
MPI: A Message-Passing Interface Standard

Version 3.0 > (Fin2)

⊥ (Fin2)

Message Passing Interface Forum

Draft October 8, 2010

Contents

1 Tool Interfaces for MPI 1
1.1 Introduction . 1
1.2 MPIT Performance Interface . 1

1.2.1 Initialization and Finalization . 2
1.2.2 Type System . 3
1.2.3 Verbosity Levels . 5
1.2.4 Control Variables . 6

Control Variable Query Functions 6
Control Variable Access Functions 8

1.2.5 Performance Variables . 9
Performance Variable Classes . 9
Performance Variable Query Functions 10
Performance Experiment Sessions . 12
Performance Variable Activation . 13
Starting and Stopping of Performance Variables 13
Performance Variable Access Functions 14

1.2.6 Performance and Control Variable Taxonomic Information 16
1.2.7 Return and Error Codes . 18

Return Codes for Type Functions . 19
Return Codes for Control Variable Access Functions 19
Return Codes for Performance Variable Access and Control 19
Return Codes for Taxonomy Functions 19

1.2.8 Profiling Interface . 19

Bibliography 21

Examples Index 22

MPI Constant and Predefined Handle Index 22

MPI Declarations Index 23

MPI Callback Function Prototype Index 23

MPI Function Index 23

ii

List of Figures

iii

List of Tables

1.1 MPIT datatypes and their MPI equivalences. 3
1.2 MPIT type classes. 5
1.3 MPIT verbosity levels. 5
1.4 Scopes for MPIT control variables. 8
1.5 Return codes used by any MPIT function. 19
1.6 Return codes used by MPIT type functions. 19
1.7 Return codes used by MPIT control variable access functions. 19
1.8 Return codes used by MPIT performance variable access, start, stop, or ac-

tivation functions. 20
1.9 Return codes used MPIT taxonomy functions. 20

Chapter 1

Tool Interfaces for MPI

1.1 Introduction

This chapter discusses a set of interfaces that allows tools such as debuggers, performance
analyzers, and others to extract information about the operation of MPI processes. This
includes a profiling interface (Section ??), PMPI, to transparently intercept and inspect
any MPI call; and an information interface (Section 1.2), MPIT, to query MPI control
and performance variables. The interfaces described in this chapter are all defined in the
context of an MPI process, i.e., are callable from the same code as any other MPI function.
Additionally, several other tool interfaces exist that define interfaces that are primarily
intended to be used from external processes. An example for the latter is the MPIR process
acquisition interface, which is used by debuggers and performance analysis tools to detect
and locate all MPI processes belonging to a given job. Currently, these interfaces are not
included in MPI standard, but rather described in MPI forum white papers, which are
published on the MPI forum’s website.

1.2 MPIT Performance Interface

Open questions / ToDos:

• Versioning - should this be part of MPI or MPIT

• Change the get info calls to use structs

• String returns in Taxonomy section

• Iterators in Taxonomy section

To optimize MPI applications or their runtime behavior, it is often advantageous to
understand the performance switches an MPI library offers to the user as well as to mon-
itor properties and timing information from within the MPI library. The MPIT interface
described in this sections provides access to this information.

To avoid conflicts between the standard MPI functionality and the tools-oriented func-
tionality introduced with MPIT, the MPIT interface is contained in its own name space. All
identifiers covered by this interface carry the prefix MPIT and can be used independently

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. TOOL INTERFACES FOR MPI

from the MPI functionality. This is particularly true for the initialization and finalization of
MPIT, which is provided through a separate set of routines. However, all conventions and
principles governing the MPI API also apply to the MPIT interface and the MPIT interface
shall be defined in the same header or API definition file(s) as the regular MPI routines
(e.g., mpi.h where appropriate).

The interface is split into two parts: the first part provides information about control
variables used by the MPI library to fine tune its performance. The second part provides ac-
cess to performance variables that can provide insight into internal performance information
of the underlying MPI implementation.

To avoid restrictions on the MPI implementation, the MPIT interface allows the im-
plementation to specify which control and performance variables exist. For both types of
variables, the interface provides the ability to query the variables offered by the particular
MPI implementation, along with additional semantics and descriptions.

