MPI: A Message-Passing Interface Standard

Version 3.0 T (Fin2)
1 (Fin2)

Message Passing Interface Forum

Draft January 24th, 2011

Contents

1 Tool Interfaces for MPI
1.1 Introduction e
1.2 MPIT Performance Interface,

1

1

1

1.2.1 Verbosity Levels o 2

1.2.2 Associations between MPIT Variables and MPI Resources 3

1.2.3 String Arguments Lo 5

1.2.4 Initialization and Finalization 6

1.2.5 Type System 6

1.2.6 Control Variables 9

Control Variable Query Functions 9

Handle Allocation and Deallocation 11

Control Variable Access Functions 12

1.2.7 Performance Variables 13
Performance Variable Classes 13

Performance Variable Query Functions 14

Performance Experiment Sessions 16

Handle Allocation and Deallocation 17

Starting and Stopping of Performance Variables 18

Performance Variable Access Functions 19

1.2.8 Variable Categorization 21

1.2.9 Return and Error Codes 23

1.2.10 Profiling Interface Lo 24
Bibliography 26
Examples Index 27
MPIT Constant and Predefined Handle Index 27
MPIT Declarations Index 29
MPIT Callback Function Prototype Index 29

MPIT Function Index 29

ii

List of Figures

List of Tables

1.1 MPIT verbosity levels.
1.2 Constant to identify associations of MPIT control variables
1.3 Predefined MPIT datatypes and their MPI equivalents. . .
1.4 MPIT typeclasses.
1.5 Scopes for MPIT control variables.
1.6 Return and error codes used MPIT functions.

Chapter 1

Tool Interfaces for MPI

1.1 Introduction

This chapter discusses a set of interfaces that allows tools such as debuggers, perfor-
mance analyzers, and others to extract information about the operation of MPI processes.
Specifically, this chapter defines the PMPI profiling interface (Section ??) to transparently
intercept and inspect any MPI call; and the MPIT tool information interface (Section 1.2)
to query MPI control and performance variables. The interfaces described in this chapter
are all defined in the context of an MPI process, i.e., are callable from the same code as
any other MPI function.

1.2 MPIT Performance Interface

To optimize MPI applications or their runtime behavior, it is often advantageous to un-
derstand the performance switches an MPI implementation offers to the user as well as to
monitor properties and timing information from within the MPI implementation. The MPIT
interface described in this section provides access to this information.

The purpose of the MPIT interface is to provide a mechanism for the MPI| implementa-
tion to expose a set of variables that represent a particular property, setting, or performance
measurement from within the MPI implementation. The MPIT interface provides the nec-
essary routines to find all variables that exist in the particular MPI implementation, to
query their properties, to retrieve descriptions about their meaning, and to access and, if
appropriate, alter their values.

The interface is split into two parts: the first part provides information about control
variables used by the MPI implementation to fine tune its configuration. The second part
provides access to performance variables that can provide insight into internal performance
information of the underlying MPI implementation.

To avoid restrictions on the MPI implementation, the MPIT interface allows the im-
plementation to specify which control and performance variables exist. For both types of
variables, the interface provides the ability to query the variables offered by the particular
MPI implementation, along with additional semantics and descriptions.

To avoid conflicts between the standard MPI functionality and the tools-oriented func-
tionality introduced with MPIT, the MPIT interface is contained in its own name space. All
identifiers covered by this interface carry the prefix MPIT and can be used independently
from the MPI functionality. This includes initialization and finalization of MPIT, which is

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

2 CHAPTER 1. TOOL INTERFACES FOR MPI

On success all MPIT routines return MPIT_SUCCESS, otherwise they return an appro-
priate error code. Details on error codes can be found in Section 1.2.9. However, errors
returned by the MPIT interface fatal nor have any impact on the execution of MPI
routines.

Advice to users. The number and type of control variables and performance variables
can vary between MPI implementations, platforms, and even different builds of the
same implementation on the same platform. Hence, any application relying on a
particular variable will no longer be portable.

This interface is primarily intended for performance monitoring tools, as well as sup-
port tools and libraries controlling the application’s environment. Application pro-
grammers should either avoid using it or avoid being dependent on the existence of a
particular control or performance variable. (End of advice to users.)

1.2.1 Verbosity Levels

The MPIT interface provides users access to internal configuration and performance infor-
mation through a set of control and performance variables, which are defined by the MPIT
implementation. Since the number of variables can be large for particular implementations,
every variable exported by the MPIT interface be associated with one of the following
verbosity levels

MPIT_VERBOSITY_USER_BASIC Basic information of interest for end users
MPIT_VERBOSITY_USER_DETAILED Detailed information of interest for end users
MPIT_VERBOSITY_USER_VERBOSE All information of interest for end users
MPIT_VERBOSITY_TUNER_BASIC Basic information required for tuning

MPIT_VERBOSITY_TUNER_DETAILED | Detailed information required for tuning
MPIT_VERBOSITY_TUNER_VERBOSE | All information required for tuning

MPIT_VERBOSITY_MPIDEV_BASIC Basic low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_DETAILED | Detailed low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_VERBOSE | All low-level information for MPI developers

Table 1.1: MPIT verbosity levels.

MPI
implementations should sort all variables according to the intended target audience (end
user, performance , or MPI developer) and then distinguish three levels of verbosity

(basic, detailed, and verbose) within each audience.

1.2. MPIT PERFORMANCE INTERFACE 3

Advice to implementors. If an MPIT implementation only uses a single verbosity
level for all variables, it is recommended to assign all variables to the level
MPI_VERBOSITY_USER_BASIC. If an MPIT implementation only uses a single verbosity
level for all variables intended for each target audience, it is recommended to assign
all variables to corresponding basic level. (End of advice to implementors.)

1.2.2 Associations between MPIT Variables and MPI Resources

Each variable provides access to a particular control setting or performance property pro-
vided by the MPI implementation. The meaning of these variables can refer to the complete
MPI library as a global variable or can be associated with a particular MPI resource, such
as a communicator, dataytype, or one-sided communication window. In the latter case,
the variable is associated with exactly one MPI resource type. Before it can be used, it
must be bound to an instance of an MPI resource of that type. Table 1.2 lists all types of
MPI resources supported by MPIT along with a corresponding constant used by the MPIT
interface to identify that resource type.

Constant Associated MPI resource
MPIT_MPI_RESOURCE_TYPE_GLOBAL N/A — global meaning
MPIT_MPI_RESOURCE_TYPE_COMMUNICATOR | MPI communicators
MPIT_MPI_RESOURCE_TYPE_DATATYPE MPI datatypes
MPIT_MPI_RESOURCE_TYPE_ERRORHANDLER | MPI error handler
MPIT_MPI_RESOURCE_TYPE_FILE MPI file handles
MPIT_MPI_RESOURCE_TYPE_GROUP MPI groups
MPIT_MPI_RESOURCE_TYPE_OPERATOR MPI reduction operators
MPIT_MPI_RESOURCE_TYPE_REQUEST MPI requests
MPIT_MPI_RESOURCE_TYPE_WINDOW MPI windows for one-sided communication

Table 1.2: Constant to identify associations of MPIT control variables.

Rationale. Certain variables have meanings that are limited to a particular MPI
resource. Examples are the number of send or receive operations using a particular
datatype, the number of times an error handler has been called, or or the communica-
tion protocol and eager limit used for a particular communicator. Creating a separate
variable for each MPI resource, e.g., for each communicator, would cause the number
of variables to grow unboundedly since they cannot be reused to avoid naming con-
flicts. By associating variables with MPI resource types, only a single variable must be
specified and maintained by the MPI implementation, which can then be reused on as
many instances of this MPI resource type as created during the program’s execution.
(End of rationale.)

In order to instantiate a variable with a particular MPI resource instance, the user must
be able to convert a reference to a resource of each supported type to a generic reference,
which can then be passed to the MPIT routine responsible for instantiating the MPIT
variable. For this purpose, the interface offers the following conversion routines, which each
take a reference to an MPI resource and return a reference to a generic MPI resource of type
MPIT_MPI_Resource.

