
MPI: A Message-Passing Interface Standard

Version 3.0 > (Fin2)

⊥ (Fin2)

Message Passing Interface Forum

Draft January 7, 2011

Contents

1 Tool Interfaces for MPI 1
1.1 Introduction . 1
1.2 MPIT Performance Interface . 1

1.2.1 Verbosity Levels . 2
1.2.2 Associations between MPIT Variables and MPI Resources 3
1.2.3 String Arguments . 5
1.2.4 Initialization and Finalization . 6
1.2.5 Type System . 6
1.2.6 Control Variables . 8

Control Variable Query Functions 9
Handle Allocation and Deallocation 11
Control Variable Access Functions 11

1.2.7 Performance Variables . 12
Performance Variable Classes . 12
Performance Variable Query Functions 14
Performance Experiment Sessions . 16
Handle Allocation and Deallocation 17
Starting and Stopping of Performance Variables 18
Performance Variable Access Functions 19

1.2.8 Variable Categorization . 20
1.2.9 Return and Error Codes . 23
1.2.10 Profiling Interface . 23

Bibliography 25

Examples Index 26

MPI Constant and Predefined Handle Index 26

MPI Declarations Index 28

MPI Callback Function Prototype Index 29

MPI Function Index 29

ii

List of Figures

iii

List of Tables

1.1 MPIT verbosity levels. 2
1.2 Constant to identify associations of MPIT control variables. 3
1.3 Predefined MPIT datatypes and their MPI equivalents. 7
1.4 MPIT type classes. 7
1.5 Scopes for MPIT control variables. 10
1.6 Constants describing a variable or category type. 22
1.7 Return and error codes used MPIT functions. 24

Chapter 1

Tool Interfaces for MPI

1.1 Introduction

This chapter discusses a set of interfaces that allows tools such as debuggers, performance
analyzers, and others to extract information about the operation of MPI processes. Specif-
ically, this chapter defines the PMPI profiling interface (Section ??) to transparently inter-
cept and inspect any MPI call; and the MPIT tool information interface (Section 1.2) to
query MPI control and performance variables. The interfaces described in this chapter are
all defined in the context of an MPI process, i.e., are callable from the same code as any
other MPI function.

1.2 MPIT Performance Interface

To optimize MPI applications or their runtime behavior, it is often advantageous to un-
derstand the performance switches an MPI implementation offers to the user as well as to
monitor properties and timing information from within the MPI implementation. The MPIT
interface described in this section provides access to this information.

The purpose of the MPIT interface is to provide a mechanism for the MPI implementa-
tion to expose a set of variables that represent a particular property, setting, or performance
measurement from within the MPI implementation. The MPIT interface provides the nec-
essary routines to find all variables that exist in the particular MPI implementation, to
query their properties, to retrieve descriptions about their meaning, and to access and, if
appropriate, alter their values.

The interface is split into two parts: the first part provides information about control
variables used by the MPI implementation to fine tune its configuration. The second part
provides access to performance variables that can provide insight into internal performance
information of the underlying MPI implementation.

To avoid restrictions on the MPI implementation, the MPIT interface allows the im-
plementation to specify which control and performance variables exist. For both types of
variables, the interface provides the ability to query the variables offered by the particular
MPI implementation, along with additional semantics and descriptions.

To avoid conflicts between the standard MPI functionality and the tools-oriented func-
tionality introduced with MPIT, the MPIT interface is contained in its own name space. All
identifiers covered by this interface carry the prefix MPIT and can be used independently
from the MPI functionality. This includes initialization and finalization of MPIT, which is

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. TOOL INTERFACES FOR MPI

provided through a separate set of routines. Consequently, MPIT routines can be called
before MPI_INIT and after MPI_FINALIZE.

On success all MPIT routines return MPIT_SUCCESS, otherwise they return an appro-
priate error code. Details on error codes can be found in Section 1.2.9. However, errors
returned by the MPIT interface shall not be fatal nor have any impact on the execution of
MPI routines.

Advice to users. The number and type of control variables and performance variables
can vary between MPI implementations, platforms, and even different builds of the
same implementation on the same platform. Hence, any application relying on a
particular variable will no longer be portable.

This interface is primarily intended for performance monitoring tools, as well as sup-
port tools and libraries controlling the application’s environment. Application pro-
grammers should either avoid using it or avoid being dependent on the existence of a
particular control or performance variable. (End of advice to users.)

Since the MPIT interface mostly focuses on tools and support libraries, the MPIT
implementations are only required to provide C Bindings. Except where otherwise notes,
all conventions and principles governing the C Bindings of the MPI API also apply to the
MPIT interface and the MPIT interface shall be defined in the same header or API definition
file(s) as the regular MPI routines.

1.2.1 Verbosity Levels

The MPIT interface provides users access to internal configuration and performance infor-
mation through a set of control and performance variables, which are defined by the MPIT
implementation. Since the number of variables can be large for particular implementations,
every variable exported by the MPIT interface has to be associated with one of the following
verbosity levels.

MPIT_VERBOSITY_USER_BASIC Basic information of interest for end users
MPIT_VERBOSITY_USER_DETAILED Detailed information of interest for end users
MPIT_VERBOSITY_USER_VERBOSE All information of interest for end users

MPIT_VERBOSITY_TUNER_BASIC Basic information required for tuning
MPIT_VERBOSITY_TUNER_DETAILED Detailed information required for tuning
MPIT_VERBOSITY_TUNER_VERBOSE All information required for tuning

MPIT_VERBOSITY_MPIDEV_BASIC Basic low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_DETAILED Detailed low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_VERBOSE All low-level information for MPI developers

Table 1.1: MPIT verbosity levels.

Implementations have to assign each variable to one of the verbosity levels. MPI im-
plementations should sort all variables according to the intended target audience (end user,
performance optimizers, or MPI developer) and then distinguish three levels of verbosity
(basic, detailed, and verbose) within each audience.

Advice to implementors. If an MPIT implementation only uses a single verbosity
level for all variables, it is recommended to assign all variables to the level

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 3

MPI_VERBOSITY_USER_BASIC. If an MPIT implementation only uses a single verbosity
level for all variables intended for each target audience, it is recommended to assign
all variables to corresponding basic level. (End of advice to implementors.)

1.2.2 Associations between MPIT Variables and MPI Resources

Each variable provides access to a particular control setting or performance property pro-
vided by the MPI implementation. The meaning of these variables can refer to the complete
MPI library as a global variable or can be associated with a particular MPI resource, such
as a communicator, dataytype, or one-sided communication window. In the latter case, the
variable is associated with exactly one MPI resource type. Before it can be used, it has to
be instantiated with an instance of an MPI resource of that type. Table 1.2 lists all types of
MPI resources supported by MPIT along with a corresponding constant used by the MPIT
interface to identify that resource type.