On success all MPIT routines return MPIT_SUCCESS, otherwise they return an appro-
priate error code. Details on error codes can be found in Section 1.2.7. However, errors
returned by the MPIT interface shall not be fatal nor have any impact on the execution of
MPI routines.

Advice to users. The number and type of control variables and performance variables
can vary between MPI libraries, platforms, and even different builds of the same library
on the same platform. Hence, any application relying on a particular variable will no
longer be portable.

This interface is primarily intended for performance monitoring tools, as well as sup-
port tools and libraries controlling the application’s environment. Application pro-
grammers should either avoid using it and avoid being dependent on the existence of
a particular control or performance variable. (End of advice to users.)

1.2.1 Initialization and Finalization

Since the MPIT interface is implemented in a separate name space and hence is independent
of the core MPI functions, it requires a separate set of initialization and finalization routines.

MPIT_INIT()

int MPIT_Init()

All programs or tools that use the MPIT interface must initialize the MPIT interface
before calling any MPIT routine. The only exception to this rule is that the function
MPIT_INITCOUNT can be called at any time.

A user can initialize the MPIT interface by calling MPIT_INIT, which can be called
multiple times.

MPIT_FINALIZE()

int MPIT_Finalize()

This routine finalizes the use of the MPIT interface and may be called as often as the
corresponding MPIT_INIT up to the current point of execution. Calling it more times is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 3

erroneous. As long as the number of calls to MPIT_FINALIZE is smaller than the number
of calls to MPIT_INIT up to the current point of execution, the MPIT interface remains
initialized and calls to all MPIT routines are permissible. Further, additional calls to
MPIT_INIT after one or more calls to MPIT_Finalize are permissible.

Once MPIT_FINALLIZE is called the same number of times as the routine MPIT_INIT
up to the current point of execution, the MPIT interface is no longer initialized. Further,
the call to MPIT_FINALLIZE that ends the initialization of MPIT may clean up all MPIT
state and invalidate all open sessions (for the concept of Sessions see Section 1.2.5).

MPIT_INITCOUNT(num)

OUT num returns the number of times MPIT_INIT has been
called minus the times MPIT_Finalize has been
called up to the current point of execution.

int MPIT_Initcount(int *num)

Note, that the MPIT functions are independent of the MPI functions. This means that
MPIT functions can be called before MPI_INIT and after MPI_FINALIZE.

1.2.2 Type System

The MPIT interface provides its own type system. All types are represented by a variable
or constant of type MPIT_Datatype. The Table 1.1 lists all available constants that can be
used to identify a type for MPIT calls.

MPIT Datatype Equivalent MPI Datatype

MPIT_LOGICAL MPI_LOGICAL

MPIT_BYTE MPI_BYTE

MPIT_SHORT MPI_SHORT

MPIT_INT MPI_INT

MPIT_LONG MPI_LONG

MPIT_LONG_LONG MPI_LONG_LONG

MPIT_CHAR MPI_CHAR

MPIT_FLOAT MPI_FLOAT

MPIT_DOUBLE MPI_DOUBLE

Table 1.1: MPIT datatypes and their MPI equivalences.

Conforming implementations of MPIT have to ensure that the MPIT types are equiva-
lent to the listed MPI datatypes for any section of the code for which both MPI and MPIT
have been initialized. In particular, this requires that the size of variables of these types
are equal and that it is possible to send and receive data of a particular MPIT type with
regular MPI operations using the equivalent MPI type.

In addition to the predefined datatypes listed in the table, an MPI implementation may
provide an additional set of enumeration datatypes to describe variables with a fixed set of
discrete values. These types are represented through integer variables and have MPI_INT as

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. TOOL INTERFACES FOR MPI

their equivalent MPI type. Their values range from 0 to N − 1, with a fixed N that can be
queried using MPIT_TYPE_ENUMQUERY.

MPIT_TYPE_ENUMQUERY(datatype,size,name,name_len)

IN datatype MPIT datatype to be queried

OUT size number of elements representable with this enumera-

tion datatype

OUT name buffer to return the name of the type

INOUT name_len length of the string and/or buffer for name

int MPIT_Type_Enumquery(MPIT_Datatype datatype, int *size, char *name, int

*name_len)

This routine returns, if datatype represents a valid enumeration type, the size of the
enumeration as well as a name for it.