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_MPI_RESOURCE_COMMUNICATOR(communicator, resource)

IN communicator Reference to an MPI communicator

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_communicator (MPI_Comm communicator, MPIT_MPI_Resource

*resource)

MPIT_MPI_RESOURCE_DATATYPE(datatype, resource)
IN datatype Reference to an MPI datatype

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_datatype(MPI_Datatype datatype, MPIT_MPI_Resource
xresource)

MPIT_MPI_RESOURCE_ERRORHANDLER(errorhandler, resource)
IN errorhandler Reference to an MPI error handler

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_errorhandler (MPI_Errorhandler errorhandler,
MPIT_MPI_Resource *resource)

MPIT_MPI_RESOURCE_GROUP(group, resource)
IN group Reference to an MPI group

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_group(MPI_Group group, MPIT_MPI_Resource *resource)

MPIT_MPI_RESOURCE_FILE(file, resource)
IN file Reference to an MPI files

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_file(MPI_File file, MPIT_MPI_Resource *resource)

1.2. MPIT PERFORMANCE INTERFACE)

MPIT_MPI_RESOURCE_OPERATIONS(operation, resource)

IN operation Reference to an MPI reduction operation

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_operation(MPI_Op operation, MPIT_MPI_Resource
*resource)

MPIT_MPI_RESOURCE_REQUEST (request, resource)

IN request Reference to an MPI asynchronous communication re-
quest
ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_request(MPI_Request request, MPIT_MPI_Resource
*resource)

MPIT_MPI_RESOURCE_WINDOW/(window, resource)

IN window Reference to an MPI one-sided communication window

ouT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_window(MPI_Win window, MPIT_MPI_Resource *resource)

Additionally, the MPIT interface provides the constant MPIT_MPI_RESOURCE_GLOBAL
of type MPIT_MPI_Resource* that can be used in routines that expect a reference to an
MPI resource if the resource type is MPIT_MPI_RESOURCE_TYPE_GLOBAL.

Rationale. The MPIT interface provides a separate routine for each MPI resource
type to provide type safety. The alternative, a single conversion routine that takes a
parameter of type void* for arguments of any MPI resource type, would not provide
this kind of safety. (End of rationale.)

1.2.3 String Arguments

Several MPIT function return one or more strings. These functions have two arguments for
each string to be returned, one identifying a pointer to the buffer in which the string will
be returned, and one to pass the length of the buffer. The latter is used as an IN/OUT
argument. The user is responsible for the memory allocation of the buffer and must pass
the size of the buffer as the length argument. lLet n be the length value specified to the
function. On return, the function writes at most n — 1 of the string’s characters into the
buffer, followed by a null terminator. If the returned string’s length is greater than or equal
to m, the string will be truncated to n — 1 characters. In this case, the length of the string
plus one (for the terminating null character) is returned in the length argument. The
buffer is always null-terminated. If the user passes the null pointer as the buffer argument

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

39

40

41

42

43

44

45

46

48

6 CHAPTER 1. TOOL INTERFACES FOR MPI

1.2.4 Initialization and Finalization

Since the MPIT interface is implemented in a separate name space and hence is independent
of the core MPI functions, it requires a separate set of initialization and finalization routines.

MPIT_INIT()

int MPIT_Init(void)

All programs or tools that use the MPIT interface initialize the MPIT interface
before calling any other MPIT routine. A user can initialize the MPIT interface by calling
MPIT_INIT, which can be called multiple times.

MPIT_FINALIZE()

int MPIT_Finalize(void)

This routine finalizes the use of the MPIT interface and may be called as often as the
corresponding MPIT_INIT routine up to the current point of execution. Calling it more
times is erroneous. As long as the number of calls to MPIT_FINALIZE is smaller than the
number of calls to MPIT_INIT up to the current point of execution, the MPIT interface
remains initialized and calls to all MPIT routines are permissible. Further, additional calls
to MPIT_INIT after one or more calls to MPIT_FINALIZE are permissible.

Once MPIT_FINALIZE is called the same number of times as the routine MPIT_INIT
up to the current point of execution, the MPIT interface is no longer initialized. Further,
the call to MPIT_FINALIZE that ends the initialization of MPIT may clean up all MPIT
state, invalidate all open sessions (for the concept of Sessions see Section 1.2.7), and all
handles that have been allocated by MPIT. MPIT can be reinitialized by subsequent calls
to MPIT_INIT.

At the end of the program execution, an application
have called MPIT_INIT and MPIT_FINALIZE an equal number of times.

1.2.5 Type System

All types are represented

by a variable or constant of type and are classified into two type classes:
predefined and enumeration types. The Table 1.3 lists all available constants that can be
used to identify or describe a predefined for MPIT calls.

1.2. MPIT PERFORMANCE INTERFACE 7

MPIT_TYPE_GET _CLASS(datatype, typeclass)
IN datatype MPIT datatype to be queried

ouT typeclass class of the type passed in

int MPIT_Type_get_class(MPIT _Datatype datatype, int *typeclass)

This routine returns the type class for the datatype provided by the argument datatype.
This allows users of MPIT to distinguish whether a datatype is an enumeration type, e.g.,
to represent the state of a resource, or is one of the predefined types listed in Table 1.3. On
return, the typeclass argument is set to one of the constants listed in Table 1.4, if datatype
represents a valid type.

MPIT Datatype Equivalent MPI Datatype
MPIT_LOGICAL MPI_LOGICAL
MPIT_BYTE MPI_BYTE

MPIT_SHORT MPI_SHORT

MPIT_INT MPI_INT

MPIT_LONG MPI_LONG
MPIT_LONG_LONG | MPI_LONG_LONG
MPIT_CHAR MPI_CHAR

MPIT_FLOAT MPI_FLOAT
MPIT_DOUBLE MPI_DOUBLE

Table 1.3: Predefined MPIT datatypes and their MPI equivalents.

MPIT_TYPECLASS_PREDEFINED the datatype is a predefined datatype
MPIT_TYPECLASS_ENUMERATION | the datatype is an enumeration datatype

Table 1.4: MPIT type classes.

Conforming implementations of MPIT must ensure that the MPIT types are equivalent
to the listed MPI datatypes for any section of the code in which both MPI and MPIT can
be used. In particular, this requires that the size of an MPIT and its equivalent MPI
datatype is equal and that it is possible to communicate a particular MPIT datatype using
the equivalent MPI datatype through regular MPI operations.

Rationale. The concept of equivalent MPIT and MPI datatypes allows to safely com-
municate values of MPIT datatypes using regular MPI messages. (End of rationale.)

The function MPIT_TYPE_GET_SIZE can be used to query the storage size for each
MPIT datatype.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34
35
36 I
37

38

40
41
42
43
44
45
46
47

48

10

11

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_TYPE_GET _SIZE(datatype, size)

IN datatype MPIT datatype to be queried
ouT size Number of bytes required to store a value of datatype
size

int MPIT_Type_get_size(MPIT Datatype datatype, int *size)

The second type class, enumeration types, describe variables with a fixed set of discrete
values. These types are represented through integer variables and have MPI_INT as their
equivalent MPI type. Their values range from 0 to N — 1, with a fixed N that can be queried
using MPIT_TYPE_ENUM_QUERY.

MPIT_TYPE_ENUM_GET_INFO(datatype, num, name, name_len)
IN datatype MPIT datatype to be queried

ouT num number of discrete values represented by this enumer-
ation datatype

ouT name buffer to return the name of the enumeration type

INOUT name_len length of the string and/or buffer for name

int MPIT_Type_enum_get_info (MPIT_Datatype datatype, int #*num, char #*name,
int *name_len)

This routine returns, if datatype represents a valid enumeration type, the size of the
enumeration as well as a name for it.

The arguments name and name_len are used to return the name of the type as described
in Section 1.2.3. .