Constant Associated MPI resource

MPIT_MPI_RESOURCE_TYPE_GLOBAL N/A — global meaning
MPIT_MPI_RESOURCE_TYPE_COMMUNICATOR MPI communicators
MPIT_MPI_RESOURCE_TYPE_DATATYPE MPI datatypes
MPIT_MPI_RESOURCE_TYPE_ERRORHANDLER MPI error handler
MPIT_MPI_RESOURCE_TYPE_FILE MPI file handles
MPIT_MPI_RESOURCE_TYPE_GROUP MPI groups
MPIT_MPI_RESOURCE_TYPE_OPERATOR MPI reduction operators
MPIT_MPI_RESOURCE_TYPE_REQUEST MPI requests
MPIT_MPI_RESOURCE_TYPE_WINDOW MPI windows for one-sided communication

Table 1.2: Constant to identify associations of MPIT control variables.

Rationale. Certain variables have meanings that are limited to a particular MPI
resource. Examples are the number of send or receive operations using a particular
datatype, the number of times an error handler has been called, or or the communica-
tion protocol and eager limit used for a particular communicator. Creating a separate
variable for each MPI resource, e.g., for each communicator, would cause the number of
variables to grow unboundedly since they cannot be reused to avoid naming conflicts.
By associating variables with MPI resource types, only a single variable has to be
created and maintained by the MPI implementation, which can then be reused on as
many instances of this MPI resource type as created during the program’s execution.
(End of rationale.)

In order to instantiate a variable with a particular MPI resource instance, the user
has to be able to convert a reference to a resource of each supported type to a generic
reference, which can then be passed to the MPIT routine responsible for instantiating the
MPIT variable. For this purpose, the interface offers the following conversion routines, which
each take a reference to an MPI resource and return a reference to a generic MPI resource
of type MPIT_MPI_Resource.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. TOOL INTERFACES FOR MPI

MPIT_MPI_RESOURCE_COMMUNICATOR(communicator, resource)

IN communicator Reference to an MPI communicator

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_communicator(MPI_Comm *communicator,

MPIT_MPI_Resource *resource)

MPIT_MPI_RESOURCE_DATATPE(datatype, resource)

IN datatype Reference to an MPI datatype

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_datatype(MPI_Datatype *datatype, MPIT_MPI_Resource

*resource)

MPIT_MPI_RESOURCE_ERRORHANDLER(errorhandler, resource)

IN errorhandler Reference to an MPI error handler

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_errorhandler(MPI_Errorhandler *errorhandler,

MPIT_MPI_Resource *resource)

MPIT_MPI_RESOURCE_GROUP(group, resource)

IN group Reference to an MPI group

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_group(MPI_Group *group, MPIT_MPI_Resource *resource)

MPIT_MPI_RESOURCE_FILE(file, resource)

IN file Reference to an MPI files

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_file(MPI_File *file, MPIT_MPI_Resource *resource)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 5

MPIT_MPI_RESOURCE_OPERATIONS(operation, resource)

IN operation Reference to an MPI reduction operation

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_operation(MPI_Ops *operation, MPIT_MPI_Resource

*resource)

MPIT_MPI_RESOURCE_REQUEST(request, resource)

IN request Reference to an MPI asynchronous communication re-

quest

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_request(MPI_Request *request, MPIT_MPI_Resource

*resource)

MPIT_MPI_RESOURCE_WINDOW(window, resource)

IN window Reference to an MPI one-sided communication window

OUT resource Reference to a generic MPI resource

int MPIT_MPI_Resource_window(MPI_Window *window, MPIT_MPI_Resource

*resource)

Additionally, the MPIT interface provides the constant MPIT_MPI_RESOURCE_GLOBAL

of type MPIT_MPI_Resource* that can be used in routines that expect a reference to an
MPI resource if the resource type is MPIT_MPI_RESOURCE_TYPE_GLOBAL.

1.2.3 String Arguments

Several MPIT function return one or more strings. These functions have two arguments for
each string to be returned, one identifying a pointer to the buffer in which the string will be
returned, and one to pass the length of the buffer. The user is responsible for the memory
allocation of the buffer and must pass the size of the buffer as the length argument. Let n
be the length value specified to the function. On return, the function writes at most n−1 of
the string’s characters into the buffer, followed by a null terminator. If the returned string’s
length is greater than or equal to n, the string will be truncated. The buffer is always
null-terminated. If the user passes the null pointer as the buffer argument or passes 0 as
the length argument, the function does not return the string and only returns the length of
the string plus one in the length argument.

MPIT does not specify the character encoding of strings in the interface. The only
requirement is that strings are terminated with a null character. MPI reserves all type, enu-
meration type item, variables, and category names with the prefixes “MPI_” and “MPIT_”
for its own use.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. TOOL INTERFACES FOR MPI

1.2.4 Initialization and Finalization

Since the MPIT interface is implemented in a separate name space and hence is independent
of the core MPI functions, it requires a separate set of initialization and finalization routines.

MPIT_INIT()

int MPIT_Init(void)

All programs or tools that use the MPIT interface has to initialize the MPIT interface
before calling any other MPIT routine. A user can initialize the MPIT interface by calling
MPIT_INIT, which can be called multiple times.

MPIT_FINALIZE()

int MPIT_Finalize(void)

This routine finalizes the use of the MPIT interface and may be called as often as the
corresponding MPIT_INIT routine up to the current point of execution. Calling it more
times is erroneous. As long as the number of calls to MPIT_FINALIZE is smaller than the
number of calls to MPIT_INIT up to the current point of execution, the MPIT interface
remains initialized and calls to all MPIT routines are permissible. Further, additional calls
to MPIT_INIT after one or more calls to MPIT_FINALIZE are permissible.

Once MPIT_FINALIZE is called the same number of times as the routine MPIT_INIT
up to the current point of execution, the MPIT interface is no longer initialized. Further,
the call to MPIT_FINALIZE that ends the initialization of MPIT may clean up all MPIT
state, invalidate all open sessions (for the concept of Sessions see Section 1.2.7), and free all
handles that have been allocated by MPIT. MPIT can be reinitialized by subsequent calls
to MPIT_INIT.

At the end of the program execution, unless MPI_ABORT is called, an application shall
have called MPIT_INIT and MPIT_FINALIZE an equal number of times.