The argument name provides a buffer to return the string describing the name of the
type. The user has to pass the size of the buffer as the name_len argument. On return, the
function deposits at most name_len-1 characters of the requested string into the buffer name
followed by a terminating zero character. Additionally, the function writes the length of the
returned string (including the terminating zero character) into name_len. If the returned
value is smaller than the argument supplied to the function, the string has been truncated
due to insufficient buffer resources. If the user passes NULL as the buffer argument or
passes -1 as name_len, the function does not return the string and only returns the length
of the string in name_len.

Names for the individual items in each enumeration can be queried using
MPIT_TYPE_ENUMITEM.

MPIT_TYPE_ENUMITEM(datatype,item,name,name_len)

IN datatype MPIT datatype to be queried

IN item item number in the MPIT datatype to be queried

OUT name buffer to return the name of the enumeration item

INOUT name_len length of the string and/or buffer for name

int MPIT_Type|_Enumitem(MPIT_Datatype datatype, int item, char *name, int

*name_len)

The argument name provides a buffer to return the string describing the name of the
enumeration item. The user has to pass the size of the buffer as the name_len argument.
On return, the function deposits at most name_len-1 characters of the requested string into
the buffer name followed by a terminating zero character. Additionally, the function writes
the length of the returned string (including the terminating zero character) into name_len.
If the returned value is smaller than the argument supplied to the function, the string has
been truncated due to insufficient buffer resources. If the user passes NULL as the buffer

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 5

argument or passes -1 as name_len, the function does not return the string and only returns
the length of the string in name_len.

MPIT_TYPE_GETCLASS(datatype,typeclass)

IN datatype MPIT datatype to be queried

OUT typeclass Class of the type passed in

int MPIT_Type_Getclass(MPIT_Datatype datatype, int *typeclass)

This routine returns the class of the type for the datatype provided. This allows users
of MPIT to distinguish whether a datatype used is an enumeration type or is one of the
predefined types listed above. On return, the typeclass argument is set to one of the following
constants:

MPIT_TYPECLASS_PREDEFINED the datatype is a predefined datatype
MPIT_TYPECLASS_ENUMERATION the datatype is an enumeration datatype

Table 1.2: MPIT type classes.

1.2.3 Verbosity Levels

The MPIT interface provides users access to internal performance data through a set of
control and performance variables, which are defined by the MPI implementation. Since
the number of variables can be large for particular implementations, every variable exported
by the MPIT interface has to be associated with one of the following verbosity levels.

MPIT_VERBOSITY_USER_BASIC Basic information of interest for end users
MPIT_VERBOSITY_USER_DETAILED Detailed information of interest for end users
MPIT_VERBOSITY_USER_VERBOSE All information of interest for end users
MPIT_VERBOSITY_TUNER_BASIC Basic information required for tuning
MPIT_VERBOSITY_TUNER_DETAILED Detailed information required for tuning
MPIT_VERBOSITY_TUNER_VERBOSE All information required for tuning
MPIT_VERBOSITY_MPIDEV_BASIC Basic low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_DETAILED Detailed low-level information for MPI developers
MPIT_VERBOSITY_MPIDEV_VERBOSE All low-level information for MPI developers

Table 1.3: MPIT verbosity levels.

The classification into several verbosity classes is optional for MPI implementations.
Alternatively, all variables can be assigned to a single verbosity level. In this case it is
recommended to assign all variables to the level MPI_VERBOSITY_USER_BASIC.

However, MPI implementations using verbosity levels should first classify all variables
according to the intended target audience (end user, performance optimization, or MPI
developer) and then distinguish three level of verbosity (basic, detailed, and verbose) within
each class.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. TOOL INTERFACES FOR MPI

1.2.4 Control Variables

The first set of routines in the MPIT interface focuses on the ability to list, query, and
possibly set all control variables used by the MPI implementation. These variables can
typically be used by the user to fine tune properties and configuration settings of the MPI
library. On UNIX systems, such variables can often be set using environment variables,
although many other configurations mechanisms might be used (e.g., configuration files,
central configuration registries). A typical example that is available in several existing MPI
implementations is the ability to specify an “eager limit”, i.e., an upper bound on the
message size that allows the transmission of messages using an eager protocol.