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT datatypes used by the MPI
implementation.

Names for the individual items in each enumeration type can be queried using
MPIT_TYPE_ENUM_GET_ITEM.

MPIT_TYPE_ENUM_GET_ITEM(datatype, item, name, name_len)

IN datatype MPIT datatype to be queried

IN item item number in the MPIT datatype to be queried
ouT name buffer to return the name of the enumeration item
INOUT name_len length of the string and/or buffer for name

int MPIT_Type_enum_get_item (MPIT_Datatype datatype, int item, char *name,
int *name_len)

The arguments name and name_len are used to return the name of the enumeration
item as described in Section 1.2.3.

1.2. MPIT PERFORMANCE INTERFACE 9

1.2.6 Control Variables

The set of routines in this section of the MPIT interface specification focuses on the ability
to list, query, and possibly set all exposed control variables used by the MPI implementation.
These variables can typically be used by the user to fine tune properties and configuration
settings of the MPI implementation. On many systems, such variables can be set using
environment variables, although many other configuration mechanisms might be used
configuration files or central configuration registries. A typical example that is available
in several existing MPI implementations is the ability to specify an “eager limit”, i.e., an
upper bound on the message size that allows the transmission of messages using an eager
protocol.

Control Variable Query Functions

Each MPI implementation exports a set of N control variables through MPIT. If N is
zero, then the MPIT implementation does not export any control variables, otherwise the
provided control variables are indexed from 0 to N — 1.

An MPIT implementation is allowed to increase the number of control variables during
the execution of an MPI application, e.g., when new variables become available through
dynamic loading. However, MPIT implementations are not allowed to change the index of
a control variable or delete a variable once it has been added to the set.

The following function can be used to query the number of control variables N:

MPIT_CONTROLVAR_GET _NUM(num)

ouT num returns number of control variables

int MPIT_ _get_num (int *num)

The function MPIT_CONTROLVAR_GET_INFO provides access to additional informa-
tion for each variable.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33I

35
36
37
38
39
40
41
42
43
44
45
46
47

48

[

N

10
11
12
13
14
15

16

23
24
I 25
26
27
28
29
30
31
32
33
34
35
36
37
38
I 39
40
41
42
43
I 44
45
46
47

48

10 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_CONTROLVAR_GET_INFO(index, name, name_len, verbosity, datatype, count, desc,
desc_len, assoc, attributes)

IN index index of the control variable to be queried

ouT name buffer to return the name of the control variable

INOUT name_len length of the string and/or buffer for name

ouT verbosity verbosity level of this variable

ouT datatype MPIT type of the information stored in the control
variable

ouT count number of elements returned

ouT desc buffer to return a description of the control vari-
able

INOUT desc_len length of the string and/or buffer for desc

ouT assoc type of MPI resource this variable is associated with

ouT attributes additional attributes defining this variable

int MPIT_Controlvar_g et_info(int index, char *name, int *name_len, int
*verbosity, MPIT _Datatype *datatype, int *count, char *desc,

int *desc_len, *assoc, MPIT_Controlvar_attributes
*attributes)
After a successful call to MPIT_CONTROLVAR_GET_INFO for a particular variable,
subsequent calls to this routine querying information about the same variable return

the same information. An MPIT implementation is not allowed to alter it at runtime.
The arguments name and name_len are used to return the name of the control variable
as described in Section 1.2.3.

The argument verbosity returns the verbosity level (see Section 1.2.1) assigned by the
MPI implementation to the variable.

The argument datatype returns the MPIT datatype in which the value for this control
variable will be returned. The value consists of count elements of this type.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 1.2.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc be set to the null character and desc_len
be set to one at the return of this call.

1.2.2
Additional information about the variable is returned through the attribute argument
using an opaque structure of type and can be queried using

the following accessor function.

1.2. MPIT PERFORMANCE INTERFACE 11

MPIT_CONTROLVAR_ATTR_GET_SCOPE(attributes, scope)

IN attributes attributes returned by a previous query call

ouT scope scope of when changes to this variable are possible

int MPIT_Controlvar_attr_get_scope(MPIT_Controlvar_attributes *attributes,
int *scope)

The scope of a variable determines whether it might be changeable through the MPIT
interface and whether changing this variable is a local or a collective operation. On successful
return from MPIT_CONTROLVAR_ATTR_GET_SCOPE will be set to
one of the constants listed in Table 1.5.

Scope Constant Description

MPIT_SCOPE_READONLY | read-only, cannot be written
MPIT_SCOPE_LOCAL may be writeable, writing is a local operation
MPIT_SCOPE_GLOBAL may be writeable, writing is a global operation

Table 1.5: Scopes for MPIT control variables.

Advice to users. The scope of a variable only indicates if a variable might be
changeable; it is not a guarantee that it can be changed at any time. If it be
changed at a time the user tries to write to it, the MPIT implementation is allowed
to return an error code as the result of the write operation. (End of advice to users.)

Handle Allocation and Deallocation

a user first allocate a handle for it
by an instance of an MPI resource (see also Section 1.2.2). The type of the
resource is returned by a previous call to MPIT_CONTROLVAR_GET_INFO.

MPIT_CONTROLVAR_HANDLE_ALLOCATE(index, resource, handle)

IN index index of control variable for which handle is to be al-
located
IN resource reference to an MPI resource
ouT handle allocated handle
1.2.2
A call to this routine, allocates a handle for the control
variable specified by the argument index and this variable to the instance of an MPI

resource passed in the argument resource.

10
11 I
12
13
14
15
16
17
18
19
20
21
22
sl
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

| s
| s

45
46
|.r

48

12 CHAPTER 1. TOOL INTERFACES FOR MPI

the type of resources for this variable as returned by a prior call to
MPIT_CONTROLVAR_GET_INFO.

MPIT_CONTROLVAR_HANDLE_FREE(handle)
INOUT handle handle to be freed

int MPIT_Controlvar_handle_free(MPIT_Controlvar_handle *handle)

If a handle is longer needed, a user of MPIT should call
MPIT_CONTROLVAR_HANDLE_FREE to free the handle and the associated resources.

Control Variable Access Functions

MPIT_CONTROLVAR_READ(handle, buf)
IN handle handle to the control variable to be read

ouT buf initial address of storage location for variable value

int MPIT_Controlvar_r ead(MPI_Controlvar_handle handle, void* buf)

The MPIT_CONTROLVAR_READ queries the value of the control variable identified
by the argument handle and stores the result in the buffer buf. The user is responsible
to ensure that the buffer is of the appropriate size and fits the entire value of the control
variable (based on the returned type and count from a prior corresponding call to

MPIT_CONTROLVAR_WRITE(handle, buf)
IN handle handle to the control variable to be written

IN buf initial address of storage location for variable value

int MPIT_Controlvar_w rite(MPI_Controlvar_handle handle, void* buf)

The MPIT_CONTROLVAR_WRITE sets the value of the control variable identified by
the argument handle to the data stored in the buffer buf. The user is responsible to ensure
that the buffer is of the appropriate size and fits the entire value of the control variable
(based on the returned type and count from a prior corresponding call to
MPIT_CONTROLVAR_GET_INFO.)

If the variable has a global scope (as returned by a prior corresponding
MPIT_CONTROLVAR_ATTR_GET_SCOPE call), any write call to this variable be
issued on all The user is responsible to ensure that the writes in
all processes are consistent.

If it is not possible to change the variable at the time the call is made, the functions
returns either MPIT_ERR_SETNOTNOW. if there may be a later time at which the variable

1.2. MPIT PERFORMANCE INTERFACE 13

could be set, or MPIT_ERR_SETNEVER, if the variable cannot be set for the remainder of
the application’s execution.

1.2.7 Performance Variables

The following section focuses on the ability to list and query performance variables provided
by the MPI implementation. Performance variables provide insight into MPIl implementa-
tion specific internals and can represent information such as the state a component is in,
aggregated timing data for submodules, or queue sizes and lengths.