1.2.5 Type System

Since the initialization of MPIT is separate from the initialization of MPI, it can not be
guaranteed that MPI data types are available at any time during the usage of MPIT.
Therefore, the MPIT interface provides a separate type system. All types are represented
by a variable or constant of type MPIT_Datatype and are classified into two type classes:
predefined and enumeration types. The Table 1.3 lists all available constants that can be
used to identify or describe a predefined type for MPIT calls.

MPIT_TYPE_GET_CLASS(datatype, typeclass)

IN datatype MPIT datatype to be queried

OUT typeclass class of the type passed in

int MPIT_Type_get_class(MPIT_Datatype datatype, int *typeclass)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 7

This routine returns the type class for the datatype provided by the argument datatype.
This allows users of MPIT to distinguish whether a datatype is an enumeration type, e.g.,
to represent the state of a resource, or is one of the predefined types listed in Table 1.3. On
return, the typeclass argument is set to one of the constants listed in Table 1.4, if datatype
represents a valid type.

MPIT Datatype Equivalent MPI Datatype

MPIT_LOGICAL MPI_LOGICAL

MPIT_BYTE MPI_BYTE

MPIT_SHORT MPI_SHORT

MPIT_INT MPI_INT

MPIT_LONG MPI_LONG

MPIT_LONG_LONG MPI_LONG_LONG

MPIT_CHAR MPI_CHAR

MPIT_FLOAT MPI_FLOAT

MPIT_DOUBLE MPI_DOUBLE

Table 1.3: Predefined MPIT datatypes and their MPI equivalents.

MPIT_TYPECLASS_PREDEFINED the datatype is a predefined datatype

MPIT_TYPECLASS_ENUMERATION the datatype is an enumeration datatype

Table 1.4: MPIT type classes.

Conforming implementations of MPIT have to ensure that the MPIT types are equiva-
lent to the listed MPI datatypes for any section of the code in which both MPI and MPIT
can be used. In particular, this requires that the size of an MPIT and its equivalent MPI
datatype is equal and that it is possible to communicate a particular MPIT datatype using
the equivalent MPI datatype through regular MPI operations.

Rationale. The concept of equivalent MPIT and MPI datatypes allows to safely com-
municate values of MPIT datatypes using regular MPI messages. (End of rationale.)

The function MPIT_TYPE_GET_SIZE can be used to query the storage size for each
MPIT datatype.

MPIT_TYPE_GET_SIZE(datatype, size)

IN datatype MPIT datatype to be queried

OUT size Number of bytes required to store a value of datatype

size

int MPIT_Type_get_size(MPIT_Datatype datatype, int *size)

The second type class, enumeration types, describe variables with a fixed set of discrete
values. These types are represented through integer variables and have MPI_INT as their

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. TOOL INTERFACES FOR MPI

equivalent MPI type. Their values range from 0 to N−1, with a fixed N that can be queried
using MPIT_TYPE_ENUM_QUERY.

MPIT_TYPE_ENUM_GET_INFO(datatype, num, name, name_len)

IN datatype MPIT datatype to be queried

OUT num number of discrete values represented by this enumer-

ation datatype

OUT name buffer to return the name of the enumeration type

INOUT name_len length of the string and/or buffer for name

int MPIT_Type_enum_get_info (MPIT_Datatype datatype, int *num, char *name,

int *name_len)

This routine returns, if datatype represents a valid enumeration type, the size of the
enumeration as well as a name for it.

The arguments name and name_len are used to return the name of the type as described
in Section 1.2.3. .

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT datatypes used by the MPI
implementation.

Names for the individual items in each enumeration type can be queried using
MPIT_TYPE_ENUM_GET_ITEM.

MPIT_TYPE_ENUM_GET_ITEM(datatype, item, name, name_len)

IN datatype MPIT datatype to be queried

IN item item number in the MPIT datatype to be queried

OUT name buffer to return the name of the enumeration item

INOUT name_len length of the string and/or buffer for name

int MPIT_Type_enum_get_item (MPIT_Datatype datatype, int item, char *name,

int *name_len)

The arguments name and name_len are used to return the name of the enumeration
item as described in Section 1.2.3.

If completed successfully, the routine is required to return a name of at least length one,
which is unique with respect to all other names of items for the same MPIT enumeration
type.

1.2.6 Control Variables

The set of routines in this section of the MPIT interface specification focuses on the ability
to list, query, and possibly set all exposed control variables used by the MPI implementation.
These variables can typically be used by the user to fine tune properties and configuration
settings of the MPI implementation. On many systems, such variables can be set using

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 9

environment variables, although many other configuration mechanisms might be used , like
configuration files or central configuration registries. A typical example that is available
in several existing MPI implementations is the ability to specify an “eager limit”, i.e., an
upper bound on the message size that allows the transmission of messages using an eager
protocol.

Control Variable Query Functions

Each MPI implementation exports a set of N control variables through MPIT. If N is zero,
then the MPIT implementation does not export any control variables, otherwise the provided
control variables are indexed from 0 to N−1. An MPIT implementation is allowed to increase
the number of control variables during the execution of an MPI application, e.g., when new
variables become available through dynamic loading. However, MPIT implementations are
not allowed to change the index of a control variable or delete a variable once it has been
added to the set.

The following function can be used to query the number of control variables N :

MPIT_CONTROLVAR_GET_NUM(num)

OUT num returns number of control variables

int MPIT_Controlvar_get_num (int *num)

The function MPIT_CONTROLVAR_GET_INFO provides access to additional informa-
tion for each variable.

MPIT_CONTROLVAR_GET_INFO(index, name, name_len, verbosity, datatype, count, desc,
desc_len, assoc, attributes)

IN index index of the control variable to be queried

OUT name buffer to return the name of the control variable

INOUT name_len length of the string and/or buffer for name

OUT verbosity verbosity level of this variable

OUT datatype MPIT type of the information stored in the control

variable

OUT count number of elements returned

OUT desc buffer to return a description of the control vari-
able

INOUT desc_len length of the string and/or buffer for desc

OUT assoc type of MPI resource this variable is associated with

OUT attributes additional attributes defining this variable

int MPIT_Controlvar_g et_info(int index, char *name, int *name_len, int

*verbosity, MPIT_Datatype *datatype, int *count, char *desc,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. TOOL INTERFACES FOR MPI

int *desc_len, int *assoc, MPIT_Controlvar_attributes

*attributes)

After a successful call to MPIT_CONTROLVAR_GET_INFO for a particular variable,
subsequent calls to this routine querying information about the same variable has to return
the same information. An MPIT implementation is not allowed to alter it at runtime.