Control Variable Query Functions

Each MPI implementation exports a set of N control variables through MPIT. If N is zero,
then the MPI implementation does not export any control variables, otherwise the provided
control variables are numbered from 1 to N . An MPI implementation is allowed to increase
the number of control variables during the execution of an MPI application, e.g., when new
variables become available through dynamic loading. However, MPI implementations are
not allowed to change the number of a control variable or delete it once it has been added
to the set.

The following function can be used to query the the number of control variables N :

MPIT_CTRLVAR_GETNUM(num)

OUT num returns number of control variables

int MPIT_CTRLVAR_Getum(int *num)

The name of individual variables (with numbers between 1 and N acquired by calling
MPIT_CTRLVAR_GETNUM) can then be queried with the following function along with any
associated information.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 7

MPIT_CTRLVAR_GETINFO(num, name, name_len, verbosity, datatype, count, desc, desc_len,
scope, comm)

IN num number of the control variable to be queried

OUT len buffer to return the name of the control variable

INOUT len_len length of the string and/or buffer for len

OUT verbosity verbosity level of this variable

OUT datatype MPIT type of the information stored in the control

variable

OUT count number of elements returned

OUT desc buffer to return a description of the control vari-
able

INOUT desc_len length of the string and/or buffer for desc

OUT scope scope of when changes to this variable are possible

OUT comm communicator that collective write operations to this

variable have to be executed on

int MPIT_Ctrlvar_Getinfo(int num, char *name, int *name_len, int

*verbosity, MPIT_Datatype *datatype, int *count, char *desc,

int *desc_len, int *scope, MPI_Comm *comm)

The argument name provides a buffer to return the string describing the name of the
control variable. The user has to pass the size of the buffer as the name_len argument. On
return, the function deposits at most name_len-1 characters of the requested string into the
buffer name followed by a terminating zero character. Additionally, the function writes the
length of the returned string (including the terminating zero character) into name_len. If
the returned value is smaller than the argument supplied to the function, the string has
been truncated due to insufficient buffer resources. If the user passes NULL as the buffer
argument or passes -1 as name_len, the function does not return the string and only returns
the length of the string in name_len.

The argument verbosity returns the verbosity level (see Section 1.2.3) assigned by the
MPI implementation to the variable.

The argument datatype returns the datatype in which the value for this control variable
will be returned. The value consists of count elements of this type.

The argument desc provides a buffer to return the string describing a description of
the control variable. The user has to pass the size of the buffer as the desc_len argument.
On return, the function deposits at most desc_len-1 characters of the requested string into
the buffer desc followed by a terminating zero character. Additionally, the function writes
the length of the returned string (including the terminating zero character) into desc_len.
If the returned value is smaller than the argument supplied to the function, the string has
been truncated due to insufficient buffer resources. If the user passes NULL as the buffer
argument or passes -1 as desc_len, the function does not return the string and only returns
the length of the string in desc_len.

Returning a description is optional. If an MPI library decides not to return a descrip-
tion, the first character for desc must be set to the null character and desc_len must be set
to one at the return of this call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. TOOL INTERFACES FOR MPI

The scope of a variable determines whether it might be changeable through the MPIT
interface and whether changing this variable is a local or a collective operation. On return
from MPIT_CTRLVAR_GETINFO it will be set to one of the constants listed in Table 1.4.
If setting this variable requires a collective operation, the communicator on which this
collective operation has to be executed, is returned as comm. If such an operation is not
collective, the implementation should return MPI_COMM_SELF.

Scope Constant Description

MPIT_SCOPE_READONLY only read-only, cannot be written
MPIT_SCOPE_LOCAL may be writeable, writing is not a collective operation
MPIT_SCOPE_GLOBAL may be writeable, writing is a collective operation

Table 1.4: Scopes for MPIT control variables.

Note that the scope of a variable only indicates when a variable might be changeable;
it is not a guarantee that can be changed at any time. If it can not be changed at a time
the user tries to set it, the MPIT implementation is allowed to return an error code as the
result of the write operation.

Control Variable Access Functions

MPIT_CTRLVAR_READ(num, buf)

IN num number of control variable to be read

OUT buf initial address of storage location for variable value

int MPIT_Ctrlvar_Read(int num, void* buf)

The MPIT_CTRLVAR_READ queries the value of the control variable with the number
num and stores the result in the buffer buf. The user is responsible to ensure that the buffer
is of the appropriate size and fits the entire value of the control variable (based on the
returned type and count during the MPIT_CTRLVAR_GETINFO call.

