
is not required to check all user provided parameters; if a user passes illegal parameter

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 1. TOOL INTERFACES FOR MPI

values to any MPIT routine that are not caught by the implementation, the behavior of the
implementation is undefined.

1.3.10 Profiling Interface

All requirements for the profiling interfaces, as described in Section 1.2, also apply to the
MPIT interface. In particular, this means that a complying MPI implementation must pro-
vide matching PMPIT calls for every MPIT call. All rules, guidelines, and recommendations
from Section 1.2 apply equally to PMPIT calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. MPIT PERFORMANCE INTERFACE 23

Return Code Description

Return Codes for all MPIT Functions

MPIT_SUCCESS No error, call completed
MPIT_ERR_MEMORY Out of memory
MPIT_ERR_NOTINITIALIZED MPIT not initialized
MPIT_ERR_CANTINIT MPIT not in the state to be initialized

Return Codes for Datatype Functions: MPIT_DATATYPE_*

MPIT_ERR_PREDEFINED Datatype is a predefined datatype and not an enumeration
MPIT_ERR_INVALIDDATATYPE Datatype is not a valid datatype
MPIT_ERR_INVALIDITEM The item index queried is out of range

(for MPIT_DATATYPE_ENUMITEM only)

Return Codes for variable and category query functions: MPIT_*_GET_INFO

MPIT_ERR_INVALIDINDEX The variable or category index is invalid

Return Codes for Handle Functions: MPIT_*_ALLOCATE,FREE

MPIT_ERR_INVALIDINDEX The variable index is invalid
MPIT_ERR_INVALIDHANDLE The handle is invalid
MPIT_ERR_OUTOFHANDLES No more handles available

Return Codes for Session Functions: MPIT_PERFVAR_SESSION_*

MPIT_ERR_OUTOFSESSIONS No more sessions available
MPIT_ERR_INVALIDSESSION Session argument is not a valid session

Return Codes for Control Variable Access Functions:
MPIT_CONTROLVAR_READ,WRITE

MPIT_ERR_SETNOTNOW Variable cannot be set at this moment
MPIT_ERR_SETNEVER Variable cannot be set until end of execution
MPIT_ERR_INVALIDVAR Control variable does not exist
MPIT_ERR_INVALIDHANDLE The handle is invalid

Return Codes for Performance Variable Access and Control:
MPIT_PERFVAR_START,STOP,READ,WRITE,RESET,READRESET

MPIT_ERR_INVALIDHANDLE The handle is invalid
MPIT_ERR_INVALIDSESSION Session argument is not a valid session
MPIT_ERR_NOSTARTSTOP Variable can not be started or stopped

for MPIT_PERFVAR_START and
MPIT_PERFVAR_STOP

MPIT_ERR_NOWRITE Variable can not be written or reset
for MPIT_PERFVAR_WRITE and
MPIT_PERFVAR_RESET

Return Codes for Category Functions: MPIT_CATEGORY_*

MPIT_ERR_INVALIDCATEGORY The specified category index does not exist

Table 1.6: Return and error codes used MPIT functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mcs.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Mes-
sage Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machin e and Message Passing
Interface, pages 51–58, Barcelona, Spain, September 1999.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24

MPIT Constant and Predefined
Handle Index

This index lists predefined MPIT constants and handles.

MPIT_BIND_GLOBAL, 3, 10, 15
MPIT_BIND_MPI_COMMUNICATOR, 3
MPIT_BIND_MPI_DATATYPE, 3
MPIT_BIND_MPI_ERRORHANDLER, 3
MPIT_BIND_MPI_FILE, 3
MPIT_BIND_MPI_GROUP, 3
MPIT_BIND_MPI_OPERATOR, 3
MPIT_BIND_MPI_REQUEST, 3
MPIT_BIND_MPI_WINDOW, 3
MPIT_BYTE, 5
MPIT_CHAR, 5
MPIT_CONTROLVAR_HANDLE_NULL,

10
MPIT_DATATYPECLASS_ENUMERATION,

5
MPIT_DATATYPECLASS_PREDEFINED,

5
MPIT_DOUBLE, 5
MPIT_ERR_CANTINIT, 23
MPIT_ERR_INVALIDCATEGORY, 23
MPIT_ERR_INVALIDDATATYPE, 23
MPIT_ERR_INVALIDHANDLE, 23
MPIT_ERR_INVALIDINDEX, 23
MPIT_ERR_INVALIDITEM, 23
MPIT_ERR_INVALIDSESSION, 23
MPIT_ERR_INVALIDVAR, 23
MPIT_ERR_MEMORY, 23
MPIT_ERR_NOSTARTSTOP, 16, 17, 23
MPIT_ERR_NOTINITIALIZED, 23
MPIT_ERR_NOWRITE, 18, 23
MPIT_ERR_OUTOFHANDLES, 23
MPIT_ERR_OUTOFSESSIONS, 23
MPIT_ERR_PERFVAR_WRITE, 17, 18
MPIT_ERR_PREDEFINED, 23
MPIT_ERR_SETNEVER, 11, 23