The arguments name and name_len are used to return the name of the control variable
as described in Section 1.2.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT control variables used by the
MPI implementation.

The argument verbosity returns the verbosity level (see Section 1.2.1) assigned by the
MPI implementation to the variable.

The argument datatype returns the MPIT datatype in which the value for this control
variable will be returned. The value consists of count elements of this type.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 1.2.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc has to be set to the null character and desc_len has
to be set to one at the return of this call.

The parameter assoc returns the type of MPI resource the variable is associated with
(see Section 1.2.2).

Additional information about the variable is returned through the attribute argument
using an opaque structure of type MPIT_Controlvar_attributes and can be queried using the
following accessor function.

MPIT_CONTROLVAR_ATTR_GET_SCOPE(attributes, scope)

IN attributes attributes returned by a previous query call

OUT scope scope of when changes to this variable are possible

int MPIT_Controlvar_attr_get_scope(MPIT_Controlvar_attributes *attributes,

int *scope)

The scope of a variable determines whether it might be changeable through the MPIT
interface and whether changing this variable is a local or a collective operation. On successful
return from MPIT_CONTROLVAR_ATTR_GET_SCOPE, the argument scope will be set to
one of the constants listed in Table 1.5.

Scope Constant Description

MPIT_SCOPE_READONLY read-only, cannot be written
MPIT_SCOPE_LOCAL may be writeable, writing is a local operation
MPIT_SCOPE_GLOBAL may be writeable, writing is a global operation

Table 1.5: Scopes for MPIT control variables.

Advice to users. The scope of a variable only indicates if a variable might be
changeable; it is not a guarantee that it can be changed at any time. If it cannot be

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 11

changed at a time the user tries to write to it, the MPIT implementation is allowed
to return an error code as the result of the write operation. (End of advice to users.)

Handle Allocation and Deallocation

Before reading or writing the value of a variable, a user has to first allocate a handle for it
by instantiating it with an instance of an MPI resource (see also Section 1.2.2). The type
of the resource is returned by a previous call to MPIT_CONTROLVAR_GET_INFO.

MPIT_CONTROLVAR_HANDLE_ALLOCATE(index, resource, handle)

IN index index of control variable for which handle is to be al-

located

IN resource reference to an MPI resource

OUT handle allocated handle

The reference to the resource instance passed through the argument resource can be
generated by converting an MPI resource reference to a generic MPIT resource reference of
type MPIT_MPI_Resource using the conversions functions described in Section 1.2.2).
int MPIT_Controlvar_handle_allocate(int index, MPIT_MPI_Resource resource,

MPIT_Controlvar_handle *handle)

A call to this routine , if successfully completed, allocates a handle for the control
variable specified by the argument index and associates this variable with the instance of
an MPI resource passed in the argument resource. The type of resource passed into this
routine has to match the type of resources for this variable as returned by a prior call to
MPIT_CONTROLVAR_GET_INFO.

MPIT_CONTROLVAR_HANDLE_FREE(handle)

INOUT handle handle to be freed

int MPIT_Controlvar_handle_free(MPIT_Controlvar_handle *handle)

If a handle is no longer needed, a user of MPIT should call
MPIT_CONTROLVAR_HANDLE_FREE to free the handle and the associated resources.

Control Variable Access Functions

MPIT_CONTROLVAR_READ(handle, buf)

IN handle handle to the control variable to be read

OUT buf initial address of storage location for variable value

int MPIT_Controlvar_r ead(MPI_Controlvar_handle handle, void* buf)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 1. TOOL INTERFACES FOR MPI

The MPIT_CONTROLVAR_READ queries the value of the control variable identified
by the argument handle and stores the result in the buffer buf. The user is responsible
to ensure that the buffer is of the appropriate size and fits the entire value of the control
variable (based on the returned type and count from a prior corresponding call to
MPIT_CONTROLVAR_GET_INFO).

MPIT_CONTROLVAR_WRITE(handle, buf)

IN handle handle to the control variable to be written

IN buf initial address of storage location for variable value

int MPIT_Controlvar_w rite(MPI_Controlvar_handle handle, void* buf)

The MPIT_CONTROLVAR_WRITE sets the value of the control variable identified by
the argument handle to the data stored in the buffer buf. The user is responsible to ensure
that the buffer is of the appropriate size and fits the entire value of the control variable
(based on the returned type and count from a prior corresponding call to
MPIT_CONTROLVAR_GET_INFO.)

If the variable has a global scope (as returned by a prior corresponding
MPIT_CONTROLVAR_ATTR_GET_SCOPE call), any write call to this variable has to be
issued on all connected MPI processes. The user is responsible to ensure that the writes in
all processes are consistent.

If it is not possible to change the variable at the time the call is made, the functions
returns either MPIT_ERR_SETNOTNOW, if there may be a later time at which the variable
could be set, or MPIT_ERR_SETNEVER, if the variable cannot be set for the remainder of
the application’s execution.

1.2.7 Performance Variables

The following section focuses on the ability to list and query performance variables provided
by the MPI implementation. Performance variables provide insight into MPI implementa-
tion specific internals and can represent information such as the state a component is in,
aggregated timing data for submodules, or queue sizes and lengths.

Performance Variable Classes

Each reported performance variable is associated with a class of performance variables
describing its the basic semantics. The class of a variable also defines its basic behavior,
when and how an MPI implementation can change its value and what the initial or starting
value of this variable is when it is either used for the first time or reset. Further, it also
defines which types can be used to represent it. These classes are defined by the following
constants:

• MPIT_PERFVAR_CLASS_STATE

A performance variable in this class represents a set of discrete states the MPI imple-
mentation or a component of the MPI implementation is in. Variables of this class
are expected to be represented by an enumeration type and can be set by the MPI
implementation at any time. The default starting value is the current state of the
implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 13

• MPIT_PERFVAR_CLASS_RESOURCE_LEVEL

A performance variable in this class represents a value that describes the utilization
level of a resource within the MPI implementation. The value of a variable of this class
can change at any time to match the current utilization level of the resource. Val-
ues returned from variables in this class are represented by one of the following types:
MPIT_BYTE, MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value is the current utilization level of the
resource.

• MPIT_PERFVAR_CLASS_RESOURCE_PERCENTAGE

The value of a performance variable in this class represent the percentage utilization
of a finite resource in the MPI implementation. The value of a variable of this class
can change at any time to match the current utilization level of the resource. It
should be returned as an MPIT_FLOAT or MPIT_DOUBLE type. The value has to
be always between 0.0 (resource not used at all) and 1.0 (resource completely used).
The default starting value is the current percentage utilization level of the resource.