MPIT_CTRLVAR_WRITE(num, buf, comm)

IN num number of control variable to be read

IN buf initial address of storage location for variable value

IN comm communicator for which this operation is collective on

int MPIT_Ctrlvar_Write(int num, void* buf, MPI_Comm comm)

The MPIT_CTRLVAR_WRITE sets the value of the control variable with the number
num to the data stored in the buffer buf. The user is responsible to ensure that the buffer
is of the appropriate size and fits the entire value of the control variable (based on the
returned type and count during the query MPIT_CTRLVAR_GETINFO call).

The operation is collective with respect to the communicator comm. The user is respon-
sible that the right communicator, i.e., the one returned by MPIT_CTRLVAR_GETINFO, is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 9

passed as the comm argument and that this operation is called as a collective operation on all
processes in the communicator. The same ordering constraints as for MPI collectives apply.
If this operation is local and not collective, the user is required to pass MPI_COMM_SELF.

If it is not possible to change the variable at the time the call is made, the functions
returns either MPIT_ERR_SETNOTNOW, if there could be a later time at which the variable
could be set, or MPIT_ERR_SETNEVER, if the variable cannot be set for the remainder of
the application’s execution time.

1.2.5 Performance Variables

The second set of functions included in the MPIT interface focuses on the ability to list and
query performance variables provided by the MPI implementation. Performance variables
provide insight into MPI implementation specific internals and can represent information
like the state a component is in, aggregated timing data for submodules, or queue sizes and
lengths.

Performance Variable Classes

Each reported performance variable is associated with a class of performance variables,
which describes the basic semantics of the variable. These classes are defined by the follow-
ing constants:

• MPIT_PERFVAR_CLASS_STATE
A performance variable in this class represents a set of discrete states the MPI library
or a component of the MPI library is in. The value of this kind of variable can change
at any time to any value within the type definition. Variables of this class are expected
to be represented by an enumeration type. Variables of this class don’t have a default
starting value, since the variable reflects a current state of the library.

• MPIT_PERFVAR_CLASS_UTILIZATION
The value of a performance variable in this class represent the percentage utilization
of a finite resource in the MPI library. The value of this kind of variable can change
at any time and should be returned as a MPIT_FLOAT or MPIT_DOUBLE type.
The value must always be between 0.0 (resource not used at all) and 1.0 (resource
completely used). Variables of this class don’t have a default starting value, since the
variable reflects a current state of the library.

• MPIT_PERFVAR_CLASS_RESOURCE
A performance variable in this class represents a value that describes the absolute
utilization level of a resource within the MPI library. The value of this kind of vari-
able can change at any time and values returned from variables in this class must
be non-negative and are represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. Variables of this class don’t have a default starting value, since
the variable reflects a current state of the library.

• MPIT_PERFVAR_CLASS_HIGHWATERMARK
A performance variable in this class represents a value that describes the high water-
mark absolute utilization of a resource within the MPI library. The value of this kind
of variable is monotonically growing (from the initialization or reset of the variable). It

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. TOOL INTERFACES FOR MPI

must be non-negative and represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value for variables of this class is the cur-
rent absolute utilization of the resource.

• MPIT_PERFVAR_CLASS_LOWWATERMARK
A performance variable in this class represents a value that describes the low water-
mark absolute utilization of a resource within the MPI library. The value of this kind
of variable is monotonically shrinking (from the initialization or reset of the variable).
It must be non-negative and represented by one of the following types: MPIT_BYTE,
MPIT_SHORT, MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT
or MPIT_DOUBLE. The default starting value for variables of this class is the cur-
rent absolute utilization of the resource.

• MPIT_PERFVAR_CLASS_COUNTER
A performance variable in this class counts the number of occurrences of a specific
event during the execution time of an application. The value of this kind of variable is
monotonically increasing (from the initialization or reset of the performance variable).
It must be non-negative and represented by one of the following types: MPIT_SHORT,
MPIT_INT, MPIT_LONG, MPIT_LONG_LONG. The default starting value for vari-
ables of this class is 0.