Performance Variable Classes

Each reported performance variable is associated with a class of performance variables
describing its the basic semantics. The class of a variable also defines its basic behavior,
when and how an MPI implementation can change its value and what the initial or starting
value of this variable is when it is either used for the first time or reset. Further, it also
defines which types can be used to represent it. These classes are defined by the following
constants:

e MPIT_PERFVAR_CLASS_STATE
A performance variable in this class represents a set of discrete states the MPI imple-
mentation or a component of the MPI implementation is in. Variables of this class
are expected to be represented by an enumeration type and can be set by the MPI
implementation at any time. The default starting value is the current state of the
implementation.

e MPIT_PERFVAR_CLASS_RESOURCE_LEVEL
A performance variable in this class represents a value that describes the uti-
lization level of a resource within the MPI implementation. The value of a vari-
able of this class can change at any time to match the current utilization level of
the resource. Values returned from variables in this class are represented by one
of the following types: MPIT_BYTE, MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT or MPIT_DOUBLE. The default starting value

is the current utilization level of the resource.

e MPIT_PERFVAR_CLASS_RESOURCE_PERCENTAGE
The value of a performance variable in this class represent the percentage utilization
of a finite resource in the MPI implementation. The value of a variable of this class
can change at any time to match the current utilization level of the resource. It should
be returned as an MPIT_FLOAT or MPIT_DOUBLE type. The value must always
be between 0.0 (resource not used at all) and 1.0 (resource completely used). The
default starting value is the current percentage utilization level of the resource.

e MPIT_PERFVAR_CLASS_RESOURCE_HIGHWATERMARK
A performance variable in this class represents a value that describes the high wa-
termark utilization of a resource within the MPI implementation. The value of
a variable of this class is monotonically growing (from the initialization or reset of
the variable). It can be represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT

N

=
— —

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37 I
38
39
40
41
42
43
44

45

46

47

48

10

11

12

13

14

I15

16
I17
18
19
20
21

22

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

14 CHAPTER 1. TOOL INTERFACES FOR MPI

or MPIT_DOUBLE. The default starting value is the current utilization level of the

resource.

e MPIT_PERFVAR_CLASS_RESOURCE_LOWWATERMARK

A performance variable in this class represents a value that describes the low wa-
termark utilization of a resource within the MPI implementation. The value of a
variable of this class is monotonically decreasing (from the initialization or reset of
the variable). [t can be represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value is the current utilization level of the
resource.

e MPIT_PERFVAR_CLASS_EVENT_COUNTER

A performance variable in this class counts the number of occurrences of a spe-
cific event during the execution time of an application (e.g., the number of memory
allocations within an MPI library). The value of a variable of this class is mono-
tonically increasing (from the initialization or reset of the performance variable) by
one for each specific event that is observed. Values must be non-negative and rep-
resented by one of the following types: MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG. The default starting value for variables of this class is 0.

e MPIT_PERFVAR_CLASS_EVENT_AGGREGATE

The value of a performance variable in this class is an an aggregated value that rep-
resents a sum of arguments processed during a specific event (e.g., the amount of
memory allocated by all memory allocations). This class is similar to the counter
class, but instead of counting individual events, the value can be incremented by arbi-
trary amounts. The value of a variable of this class is monotonically increasing (from
the initialization or reset of the performance variable). It must be non-negative and
represented by one of the following types: MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT, MPI_DOUBLE. The default starting value for
variables of this class is 0.

e MPIT_PERFVAR_CLASS_EVENT_TIMER

The value of a performance variable in this class represents the aggregated time that
the MPI implementation spends executing a particular event. This class has the same
basic semantics as MPIT_PERFVAR_CLASS_EVENT_AGGREGATE, but explic-
itly records a timing value. The value of a variable of this class is monotonically in-
creasing (from the initialization or reset of the performance variable). It must be non-
negative and represented by one of the following types: MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT, MPIT_DOUBLE. The default starting value
for variables if this class is 0.

Performance Variable Query Functions

Fach MPI implementation exports a set of N performance variables through MPIT. If N is
zero, then the MPIT implementation does not export any performance variables, otherwise
the provided performance variables are indexed from 0 to NV — 1. This index number is used
by MPIT by subsequent calls to identify the individual variables.

An MPIT implementation is allowed to increase the number of performance variables
during the execution of an MPI application, e.g., when new variables become available

1.2. MPIT PERFORMANCE INTERFACE 15

through dynamic loading. However, MPIT implementations are not allowed to change the
index of a performance variable or delete a variable once it has been added to the set.
The following function can be used to query the number of performance variables NV:

MPIT_PERFVAR_GET_NUM(num)

ouT num returns number of performance variables

int MPIT_Perfvar_get_num(int *num)

The function MPIT_PERFVAR_GET_INFO provides access to additional information
for each variable.

MPIT_PERFVAR_GET_INFO(index, name, name_len, verbosity, varclass, datatype, count,
desc, desc_len, assoc, attributes)

IN index index of the performance variable to be queried

ouT name buffer to return the name of the performance vari-
able

INOUT name_len length of the string and/or buffer for name

ouT verbosity verbosity level of this variable

ouT varclass class of performance variable

ouT datatype MPIT type of the information stored in the perfor-
mance variable

ouT count number of elements returned

ouT desc buffer to return a description of the performance
variable

INOUT desc_len length of the string and/or buffer for desc

ouT assoc type of MPI resource this variable is associated with

ouT attributes additional attributes defining this variable

int MPIT_Perfvar_get_info(int num, char *name, int *name_len, int
*verbosity, int *varclass, MPIT_Datatype *datatype, int
*count, char *desc, int *desc_len, int *assoc,
MPIT_Perfvar_attributes *attributes)

After a successful call to MPIT_PERFVAR_GET_INFO for a particular variable, subse-
quent calls to this routine querying information about the same variable must return the
same information. An MPIT implementation is not allowed to alter it at runtime.

The arguments name and name_len are used to return the name of the performance
variable as described in Section 1.2.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT performance variables used
by the MPI implementation.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 1. TOOL INTERFACES FOR MPI

The argument verbosity returns the verbosity level (see Section 1.2.1) assigned by the
MPI implementation to the variable.

The class of the performance variable is returned in the parameter varclass and can be
one of the constants defined in Section 1.2.7.

The argument datatype returns the MPI|T datatype in which the value for this perfor-
mance variable will be returned. The value consists of count elements of this type.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 1.2.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return from this function.

The parameter assoc returns the type of MPI resource the variable is associated with
(see Section 1.2.2).

Additional information about the variable is returned through the attribute argument
using an opaque structure of type MPI_Perfvar_attributes and can be queried using the
following accessor functions.

MPIT_PERFVAR_ATTR_GET_READONLY (attributes, readonly)
IN attributes attributes returned by a previous query call

ouT readonly flag indicating whether a variable can be written/reset

int MPIT_Perfvar_attr_get_readonly(MPIT_Perfvar_attributes *attributes, int
xreadonly)

Upon return, the argument readonly will be set to null if the variable can be written
or reset by the user, or one if the variable is only initialized at MPIT_INIT and can only be
read after that.

MPIT_PERFVAR_ATTR_GET_CONTINUOUS(attributes, continuous)
IN attributes attributes returned by a previous query call

ouT continuous flag indicating whether a variable can be started and

stopped or is continuously active

int MPIT_Perfvar_attr_get_continuous(MPIT_Perfvar_attributes *xattributes,
int *continuous)

Upon return, the argument continuous will be set to null if the variable can be started
and stopped by the user, or one if the variable is automatically active and can not by
stopped by the user.

Performance Experiment Sessions

Within a single program, multiple components can use the MPIT interface. To avoid col-
lisions with respect to accesses to performance variables, users of the MPIT interface must
first create a session. All subsequent calls accessing performance variables are then within

1.2. MPIT PERFORMANCE INTERFACE 17

the context of this session. Any call executed in a session must not influence the results in
any other session.