• MPIT_PERFVAR_CLASS_RESOURCE_HIGHWATERMARK

A performance variable in this class represents a value that describes the high wa-
termark utilization of a resource within the MPI implementation. The value of
a variable of this class is monotonically growing (from the initialization or reset of
the variable). It can be represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value is the current utilization level of the
resource.

• MPIT_PERFVAR_CLASS_RESOURCE_LOWWATERMARK

A performance variable in this class represents a value that describes the low wa-
termark utilization of a resource within the MPI implementation. The value of a
variable of this class is monotonically decreasing (from the initialization or reset of
the variable). It can be represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value is the current utilization level of the
resource.

• MPIT_PERFVAR_CLASS_EVENT_COUNTER

A performance variable in this class counts the number of occurrences of a specific
event during the execution time of an application (e.g., the number of memory al-
locations within an MPI library). The value of a variable of this class is monotoni-
cally increasing (from the initialization or reset of the performance variable) by one
for each specific event that is observed. Values have to be non-negative and rep-
resented by one of the following types: MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG. The default starting value for variables of this class is 0.

• MPIT_PERFVAR_CLASS_EVENT_AGGREGATE

The value of a performance variable in this class is an an aggregated value that rep-
resents a sum of arguments processed during a specific event (e.g., the amount of
memory allocated by all memory allocations). This class is similar to the counter
class, but instead of counting individual events, the value can be incremented by arbi-
trary amounts. The value of a variable of this class is monotonically increasing (from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 1. TOOL INTERFACES FOR MPI

the initialization or reset of the performance variable). It has to be non-negative and
represented by one of the following types: MPIT_SHORT, MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT, MPI_DOUBLE. The default starting value for
variables of this class is 0.

• MPIT_PERFVAR_CLASS_EVENT_TIMER

The value of a performance variable in this class represents the aggregated time that
the MPI implementation spends executing a particular event. This class has the same
basic semantics as MPIT_PERFVAR_CLASS_EVENT_AGGREGATE, but explic-
itly records a timing value. The value of a variable of this class is monotonically in-
creasing (from the initialization or reset of the performance variable). It has to be non-
negative and represented by one of the following types: MPIT_INT, MPIT_LONG,
MPIT_LONG_LONG, MPIT_FLOAT, MPIT_DOUBLE. The default starting value
for variables if this class is 0.

Performance Variable Query Functions

Each MPI implementation exports a set of N performance variables through MPIT. If N is
zero, then the MPIT implementation does not export any performance variables, otherwise
the provided performance variables are indexed from 0 to N − 1. An MPIT implementation
is allowed to increase the number of performance variables during the execution of an MPI
application, e.g., when new variables become available through dynamic loading. However,
MPIT implementations are not allowed to change the index of a performance variable or
delete a variable once it has been added to the set.

The following function can be used to query the number of performance variables N :

MPIT_PERFVAR_GET_NUM(num)

OUT num returns number of performance variables

int MPIT_Perfvar_get_num(int *num)

The function MPIT_PERFVAR_GET_INFO provides access to additional information
for each variable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 15

MPIT_PERFVAR_GET_INFO(index, name, name_len, verbosity, varclass, datatype, count,
desc, desc_len, assoc, attributes)

IN index index of the performance variable to be queried

OUT name buffer to return the name of the performance vari-
able

INOUT name_len length of the string and/or buffer for name

OUT verbosity verbosity level of this variable

OUT varclass class of performance variable

OUT datatype MPIT type of the information stored in the perfor-

mance variable

OUT count number of elements returned

OUT desc buffer to return a description of the performance
variable

INOUT desc_len length of the string and/or buffer for desc

OUT assoc type of MPI resource this variable is associated with

OUT attributes additional attributes defining this variable

int MPIT_Perfvar_get_info(int num, char *name, int *name_len, int

*verbosity, int *varclass, MPIT_Datatype *datatype, int

*count, char *desc, int *desc_len, int *assoc,

MPIT_Perfvar_attributes *attributes)

After a successful call to MPIT_PERFVAR_GET_INFO for a particular variable, subse-
quent calls to this routine querying information about the same variable has to return the
same information. An MPIT implementation is not allowed to alter it at runtime.

The arguments name and name_len are used to return the name of the performance
variable as described in Section 1.2.3.

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT performance variables used
by the MPI implementation.

The argument verbosity returns the verbosity level (see Section 1.2.1) assigned by the
MPI implementation to the variable.

The class of the performance variable is returned in the parameter varclass and can be
one of the constants defined in Section 1.2.7.

The argument datatype returns the MPIT datatype in which the value for this perfor-
mance variable will be returned. The value consists of count elements of this type.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 1.2.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc has to be set to the null character and desc_len has
to be set to one at the return from this function.

The parameter assoc returns the type of MPI resource the variable is associated with
(see Section 1.2.2).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 1. TOOL INTERFACES FOR MPI

Additional information about the variable is returned through the attribute argument
using an opaque structure of type MPI_Perfvar_attributes and can be queried using the
following accessor functions.

MPIT_PERFVAR_ATTR_GET_READONLY(attributes, readonly)

IN attributes attributes returned by a previous query call

OUT readonly flag indicating whether a variable can be written/reset

int MPIT_Perfvar_attr_get_readonly(MPIT_Perfvar_attributes *attributes, int

*readonly)

Upon return, the argument readonly will be set to null if the variable can be written
or reset by the user, or one if the variable is only initialized at MPIT_INIT and can only be
read after that.

MPIT_PERFVAR_ATTR_GET_CONTINUOUS(attributes, continuous)

IN attributes attributes returned by a previous query call

OUT continuous flag indicating whether a variable can be started and

stopped or is continuously active

int MPIT_Perfvar_attr_get_continuous(MPIT_Perfvar_attributes *attributes,

int *continuous)

Upon return, the argument continuous will be set to null if the variable can be started
and stopped by the user, or one if the variable is automatically active and can not by
stopped by the user.

Performance Experiment Sessions

Within a single program, multiple components can use the MPIT interface. To avoid colli-
sions with respect to accesses to performance variables, users of the MPIT interface have to
create a session first. All subsequent calls accessing performance variables are then within
the context of this session. Any call executed in a session shall not influence the results in
any other session.