MPIT_ERR_SETNOTNOW, 10, 23
MPIT_FLOAT, 5
MPIT_INT, 5
MPIT_LOGICAL, 5
MPIT_LONG, 5
MPIT_LONG_LONG, 5
MPIT_PERFVAR_ALL_HANDLES, 16–

18
MPIT_PERFVAR_CLASS_EVENT_AGGREGATE,

12
MPIT_PERFVAR_CLASS_EVENT_COUNTER,

12
MPIT_PERFVAR_CLASS_EVENT_TIMER,

12
MPIT_PERFVAR_CLASS_RESOURCE_HIGHWATERMARK,

11
MPIT_PERFVAR_CLASS_RESOURCE_LEVEL,

11
MPIT_PERFVAR_CLASS_RESOURCE_LOWWATERMARK,

12
MPIT_PERFVAR_CLASS_RESOURCE_PERCENTAGE,

11
MPIT_PERFVAR_CLASS_STATE, 11
MPIT_PERFVAR_HANDLE_NULL, 16
MPIT_PERFVAR_SESSION_NULL, 15
MPIT_SCOPE_GLOBAL, 9
MPIT_SCOPE_LOCAL, 9
MPIT_SCOPE_READONLY, 9
MPIT_SHORT, 5
MPIT_SUCCESS, 2, 18, 23
MPIT_VERBOSITY_MPIDEV_BASIC, 2
MPIT_VERBOSITY_MPIDEV_DETAILED,

2
MPIT_VERBOSITY_MPIDEV_VERBOSE,

2

25

26 MPIT Constant and Predefined Handle Index

MPIT_VERBOSITY_TUNER_BASIC, 2
MPIT_VERBOSITY_TUNER_DETAILED,

2
MPIT_VERBOSITY_TUNER_VERBOSE,

2
MPIT_VERBOSITY_USER_BASIC, 2
MPIT_VERBOSITY_USER_DETAILED,

2
MPIT_VERBOSITY_USER_VERBOSE,

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPIT Function Index

The underlined page numbers refer to the function definitions.

MPIT_CATEGORY_GET_CATEGORIES,
21, 21

MPIT_CATEGORY_GET_CONTROLVARS,
20, 21

MPIT_CATEGORY_GET_INFO, 20, 21
MPIT_CATEGORY_GET_NUM, 19
MPIT_CATEGORY_GET_PERFVARS, 21,

21
MPIT_CONTROLVAR_ATTR_GET_SCOPE,

9, 9, 10
MPIT_CONTROLVAR_GET_INFO, 7, 8,

8, 9, 10, 21
MPIT_CONTROLVAR_GET_NUM, 7
MPIT_CONTROLVAR_HANDLE_ALLOCATE,

9
MPIT_CONTROLVAR_HANDLE_FREE,

10, 10
MPIT_CONTROLVAR_READ, 10, 10
MPIT_CONTROLVAR_WRITE, 10, 10
MPIT_DATATYPE_ENUM_GET_INFO,

6, 6
MPIT_DATATYPE_ENUM_GET_ITEM,

6, 6
MPIT_DATATYPE_ENUMITEM, 23
MPIT_DATATYPE_GET_CLASS, 5
MPIT_DATATYPE_GET_SIZE, 5, 6
MPIT_FINALIZE, 4, 4
MPIT_INIT, 4, 4, 14
MPIT_PERFVAR_ATTR_GET_CONTINUOUS,

14
MPIT_PERFVAR_ATTR_GET_READONLY,

14
MPIT_PERFVAR_GET_INFO, 13, 13, 15,

17, 21
MPIT_PERFVAR_GET_NUM, 13
MPIT_PERFVAR_HANDLE_ALLOCATE,

15

MPIT_PERFVAR_HANDLE_FREE, 16,
16

MPIT_PERFVAR_READ, 17, 17, 18
MPIT_PERFVAR_READRESET, 18, 18
MPIT_PERFVAR_RESET, 18, 18, 23
MPIT_PERFVAR_SESSION_CREATE, 15
MPIT_PERFVAR_SESSION_FREE, 15
MPIT_PERFVAR_START, 16, 23
MPIT_PERFVAR_STOP, 16, 23
MPIT_PERFVAR_WRITE, 17, 17, 23
MPIT_FINALIZE, 4

27

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Tool Interfaces for MPI
	Introduction
	Profiling Interface
	MPIT Performance Interface
	Verbosity Levels
	Binding of MPIT Variables to MPI Objects
	String Arguments
	Initialization and Finalization
	Datatype System
	Control Variables
	Control Variable Query Functions
	Handle Allocation and Deallocation
	Control Variable Access Functions

	Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Handle Allocation and Deallocation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions

	Variable Categorization
	Return and Error Codes
	Profiling Interface

	Bibliography
	Examples Index
	MPIT Constant and Predefined Handle Index
	MPIT Declarations Index
	MPIT Callback Function Prototype Index
	MPIT Function Index