MPIT_PERFVAR_SESSION_CREATE((session)

ouT session identifier of performance experiment session

int MPIT_Perfvar_session_create(MPIT_Perfvar_session *session)

This call creates a new session for accessing performance variables. An identifier of the
current section is returned in session using the type MPIT Perfvar_session.

MPIT_PERFVAR_SESSION_FREE(session)

INOUT session identifier of performance experiment session

int MPIT_Perfvar_session_free(MPIT_Perfvar_session *session)

This call frees an existing session, i.e., calls to MPIT can no longer be made within the
context of the freed session. This call also frees all handles that have been allocated within
the specified session — see below for handle allocation and freeing. On a successful return,
MPIT sets the handle to MPIT_PERFVAR_SESSION_NULL.

Handle Allocation and Deallocation

Before using a performance variable, a user must first allocate a handle for it by binding
it to an instance of an MPI resource (see also Section 1.2.2). The type of the resource is
returned by a previous call to MPIT_PERFVAR_GET_INFO.

MPIT_PERFVAR_HANDLE_ALLOCATE(session, index, resource, handle)

IN session identifier of performance experiment session

IN index index of performance variable for which handle is to
be allocated

IN resource reference to an MPI resource

ouT handle allocated handle

int MPIT_Perfvar_handle_allocate(MPIT_Perfvar_session session, int index,
MPIT_MPI_Resource resource, MPIT_Perfvar_handle *handle)

A call to this routine, if successfully completed, allocates a handle for the performance
variable specified by the argument index, binds this variable to the instance of an MPI
resource passed in the argument resource, and resets the value of the variable to its default
value (as specified in Section 1.2.7). The type of resource passed into this routine must
match the type of resources for this variable as returned by a prior call to
MPIT_PERFVAR_GET_INFO.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 1. TOOL INTERFACES FOR MPI

The reference to the resource instance passed through the argument resource can be
generated by converting an MPI resource reference to a generic MPIT resource reference of
type MPIT_MPI_Resource using the conversions functions described in Section 1.2.2).

MPIT_PERFVAR_HANDLE_FREE(session,handle)
IN session identifier of performance experiment session

INOUT handle handle to be freed

int MPIT_Perfvar_handle_free(MPIT_Perfvar_session session,
MPIT_Perfvar_handle *handle)

If a handle is no longer needed, a user of MPIT should call
MPIT_PERFVAR_HANDLE_FREE to free the handle and the associated resources. On a
successful return, MPIT sets the handle to MPIT_PERFVAR_HANDLE_NULL.

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating once a handle has been allocated and can be queried any time.
They cannot be stopped or paused by the user. All other variables are in a stopped state
after their handle has been allocated, i.e., their values are not updated as the program
executes, and must be started by the user.

MPIT_PERFVAR_START (session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_start(MPIT_Perfvar_session session, MPIT_Perfvar_handle
handle)

This functions starts the performance variable with the handle handle in the session
session.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to start all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPI_SUCCESS if all variables are started
successfully, otherwise MPIT_ERR_NOSTARTSTOP is returned. Continuous variables and
variables that are already started are ignored when used with MPIT_PERFVAR_ALL_HANDLES

MPIT_PERFVAR_STOP(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

1.2. MPIT PERFORMANCE INTERFACE 19

int MPIT_Perfvar_stop(MPIT_Perfvar_session session, MPIT_Perfvar_handle
handle)

This functions stops the performance variable with the handle handle in the session
session.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to stop all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPI_SUCCESS if all variables are
stopped successfully, otherwise MPIT_ERR_NOSTARTSTOP is returned. Continuous vari-
ables and variables that are already stopped are ignored when used with
MPIT_PERFVAR_ALL_HANDLES .

Performance Variable Access Functions

MPIT_PERFVAR_READ(session, handle, buf)

IN session identifier of performance experiment session
IN handle handle of a performance variable
ouT buf initial address of storage location for variable value

int MPIT_Perfvar_read(MPIT_Perfvar_session session, MPIT_Perfvar_handle
handle, void* buf)

The MPIT_PERFVAR_READ call queries the value of the performance variable with
the handle handle in the session session and stores the result in the buffer buf. The user
is responsible to ensure that the buffer is of the appropriate size and fits the entire value
of the performance variable (based on the returned type and count during the
MPIT_PERFVAR_GET_INFO call).

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_READ, since this would require the function to
return a set of variable values instead of just one.

MPIT_PERFVAR_WRITE(session,handle, buf)

IN session identifier of performance experiment session
IN handle handle of a performance variable
IN buf initial address of storage location for variable value

int MPIT_Perfvar_write(MPIT_Perfvar_session session, MPIT_Perfvar_handle
handle, void* buf)

The MPIT_PERFVAR_WRITE call attempts to write the value of the performance vari-
able with the handle handle in the session session. The value to be written is passed in
the buffer buf. The user is responsible to ensure that the buffer is of the appropriate size

and fits the entire value of the performance variable (based on the returned type and count
during the MPIT_PERFVAR_GET_INFO call).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 1. TOOL INTERFACES FOR MPI

If it is not possible to change the variable the function returns
MPIT_ERR_PERFVAR_WRITE.
Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument

for the MPIT function MPIT_PERFVAR_WRITE, since this would require the function to
accept a set of variable values instead of just one.

MPIT_PERFVAR_RESET (session, handle)
IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_reset(MPIT_Perfvar_session session, MPIT_Perfvar_handle
handle)

The MPIT_PERFVAR_RESET call sets of the performance variable with the handle
handle to its default starting value (as specified in Section 1.2.7). If it is not possible to
change the variable the function returns MPIT_ERR_PERFVAR_WRITE.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to reset all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPIT_SUCCESS if all variables are reset
successfully, otherwise MPIT_ERR_NOWRITE is returned. Readonly variables are ignored
when used with MPIT_PERFVAR_ALL_HANDLES .

MPIT_PERFVAR_READRESET (session, handle, buf)

IN session identifier of performance experiment session
IN handle handle of a performance variable
ouT buf initial address of storage location for variable value

int MPIT_Perfvar_readreset(MPIT_Perfvar_session session,
MPIT_Perfvar_handle handle, void* buf)

The MPIT_PERFVAR_READRESET call atomically queries the value of the performance
variable, stores the result in the buffer buf, and then sets the value of the performance
variable to its default starting value (as specified in Section 1.2.7). The user is responsible
to ensure that the buffer is of the appropriate size and fits the entire value of the performance
variable (based on the returned type and count during the query call). If it is not possible
to change the variable the function returns MPIT_ERR_PERFVAR_WRITE. In this case, the
value returned in buf is the same as if the variable would have been read by the
MPIT_PERFVAR_READ call.

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_READRESET, since this would require the function
to return a set of variable values instead of just one.

Advice to implementors. Although MPI places no requirements on the interaction
with external mechanisms such as signal handlers, it is strongly recommended that all
routines to start, stop, read, write, and reset performance variables should be safe to

1.2. MPIT PERFORMANCE INTERFACE 21

call in asynchronous contexts. Examples of asynchronous contexts include signal han-
dlers and interrupt handlers. Such safety permits the development of sampling-based
tools. High quality implementations should strive to make the results of any such
interactions intuitive to users, and attempt to document restrictions where deemed
necessary. (End of advice to implementors.)

1.2.8 Variable Categorization

MPI implementations can optionally group performance and control variables into categories
to express logical relationships between various variables. Categories can also contain other
categories to form a hierarchical grouping. Categories can never include themselves either
directly or transitively within other included categories.

Rationale. The ability to include categories in other categories enables the creation
of a hierarchical grouping of variables. The restriction that categories can not include
themselves directly or transitively guarantees that this structure is strictly hierarchical
and does not contain any loops. (End of rationale.)

Advice to implementors. To avoid confusion and to simplify the interpretation of the
categories provided by a particular implementation, it is recommended that categories
should either only contain other categories or only control and performance variables.
Mixing categories and control and performance variables within a single category is
not recommended. (End of advice to implementors.)