MPIT_PERFVAR_SESSION_CREATE(session)

OUT session identifier of performance experiment session

int MPIT_Perfvar_session_create(int *session)

This call creates a new session for accessing performance variables. An identifier of the
current section is returned in session.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 17

MPIT_PERFVAR_SESSION_FREE(session)

IN session identifier of performance experiment session

int MPIT_Perfvar_session_free(int session)

This call frees an existing session, i.e., calls to MPIT can no longer be made within the
context of the freed session. This call also frees all handles that have been allocated within
the specified session — see below for handle allocation and freeing.

Handle Allocation and Deallocation

Before using a performance variable, a user first has to allocate a handle for it by instan-
tiating it with an instance of an MPI resource (see also Section 1.2.2). The type of the
resource is returned by a previous call to MPIT_PERFVAR_GET_INFO.

MPIT_PERFVAR_HANDLE_ALLOCATE(session, index, resource, handle)

IN session identifier of performance experiment session

IN index index of performance variable for which handle is to

be allocated

IN resource reference to an MPI resource

OUT handle allocated handle

int MPIT_Perfvar_handle_allocate(int session, int index, MPIT_MPI_Resource

resource, MPIT_Perfvar_handle *handle)

A call to this routine, if successfully completed, allocates a handle for the performance
variable specified by the argument index, associates this variable with the instance of an
MPI resource passed in the argument resource, and resets the value of the variable to
its default value (as specified in Section 1.2.7). The type of resource passed into this
routine has to match the type of resources for this variable as returned by a prior call to
MPIT_PERFVAR_GET_INFO.

The reference to the resource instance passed through the argument resource can be
generated by converting an MPI resource reference to a generic MPIT resource reference of
type MPIT_MPI_Resource using the conversions functions described in Section 1.2.2).

MPIT_PERFVAR_HANDLE_FREE(session,handle)

IN session identifier of performance experiment session

INOUT handle handle to be freed

int MPIT_Perfvar_handle_free(int session, MPIT_Perfvar_handle *handle)

If a handle is no longer needed, a user of MPIT should call
MPIT_PERFVAR_HANDLE_FREE to free the handle and the associated resources.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 1. TOOL INTERFACES FOR MPI

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating once a handle has been allocated and can be queried any time.
They cannot be stopped or paused by the user. All other variables are in a stopped state
after their handle has been allocated, i.e., their values are not updated as the program
executes, and have to be started by the user.

MPIT_PERFVAR_START(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_start(int session, MPIT_Perfvar_handle handle)

This functions starts the performance variable with the handle handle in the session
session.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to start all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPI_SUCCESS if all variables are started
successfully, otherwise MPIT_ERR_NOSTARTSTOP is returned. Continuous variables and
variables that are already started are ignored when used with MPIT_PERFVAR_ALL_HANDLES

.

MPIT_PERFVAR_STOP(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_stop(int session, MPIT_Perfvar_handle handle)

This functions stops the performance variable with the handle handle in the session
session.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implemen-
tation attempts to stop all variables within the session identified by session for which
handles have been allocated. In this case, the routine returns MPI_SUCCESS if all variables
are stopped successfully, otherwise MPIT_ERR_NOSTARTSTOP is returned. Continuous vari-
ables and variables that are already stopped are ignored when used with
MPIT_PERFVAR_ALL_HANDLES .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 19

Performance Variable Access Functions

MPIT_PERFVAR_READ(session, handle, buf)

IN session identifier of performance experiment session

IN handle handle of a performance variable

OUT buf initial address of storage location for variable value

int MPIT_Perfvar_read(int session, MPIT_Perfvar_handle handle, void* buf)

The MPIT_PERFVAR_READ call queries the value of the performance variable with
the handle handle in the session session and stores the result in the buffer buf. The user
is responsible to ensure that the buffer is of the appropriate size and fits the entire value
of the performance variable (based on the returned type and count during the
MPIT_PERFVAR_GET_INFO call).

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_READ, since this would require the function to
return a set of variable values instead of just one.

MPIT_PERFVAR_WRITE(session,handle, buf)

IN session identifier of performance experiment session

IN handle handle of a performance variable

IN buf initial address of storage location for variable value

int MPIT_Perfvar_write(int session, MPIT_Perfvar_handle handle, void* buf)

The MPIT_PERFVAR_WRITE call attempts to write the value of the performance vari-
able with the handle handle in the session session. The value to be written is passed in
the buffer buf. The user is responsible to ensure that the buffer is of the appropriate size
and fits the entire value of the performance variable (based on the returned type and count
during the MPIT_PERFVAR_GET_INFO call).

If it is not possible to change the variable the function returns
MPIT_ERR_PERFVAR_WRITE.

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_WRITE, since this would require the function to
accept a set of variable values instead of just one.

MPIT_PERFVAR_RESET(session, handle)

IN session identifier of performance experiment session

IN handle handle of a performance variable

int MPIT_Perfvar_reset(int session, MPIT_Perfvar_handle handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 1. TOOL INTERFACES FOR MPI

The MPIT_PERFVAR_RESET call sets of the performance variable with the handle
handle to its default starting value (as specified in Section 1.2.7). If it is not possible to
change the variable the function returns MPIT_ERR_PERFVAR_WRITE.

If the constant MPIT_PERFVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to reset all variables within the session identified by session for which handles
have been allocated. In this case, the routine returns MPIT_SUCCESS if all variables are reset
successfully, otherwise MPIT_ERR_NOWRITE is returned. Readonly variables are ignored
when used with MPIT_PERFVAR_ALL_HANDLES .

MPIT_PERFVAR_READRESET(session, handle, buf)

IN session identifier of performance experiment session

IN handle handle of a performance variable

OUT buf initial address of storage location for variable value

int MPIT_Perfvar_readreset(int session, MPIT_Perfvar_handle handle, void*

buf)

The MPIT_PERFVAR_READRESET call atomically queries the value of the performance
variable, stores the result in the buffer buf, and then sets the value of the performance
variable to its default starting value (as specified in Section 1.2.7). The user is responsible
to ensure that the buffer is of the appropriate size and fits the entire value of the performance
variable (based on the returned type and count during the query call). If it is not possible
to change the variable the function returns MPIT_ERR_PERFVAR_WRITE. In this case, the
value returned in buf is the same as if the variable would have been read by the
MPIT_PERFVAR_READ call.

Note that the constant MPIT_PERFVAR_ALL_HANDLES can not be used as an argument
for the MPIT function MPIT_PERFVAR_READRESET, since this would require the function
to return a set of variable values instead of just one.

Advice to implementors. Although MPI places no requirements on the interaction
with external mechanisms such as signal handlers, it is strongly recommended that all
routines to start, stop, read, write, and reset performance variables should be safe to
call in asynchronous contexts. Examples of asynchronous contexts include signal han-
dlers and interrupt handlers. Such safety permits the development of sampling-based
tools. High quality implementations should strive to make the results of any such
interactions intuitive to users, and attempt to document restrictions where deemed
necessary. (End of advice to implementors.)

1.2.8 Variable Categorization

MPI implementations can optionally group performance and control variables into categories
to express logical relationships between various variables. Categories can also contain other
categories to form a hierarchical grouping. Categories can never include themselves either
directly or transitively within other included categories.

Rationale. The ability to include categories in other categories enables the creation
of a hierarchical grouping of variables. The restriction that categories can not include

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 21

themselves directly or transitively guarantees that this structure is strictly hierarchical
and does not contain any loops. (End of rationale.)

Advice to implementors. To avoid confusion and to simplify the interpretation of the
categories provided by a particular implementation, it is recommended that categories
should either only contain other categories or only control and performance variables.
Mixing categories and control and performance variables within a single category is
not recommended. (End of advice to implementors.)

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories
via the MPIT interface. If N = 0, then the MPI implementation does not export any
categories. An MPI implementation is permitted to increase the number of categories
during the execution of an MPI program, such as when new categories become available
through dynamic loading. However, MPI implementations are not allowed to change the
index of a category or delete it once it has been added to the set.

The following function can be used to query the number of control variables, N :

MPIT_CATEGORY_GET_NUM(num)

OUT num current number of categories

int MPIT_Category_get_num(int *num)

Individual category information can then be queried by calling the following function:

MPIT_CATEGORY_GET_INFO(index, name, name_len, desc, desc_len, num_controlvars, num_perfvars,
num_categories)

IN index index of the category to be queried, in the range [0, N−
1]

OUT name buffer to return the name of the category

INOUT name_len length of the string and/or buffer for name

OUT desc buffer to return the description of the category

INOUT desc_len length of the string and/or buffer for desc

OUT num_controlvars number of control variables in the category

OUT num_perfvars number of performance variables in the category

OUT num_categories number of MPIT categories contained in the category

int MPIT_Category_get_info(int index, char *name, int *name_len, char

*desc, int *desc_len, int *num_controlvar s, int

*num_perfvars, int *num_categories)

The arguments name and name_len are used to return the name of the category as
described in Section 1.2.3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 1. TOOL INTERFACES FOR MPI

If completed successfully, the routine is required to return a name of at least length
one, which is unique with respect to all other names for MPIT categories used by the MPIT
implementation.

The arguments desc and desc_len are used to return the description of the category as
described in Section 1.2.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc has to be set to the null character and desc_len has
to be set to one at the return of this call.

On successful completion, the function returns the number of control variables (
num_controlvars), performance variables (num_perfvars) and other categories (
num_categories) contained in the queried category.

MPIT_CATEGORY_GET_CONTENTS(cat_index,len,kinds,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1]

IN len the length of the kinds and indices arrays

OUT kinds an integer array of size len, indicating variable or cat-

egory kind

OUT indices an integer array of size len, indicating variable or cat-

egory indices

int MPIT_Category_get_contents(int cat_index, int len, int kinds[],

indices[])

MPIT_CATEGORY_GET_CONTENTS can be used to query which variables and other
categories are contained in a particular category. A category may contain zero or more
variables or categories and variables may be control variables, performance variables, or a
mixture of the two kinds.

The index values returned in indices an be used as input to
MPIT_CONTROLVAR_GET_INFO, MPIT_PERFVAR_GET_INFO or
MPIT_CATEGORY_GET_INFO to get more information about the variables in the category
designated by cat_index. The values in the kinds array indicate whether the corresponding
entries in the indices array represent indices of a control variable, a performance variable,
or another category. The constants used for this are listed in Table 1.6.

Constant Variable or category type

MPIT_CATEGORY_CONTROLVAR Element represents a control variable
MPIT_CATEGORY_PERFVAR Element represents a performance variable
MPIT_CATEGORY_CATEGORY Element represents another category

Table 1.6: Constants describing a variable or category type.

The user is responsible for allocating the arrays passed into the
MPIT_CATEGORY_GET_CONTENTS function. The function will only write up to
len elements into the arrays. If the category contains more than len variables and other

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 23

categories the function returns an arbitrary subset; if it contains less then len variables and
other categories, all will be returned and the remaining array entries will not be modified.

1.2.9 Return and Error Codes

All MPIT functions return a return or error code. The constants in Table 1.7 are defined
for this purpose. None of the error codes returned by an MPIT routine shall be considered
fatal to the overall MPI implementation or shall invoke an MPI error handler. In any
case, the execution of the MPI program shall continue as if the call would have succeeded.
However, the MPIT implementation is not required to check all user provided parameters;
if a user passes illegal parameter values to any MPIT routine that are not caught by the
implementation, the behavior of the implementation is undefined.

1.2.10 Profiling Interface

All requirements for the profiling interfaces, as described in Section ??, also apply to the
MPIT interface. In particular, this means that a complying MPI implementation has to pro-
vide matching PMPIT calls for every MPIT call. All rules, guidelines, and recommendations
from Section ?? apply equally to PMPIT calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 1. TOOL INTERFACES FOR MPI

Return Code Description

Return Codes for all MPIT Functions

MPIT_SUCCESS No error, call completed
MPIT_ERR_MEMORY Out of memory
MPIT_ERR_NOTINITIALIZED MPIT not initialized
MPIT_ERR_CANTINIT MPIT not in the state to be initialized

Return Codes for Type Functions: MPIT_TYPE_*

MPIT_ERR_PREDEFINED Datatype is a predefined type and not an enumaration
MPIT_ERR_INVALIDTYPE Datatype is not a valid datatype
MPIT_ERR_INVALIDITEM The item index queried is out of range

(for MPIT_TYPE_ENUMITEM only)

Return Codes for variable and category query functions: MPIT_*_GET_INFO

MPIT_ERR_INVALIDINDEX The variable or category index is invalid

Return Codes for Handle Functions: MPIT_*_ALLOCATE,FREE

MPIT_ERR_INVALIDINDEX The variable index is invalid
MPIT_ERR_INVALIDHANDLE The handle is invalid
MPIT_ERR_OUTOFHANDLES No more handles available

Return Codes for Session Functions: MPIT_PERFVAR_SESSION_*

MPIT_ERR_OUTOFSESSIONS No more sessions available
MPIT_ERR_INVALIDSESSION Session argument is not a valid session