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories via
the MPIT interface. If N = 0, then the MPI implementation does not export any categories.
This index number is used by MPIT by subsequent calls to identify the individual categories.

An MPI implementation is permitted to increase the number of categories during the
execution of an MPI program, such as when new categories become available through dy-
namic loading. However, MPI implementations are not allowed to change the index of a
category or delete it once it has been added to the set.

The following function can be used to query the number of control variables, N:

MPIT_CATEGORY _GET_NUM(num)

ouT num current number of categories

int MPIT_Category_get_num(int *num)

Individual category information can then be queried by calling the following function:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_CATEGORY _GET_INFO(index, name, name_len, desc, desc_len, num_controlvars, num_perfvars,

num_categories)

IN index index of the category to be queried, in the range [0, N —
1

ouT name buffer to return the name of the category

INOUT name_len length of the string and/or buffer for name

ouT desc buffer to return the description of the category

INOUT desc_len length of the string and/or buffer for desc

ouT num_controlvars number of control variables in the category

ouT num_perfvars number of performance variables in the category

ouT num_categories number of MPIT categories contained in the category

int MPIT_Category_get_info(int index, char #*name, int *name_len, char
*desc, int *desc_len, int *num_controlvar s, int
*num_perfvars, int *num_categories)

The arguments name and name_len are used to return the name of the category as
described in Section 1.2.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT categories used by the MPIT
implementation.

The arguments desc and desc_len are used to return the description of the category as
described in Section 1.2.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

On successful completion, the function returns the number of control variables (
num_controlvars), performance variables (num_perfvars) and other categories (
num_categories) contained in the queried category.

MPIT_CATEGORY_GET_CONTROLVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N —
1]

IN len the length of the kinds and indices arrays

ouT indices an integer array of size len, indicating variable indices

int MPIT_Category_get_controlvars(int cat_index, int len, int indices[])

MPIT_CATEGORY_GET_CONTROLVARS can be used to query which control variables
contained in a particular category. A category may contain zero or more control variables.

1.2. MPIT PERFORMANCE INTERFACE 23

MPIT_CATEGORY _GET_PERFVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N —
1]

IN len the length of the kinds and indices arrays

ouT indices an integer array of size len, indicating variable indices

int MPIT_Category_get_perfvars(int cat_index, int len, int indices[])

MPIT_CATEGORY _GET_PERFVARS can be used to query which performance variables
contained in a particular category. A category may contain zero or more performance
variables.

MPIT_CATEGORY _GET_CATEGORIES(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N —
1]

IN len the length of the kinds and indices arrays

ouT indices an integer array of size len, indicating category indices

int MPIT_Category_get_categories(int cat_index, int len, int indices[])

MPIT_CATEGORY_GET_CATEGORIES can be used to query which other categories
contained in a particular category. A category may contain zero or more other categories.

The index values returned in indices by MPIT_CATEGORY _GET_CONTROLVARS,
MPIT_CATEGORY_GET_PERFVARS or MPIT_CATEGORY_GET_CATEGORIES can be used
as input to MPIT_CONTROLVAR_GET_INFO, MPIT_PERFVAR_GET_INFO or
MPIT_CATEGORY_GET_INFO respectively.

The user is responsible for allocating the arrays passed into the functions
MPIT_CATEGORY_GET_CONTROLVARS, MPIT_CATEGORY_GET_PERFVARS and
MPIT_CATEGORY _GET_CATEGORIES.

The functions will only write up to len elements into the respective array. If the category
contains more than len variables or other categories respectively the function returns an
arbitrary subset; if it contains less then len variables or other categories respectively, all
will be returned and the remaining array entries will not be modified.

1.2.9 Return and Error Codes

All MPIT functions return a return or error code. The constants in Table 1.6 are defined for
this purpose. None of the error codes returned by an MPIT routine is fatal to the overall
MPI implementation or invokes an MPI error handler. In any case, the execution of the MPI
program continues as if the call would have succeeded. However, the MPIT implementation
is not required to check all user provided parameters; if a user passes illegal parameter
values to any MPIT routine that are not caught by the implementation, the behavior of the
implementation is undefined.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26
27
28
29 I
30
31
32
33
34 I
35
36
37
38
39

40

42 I
43
44
45
46
47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 1. TOOL INTERFACES FOR MPI

1.2.10 Profiling Interface

All requirements for the profiling interfaces, as described in Section ?7, also apply to the
MPIT interface. In particular, this means that a complying MP| implementation pro-
vide matching PMPIT calls for every MPIT call. All rules, guidelines, and recommendations
from Section 7?7 apply equally to PMPIT calls.

1.2. MPIT PERFORMANCE INTERFACE

25

Return Code

\ Description

Return Codes for all MPIT Functions

MPIT_SUCCESS
MPIT_ERR_MEMORY
MPIT_ERR_NOTINITIALIZED
MPIT_ERR_CANTINIT

No error, call completed

Out of memory

MPIT not initialized

MPIT not in the state to be initialized

Return Codes for Type Functions: MPIT_TYPE_*

MPIT_ERR_PREDEFINED
MPIT_ERR_INVALIDTYPE
MPIT_ERR_INVALIDITEM

Datatype is a predefined type and not an enumaration

Datatype is not a valid datatype
The item index queried is out of range
(for MPIT_TYPE_ENUMITEM only)

Return Codes for variable and category query functions: MPIT_*_GET_INFO

MPIT_ERR_INVALIDINDEX

‘ The variable or category index is invalid

Return Codes for Handle Functions: MPIT_*_ALLOCATE,FREE

MPIT_ERR_INVALIDINDEX
MPIT_ERR_INVALIDHANDLE
MPIT_ERR_OUTOFHANDLES

The variable index is invalid
The handle is invalid
No more handles available

Return Codes for Session Functions: MPIT_PERFVAR_SESSION_*

MPIT_ERR_OUTOFSESSIONS
MPIT_ERR_INVALIDSESSION

No more sessions available
Session argument is not a valid session

Return Codes for Control Variable Access Functions:

MPIT_CONTROLVAR_READ

,WRITE

MPIT_ERR_SETNOTNOW
MPIT_ERR_SETNEVER
MPIT_ERR_INVALIDVAR

MPIT_ERR_INVALIDHANDLE

Variable cannot be set at this moment
Variable cannot be set until end of execution
Control variable does not exist

The handle is invalid

Return Codes for Performance

Variable Access and Control:

MPIT_PERFVAR_START,STOP,READ ,WRITE,RESET,READRESET

MPIT_ERR_INVALIDHANDLE
MPIT_ERR_INVALIDSESSION
MPIT_ERR_NOSTARTSTOP

MPIT_ERR_NOWRITE

The handle is invalid

Session argument is not a valid session
Variable can not be started or stopped
for MPIT_PERFVAR_START and
MPIT_PERFVAR_STOP

Variable can not be written or reset
for MPIT_PERFVAR_WRITE and
MPIT_PERFVAR_RESET

Return Codes for Category Functions: MPIT_CATEGORY _*

MPIT_ERR_INVALIDCATEGORY

The specified category index does not exist

Table 1.6: Return and error codes used MPIT functions.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mes.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Mes-
sage Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machin e and Message Passing
Interface, pages 51-58, Barcelona, Spain, September 1999.

26

MPIT Constant and Predefined

Handle Index

This index lists predefined MPIT constants and handles.