Return Codes for Control Variable Access Functions:
MPIT_CONTROLVAR_READ,WRITE

MPIT_ERR_SETNOTNOW Variable cannot be set at this moment
MPIT_ERR_SETNEVER Variable cannot be set until end of execution
MPIT_ERR_INVALIDVAR Control variable does not exist
MPIT_ERR_INVALIDHANDLE The handle is invalid

Return Codes for Performance Variable Access and Control:
MPIT_PERFVAR_START,STOP,READ,WRITE,RESET,READRESET

MPIT_ERR_INVALIDHANDLE The handle is invalid
MPIT_ERR_INVALIDSESSION Session argument is not a valid session
MPIT_ERR_NOSTARTSTOP Variable can not be started or stopped

for MPIT_PERFVAR_START and
MPIT_PERFVAR_STOP

MPIT_ERR_NOWRITE Variable can not be written or reset
for MPIT_PERFVAR_WRITE and
MPIT_PERFVAR_RESET

Return Codes for Category Functions: MPIT_CATEGORY_*

MPIT_ERR_INVALIDCATEGORY The specified category index does not exist

Table 1.7: Return and error codes used MPIT functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mcs.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Mes-
sage Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machin e and Message Passing
Interface, pages 51–58, Barcelona, Spain, September 1999.

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI_BYTE, 7
MPI_CHAR, 7
MPI_DOUBLE, 7
MPI_FLOAT, 7
MPI_INT, 7
MPI_LOGICAL, 7
MPI_LONG, 7
MPI_LONG_LONG, 7
MPI_SHORT, 7
MPI_SUCCESS, 18
MPI_VERBOSITY_USER_BASIC, 3
MPIT_BYTE, 7
MPIT_CATEGORY_CATEGORY, 22
MPIT_CATEGORY_CONTROLVAR, 22
MPIT_CATEGORY_PERFVAR, 22
MPIT_CHAR, 7
MPIT_DOUBLE, 7
MPIT_ERR_CANTINIT, 24
MPIT_ERR_INVALIDCATEGORY, 24
MPIT_ERR_INVALIDHANDLE, 24
MPIT_ERR_INVALIDINDEX, 24
MPIT_ERR_INVALIDITEM, 24
MPIT_ERR_INVALIDSESSION, 24
MPIT_ERR_INVALIDTYPE, 24
MPIT_ERR_INVALIDVAR, 24
MPIT_ERR_MEMORY, 24
MPIT_ERR_NOSTARTSTOP, 18, 24
MPIT_ERR_NOTINITIALIZED, 24
MPIT_ERR_NOWRITE, 20, 24
MPIT_ERR_OUTOFHANDLES, 24
MPIT_ERR_OUTOFSESSIONS, 24
MPIT_ERR_PERFVAR_WRITE, 19, 20
MPIT_ERR_PREDEFINED, 24
MPIT_ERR_SETNEVER, 12, 24
MPIT_ERR_SETNOTNOW, 12, 24

MPIT_FLOAT, 7
MPIT_INT, 7
MPIT_LOGICAL, 7
MPIT_LONG, 7
MPIT_LONG_LONG, 7
MPIT_MPI_RESOURCE_GLOBAL, 5
MPIT_MPI_RESOURCE_TYPE_COMMUNICATOR,

3
MPIT_MPI_RESOURCE_TYPE_DATATYPE,

3
MPIT_MPI_RESOURCE_TYPE_ERRORHANDLER,

3
MPIT_MPI_RESOURCE_TYPE_FILE, 3
MPIT_MPI_RESOURCE_TYPE_GLOBAL,

3, 5
MPIT_MPI_RESOURCE_TYPE_GROUP,

3
MPIT_MPI_RESOURCE_TYPE_OPERATOR,

3
MPIT_MPI_RESOURCE_TYPE_REQUEST,

3
MPIT_MPI_RESOURCE_TYPE_WINDOW,

3
MPIT_PERFVAR_ALL_HANDLES, 18–

20
MPIT_PERFVAR_CLASS_EVENT_AGGREGATE,

13
MPIT_PERFVAR_CLASS_EVENT_COUNTER,

13
MPIT_PERFVAR_CLASS_EVENT_TIMER,

14
MPIT_PERFVAR_CLASS_RESOURCE_HIGHWATERMARK,

13
MPIT_PERFVAR_CLASS_RESOURCE_LEVEL,

13

26

MPI Constant and Predefined Handle Index 27

MPIT_PERFVAR_CLASS_RESOURCE_LOWWATERMARK,
13

MPIT_PERFVAR_CLASS_RESOURCE_PERCENTAGE,
13

MPIT_PERFVAR_CLASS_STATE, 12
MPIT_SCOPE_GLOBAL, 10
MPIT_SCOPE_LOCAL, 10
MPIT_SCOPE_READONLY, 10
MPIT_SHORT, 7
MPIT_SUCCESS, 2, 20, 24
MPIT_TYPECLASS_ENUMERATION, 7
MPIT_TYPECLASS_PREDEFINED, 7
MPIT_VERBOSITY_MPIDEV_BASIC, 2
MPIT_VERBOSITY_MPIDEV_DETAILED,

2
MPIT_VERBOSITY_MPIDEV_VERBOSE,

2
MPIT_VERBOSITY_TUNER_BASIC, 2
MPIT_VERBOSITY_TUNER_DETAILED,

2
MPIT_VERBOSITY_TUNER_VERBOSE,

2
MPIT_VERBOSITY_USER_BASIC, 2
MPIT_VERBOSITY_USER_DETAILED,

2
MPIT_VERBOSITY_USER_VERBOSE,

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Declarations Index

This index refers to declarations needed in C/C++, such as address kind integers, handles,
etc. The underlined page numbers is the “main” reference (sometimes there are more than
one when key concepts are discussed in multiple areas).

MPI_Perfvar_attributes, 16
MPIT_Controlvar_attributes, 10
MPIT_Datatype, 6
MPIT_MPI_Resource, 3, 11, 17
MPIT_MPI_Resource*, 5

28

MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_ABORT, 6
MPI_FINALIZE, 2
MPI_INIT, 2

29

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Tool Interfaces for MPI
	Introduction
	MPIT Performance Interface
	Verbosity Levels
	Associations between MPIT Variables and MPI Resources
	String Arguments
	Initialization and Finalization
	Type System
	Control Variables
	Control Variable Query Functions
	Handle Allocation and Deallocation
	Control Variable Access Functions

	Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Handle Allocation and Deallocation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions

	Variable Categorization
	Return and Error Codes
	Profiling Interface

	Bibliography
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index