MPIT_BYTE, 7
MPIT_CHAR, 7
MPIT_CONTROIVAR_HANDLE_NULL,
12
MPIT_DOUBLE, 7
MPIT_ERR_CANTINIT, 25
MPIT_ERR_INVALIDCATEGORY, 25
MPIT_ERR_INVALIDHANDLE, 25
MPIT_ERR_INVALIDINDEX, 25
MPIT_ERR_INVALIDITEM, 25
MPIT_ERR_INVALIDSESSION, 25
MPIT_ERR_INVALIDTYPE, 25
MPIT_ERR_INVALIDVAR, 25
MPIT_ERR_MEMORY, 25
MPIT_ERR_NOSTARTSTOP, 18, 19, 25
MPIT_ERR_NOTINITIALIZED, 25
MPIT_ERR_NOWRITE, 20, 25
MPIT_ERR_OUTOFHANDLES, 25
MPIT_ERR_OUTOFSESSIONS, 25
MPIT_ERR_PERFVAR_WRITE, 20
MPIT_ERR_PREDEFINED, 25
MPIT_ERR_SETNEVER, 13, 25
MPIT_ERR_SETNOTNOW, 12, 25
MPIT_FLOAT, 7
MPIT_INT, 7
MPIT_LOGICAL, 7
MPIT_LONG, 7
MPIT_LONG_LONG, 7
MPIT_MPI_RESOURCE_GLOBAL, 5

MPIT_MPI_RESOURCE_TYPE_FILE, 3
MPIT_MPI_RESOURCE_TYPE_GLOBAL,
MPIT_Ni)iD?_RESOURCE_TYPE_GROUP,
MPIT_l\Z)PI_RESOURCE_TYPE_OPERATOR,
MPIT_I\/:;PI_RESOURCE_TYPE_REQUEST,
MPIT_I\Z)PI_RESOURCE_TYPE_WINDOW,
MPIT_P?)ERFVAR_ALL_HANDLES, 18-
MPIT_P2E())RFVAR_CLASS_EVENT_AGGREGATE,
MPIT_PléRFVAR_CLASS_EVENT_COUNTER,
MPIT_PléRFVAR_CLASS_EVENT_TIMER,
MPIT_PII*;LRFVAR_CLASS_RESOURCE_HIGHWATERMA
MPIT_P1]§)RFVAR_CLASS_RESOURCE_LEVEL,
MPIT_PIE?RFVAR_CLASS_RESOURCE_LOWWATERMA]
MPIT_PléRFVAR_CLASS_RESOURCE_PERCENTAGE,
MPIT_PllgRFVAR_CLASS_STATE, 13
MPIT_PERFVAR_HANDLE_NULL, 18

MPIT_MPI_RESOURCE_TYPE_COMMUNICATRIE, PERFVAR_SESSION_NULL, 17

3

MPIT_SCOPE_GLOBAL, 11

MPIT_MPI_RESOURCE_TYPE_DATATYPE, MPIT_SCOPE_LOCAL, 11

3

MPIT_SCOPE_READONLY, 11

MPIT_MPI_RESOURCE_TYPE_ERRORHANDIFFR, SHORT, 7

3

MPIT_SUCCESS, 2, 20, 25

© oo ~ =] ot - w [=

> [[e~ = o - [w w w w w w w w w w [[M [N) [V [[V [= = [= = = [[[=
~ =] (o)) - w N - o © oo ~ (=] ot [w N - o © oo ~ =] o)) - w %) - (=] © oo ~ (=2} ot = w [- o

'S
oo

28 MPIT Constant and Predefined Handle Index

MPIT_TYPECLASS_ENUMERATION, 7
MPIT_TYPECLASS_PREDEFINED, 7
MPIT_VERBOSITY_MPIDEV_BASIC, 2
MPIT_VERBOSITY_MPIDEV_DETAILED,
2
MPIT_VERBOSITY_MPIDEV_VERBOSE,
2
MPIT_VERBOSITY_TUNER_BASIC, 2
MPIT_VERBOSITY_TUNER_DETAILED,
2
MPIT_VERBOSITY_TUNER_VERBOSE,
2
MPIT_VERBOSITY _USER_BASIC, 2
MPIT_VERBOSITY _USER_DETAILED,
2
MPIT_VERBOSITY _USER_VERBOSE,
2

MPIT Function Index

The underlined page numbers refer to the function definitions.

MPIT_CATEGORY _GET_CATEGORIES,
23,23

MPIT_CATEGORY_GET_CONTROLVARS,

22, 22, 23

MPIT_CATEGORY_GET_INFO, 22, 23

MPIT_CATEGORY_GET_NUM, 21

MPIT_CATEGORY_GET_PERFVARS, 23,
23

MPIT_CONTROLVAR_ATTR_GET_SCOPE,

11, 11, 12

MPIT_CONTROLVAR_GET_INFO, 9, 10,
10, 11, 12, 23

MPIT_CONTROLVAR_GET_NUM, 9

MPIT_PERFVAR_GET_INFO, 15, 15, 17,
19, 23
MPIT_PERFVAR_GET_NUM, 15
MPIT_PERFVAR_HANDLE_ALLOCATE,
17
MPIT_PERFVAR_HANDLE_FREE, 18,
18
MPIT_PERFVAR_READ, 19, 19, 20
MPIT_PERFVAR_READRESET, 20, 20
MPIT_PERFVAR_RESET, 20, 20, 25
MPIT_PERFVAR_SESSION_CREATE, 17
MPIT_PERFVAR_SESSION_FREE, 17
MPIT_PERFVAR_START, 18, 25

MPIT_CONTROLVAR_HANDLE_ALLOCATEMPIT_PERFVAR_STOP, 18, 25

11

MPIT_CONTROLVAR_HANDLE_FREE,
12, 12

MPIT_CONTROLVAR_READ, 12, 12

MPIT_CONTROLVAR_WRITE, 12, 12

MPIT_FINALIZE, 6, 6

MPIT_INIT, 6, 6, 16

MPIT_PERFVAR_WRITE, 19, 19, 20, 25
MPIT_TYPE_ENUM_GET_INFO, 8
MPIT_TYPE_ENUM_GET_ITEM, 8, 8
MPIT_TYPE_ENUM_QUERY, 8
MPIT_TYPE_ENUMITEM, 25
MPIT_TYPE_GET_CLASS, 7
MPIT_TYPE_GET_SIZE, 7, 8

MPIT_MPI_RESOURCE_COMMUNICATOR, MPIT_FINALIZE, 6

4
MPIT_MPI_RESOURCE_DATATYPE, 4

MPIT_MPI_RESOURCE_ERRORHANDLER,

4
MPIT_MPI_RESOURCE_FILE, 4
MPIT_MPI_RESOURCE_GROUP, 4
MPIT_MPI_RESOURCE_OPERATIONS,

5
MPIT_MPI_RESOURCE_REQUEST, 5
MPIT_MPI_RESOURCE_WINDOW, 5

MPIT_PERFVAR_ATTR_GET_CONTINUOUS,

16

MPIT_PERFVAR_ATTR_GET_READONLY,

16

29

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 MPIT Function Index

SpSp SpsSp SPSp SpSp SPSpP SPSP SPSP SPSp SPSP SPSp SPSP SPSP SPSP SPSp SPSP SPsSp
SpSp SpSp SPSP SPSP SPSp SPSp SPSp SPSp SpSp SpSp SPSP SPSp SPSp SPSP SpSp SpSp - SPSP
SpSp SpSp Spsp SpSp SpSp SpSp SpSp SpSp SpSp SpSp Spsp SpSp SpsSp - SpSp SpsSp Spsp
SpSp SPSp SpSp SPSp SpSp SPSp SPSp SPSpP SPSP SpPSp SPSP SPSp SpSp SPSP SpSp - SPSP
SpSp SpSp Spsp SpPSp SpSp SPSp SpSp SpsSp SpSp SpSp SpSp SpSp Spsp SPSp SpSp Spsp
SpSp SpsSp SPSp SPSp SpSp SPSp SpSp SpPSp SpSp SpSp SPSp SPSP SPSP SPSPp SPSp SPSp SPSP
SpSp SpSp Spsp SpSp SpSp SpSp SpsSp SpSp SpSp SpPSp SpSp SpSp Spsp SpSp - SpSp SpSp - Spsp
SpSp SPSp SPSp SPSp SPSp SPSp SpSp SPSpP SPSP SPSP SPSP SPSPp SPSP SPSP SpSp - SPSP SPSP
SpSp SpSp SPSp SpSp SPSp SpSp SpSp SpPSp SpPSp SpSp SPSP SpSp SPSPp SpSp SPSp SPSp - SPSP
SpSp SpSp SpSp SPSp SPpSp SPSpP SPSp SpPSP SPSP SpPSp SPSP SPSP SpSp SPSP SpSp - SPSP
SpSp SPSp SPSp SpSp SPSPp SpSp SpSp SPSPp SpSp SPSp SPSp SPSP SpSp SPSP SPSp - SpSp SPSP
SpPSp SpSp SPSp SPSp SPSP SpSp SPSP SPSP SPSP SPSPp SPSP SPSP SPSP SPSP SPSPp SPSp SPSP
SpSp SPSp SPSp SPSp SPSp SPSp SPSP SpSp SpSp SPSP SPSP SPSP SPSp SPSp SpSp SPSP SPSP
SpSp Spsp SpSp SpSp SpSp SpSp SPSp SpSp SpPSp SPSp SPSp SpSp SpSp SpSp SPSp Spsp
SpSp SpSp SPSp SPSp SPSp SPSp SpSp SpSp SPSpP SPSP SPSp SPSp SPSP SpPSp SpSp SpSp - SPSP
SpSp Spsp SpsSp SpSp SpSp SPSp SPSp SpSp SpSp SPSp SPSp SpSp SpSp SPSp SpSp - SPSp Spsp
SpSp SpSp SpPSp SpSp SPSp SpSp SPSPp SPSP SPSP SPSPp SPSP SpPSp SPSP SpSp - SPSPp SPSPp - SPSP
SpSp SpSp SpSp Spsp Spsp SPSp SpSp SpSp SpSp SpSp SpSp SpSp Spsp SpSp SpSp Spsp
SpSp SpsSp SPSp SPSp SpSp SPSp SpSp SPSp SpSp SpPSp SPSP SPSP SPSP SPSPp SPSp SPSp SPSP
SpSp SpSp SPSp SpSp SPSp SpSp SpSp SPSp SpPSp SpSp SPSP SpSp SPSPp SpSp SPSp SPSp - SPSP
SpSp SpsSp SpsSp SpPSp SpSp SPSp SPSp SPSp SPSp SPSPp SPpSp SPSp SPSp SPSP SPSp - SPSP
SpSp SpSp SPSp SpSp SpSp SPSp SpSp SPSp SpSp SpSp SPSP SPSP SPSP SPSPp SpSp - SPSp SPSP
SpSp SPpSp SPSp SPpSp SPSp SpSp SPSP SPSp SPSP SPSp SPSP SPSPp SPSP SPSPp - SPSP SPSP - SPSP
SpSp SPSp SPSp SPSp SPSp SPSp SPSP SpSp SpSp SPSP SPSP SPSPp SPSp SPSp SpSp SPSP SPSP
SpSp SpSp SpSp SpSp SpSp SpSp SPSp SpSp SPSp SPSp SpSp SpSp SpSp SpSp SpSp SpSp - Spsp
SpSp SpsSp SPSp SpSp SpSp SPSp SpSp SPSp SpSp SpSp SPSp SPSP SPSP SPSPp SPSp SPSp SPSP
SpSp Spsp SpSp Spsp SpsSp SpSp SpSp SpSp SpSp SPSp SPSp SpSp SPSp SpSp SpSp SPSp
SpSp SPSp SPSp SpSp SPSp SpSp SPSp SPSPp SpPSpP SPpSp SPSP SPSp SPSP SPSp - SPSp SPSp - SPSP
SpSp Spsp SpsSp SpSp SpSp SPSp SPSp SpSp SpSp SPSp SpSp SPSp SPSp SPSp SpSp - SPSp Spsp
SpSp SPpSp SPSp SPpSp SPSp SpSp SPSp SPSPp SpPSpP SPSp SPSP SPSp SPSP SPSp SPSpP SPSp - SPSP
SpSp SpSp SPSp SPSp SpSp SPSp SpSp SPSp SpSp SpSp SPSp SPSP SPSP SPSPp SpSp - SPSp SPSP
SpSp SPpSp SPSp SPpSp SPSp SPSp SPSP SPSPp SPSP SPSp SPSP SPSPp SPSP SPSPp SPSP SPSP - SPSP
SpSp SpSp SPSp SpSp SpSp SPSp SpSp SPSp SpSp SpSp SPSP SPSP SPSP SPSPp SpSp - SPSp SPSP
SpSp SPpSp SPSp SPpSp SPSp SpSp SPSP SPSp SPSP SPSp SPSP SPSPp SPSP SPSPp - SPSP SPSP - SPSP
SpSp SpPSp SpsSp SpSp SpSp SpPSp SpSp SPSp SpSp SPSp SPpSp SPSP SPSp SPSp SPSPp - SPSP
SpSp SpsSp SpsSp SPSp SpSp SPSp SPSp SpSp SpSp SPSp SPSp SpSp SpSp SPSPp SpSp - SPSp Spsp
SpSp SPSp SPSp SPSp SPSp SpSp SpPSp SPSPp SpPSp SPSp SPSP SPSp SPSPp SPSp SPSp SPSp - SPSP
SpSp SpsSp SpsSp SpSp SpSp SPsSp SPSp SpSp SpSp SPSp SpSp SpSp SpSp SPSPp SpSp - SPSp Spsp
SpSp SPSp SPSp SpSp SPSp SpSp SPSp SPSp SpPSpP SPSp SPSP SPSp SPSP SPSp - SPSpP SPSp - SPSP
SpSp SpSp SpsSp SpSp SpSp SpsSp SpSp SpSp SpSp SpSp SpsSp SpSp SpSp SpSp SpSp Spsp
SpSp SpsSp SPSp SPSp SpSp SPSp SPSp SPSPp SpSp SpPSp SPSP SPSP SPSP SPSPp SPSp SPSp SPSP
SpSp SpSp SPSp SpSp SPSp SpSp SpSp SPSp SpPSpP SpSp SPSP SPSp SPSPp SPSp SPSp SPSp - SPSP
SpSp SPSp SpSp SPSp SPSp SPSP SPSP SPSp SPSP SPSPp SPSp SPSP SPSp SPSP SPSP - SPSP SPSP
SpSp SPSp SpPSp SpSp SPSp SpSp SPSp SpSp SPSP SpSp SPSpP SPSP - SPSp SPSPp - SPSP SpSp SPSP
SpPSp SPSp SpSp SPSp SPSp SPSpP SPSP SPSP SPSP SPSPp SPSp SPSp SPSp SPSP SPSp - SPSpP SPSP
SpSp SPSp SPSp SpSp SPSp SpSp SpPSp SPSp SpPSp SPpSp SPSP SpSp SPSPp SpSp SPSp SPSp - SPSP
SpSp SPSp SpSp SPSp SpSp SPSp SpSp SPSp SpSp SpPSp SpSp - SpPSp SpSp - SpPSp SpSp SpSp Spsp
SPSp SpSp SpSp SPSp SPSpP SPSp SPSp SPSp SpSp SpSp SPSpP SPSp SPSp SPSPp SpSp SpSp - SPSP

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Tool Interfaces for MPI
	Introduction
	MPIT Performance Interface
	Verbosity Levels
	Associations between MPIT Variables and MPI Resources
	String Arguments
	Initialization and Finalization
	Type System
	Control Variables
	Control Variable Query Functions
	Handle Allocation and Deallocation
	Control Variable Access Functions

	Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Handle Allocation and Deallocation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions

	Variable Categorization
	Return and Error Codes
	Profiling Interface

	Bibliography
	Examples Index
	MPIT Constant and Predefined Handle Index
	MPIT Declarations Index
	MPIT Callback Function Prototype Index
	MPIT Function Index
	Examples Index
	MPIT Constant and Predefined Handle Index
	MPIT Declarations Index
	MPIT Callback Function Prototype Index
	MPIT Function Index