• MPIT_PERFVAR_CLASS_AGGREGATE
The value of a performance variable in this class is an an aggregated value of over time.
This class is similar to the counter class, but instead of counting individual events, the
value can be incremented by arbitrary amounts. The value of this kind of variable is
monotonically increasing (from the initialization or reset of the performance variable).
It must be non-negative and represented by one of the following types: MPIT_SHORT,
MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT, MPI_DOUBLE.
The default starting value for variables of this class is 0.

• MPIT_PERFVAR_CLASS_TIMER
The value of a performance variable in this class represents the aggregated time that
the MPI library spends executing a particular event. The value of this kind of vari-
able is monotonically increasing (from the initialization or reset of the performance
variable). It must be non-negative and represented by one of the following types:
MPIT_INT, MPIT_LONG, MPIT_LONG_LONG, MPIT_FLOAT, MPIT_DOUBLE.
The default starting value for variables if this class is 0.

Performance Variable Query Functions

Each MPI implementation exports a set of N performance variables through MPIT. If N is
zero, then the MPI implementation does not export any performance variables, otherwise
the provided performance variables are numbered from 1 to N . An MPI implementation
is allowed to increase the number of performance variables during the execution of an MPI
application, e.g., when new variables become available through dynamic loading. However,
MPI implementations are not allowed to change the number of a performance variable or
delete it once it has been added to the set.

The following function can be used to query the the number of performance variables
N :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 11

MPIT_PERFVAR_GETNUM(num)

OUT num returns number of performance variables

int MPIT_PERFVAR_Getum(int *num)

The name of individual variables (with numbers between 1 and N acquired by calling
MPIT_PERFVAR_GETNUM) can then be queried with the following function along with
any associated information.

MPIT_PERFVAR_GETINFO(num, name, name_len, verbosity, varclass, datatype, count, desc,
desc_len, readonly, continuous)

IN num number of the performance variable to be queried

OUT len buffer to return the name of the performance vari-
able

INOUT len_len length of the string and/or buffer for len

OUT verbosity verbosity level of this variable

OUT varclass class of performance variable

OUT datatype MPIT type of the information stored in the perfor-

mance variable

OUT count number of elements returned

OUT desc buffer to return a description of the control vari-
able

INOUT desc_len length of the string and/or buffer for desc

OUT readonly flags indicating whether variable can be written/reset

OUT continuous flags indicating whether variable can be started/stopped

or is continuously activated

int MPIT_Perfvar_Getinfo(int num, char *name, int *name_len, int

*verbosity, int *varclass, MPIT_Datatype *datatype, int

*count, char *desc, int *desc_len, int *readonly, int

*continuous)

The argument name provides a buffer to return the string describing the name of the
control variable. The user has to pass the size of the buffer as the name_len argument. On
return, the function deposits at most name_len-1 characters of the requested string into the
buffer name followed by a terminating zero character. Additionally, the function writes the
length of the returned string (including the terminating zero character) into name_len. If
the returned value is smaller than the argument supplied to the function, the string has
been truncated due to insufficient buffer resources. If the user passes NULL as the buffer
argument or passes -1 as name_len, the function does not return the string and only returns
the length of the string in name_len.

The argument verbosity returns the verbosity level (see Section 1.2.3) assigned by the
MPI implementation to the variable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 1. TOOL INTERFACES FOR MPI

The class of the performance variable is returned in the parameter varclass and can be
one of the constants defined in Section 1.2.5.

The argument datatype returns the datatype in which the value for this performance
variable will be returned. The value consists of count elements of this type.

The argument desc provides a buffer to return the string describing a description of
the control variable. The user has to pass the size of the buffer as the desc_len argument.
On return, the function deposits at most desc_len-1 characters of the requested string into
the buffer desc followed by a terminating zero character. Additionally, the function writes
the length of the returned string (including the terminating zero character) into desc_len.
If the returned value is smaller than the argument supplied to the function, the string has
been truncated due to insufficient buffer resources. If the user passes NULL as the buffer
argument or passes -1 as desc_len, the function does not return the string and only returns
the length of the string in desc_len.

Returning a description is optional. If an MPI library decides not to return a descrip-
tion, the first character for desc must be set to the null character and desc_len must be set
to one at the return from this function.

Upon return, the argument readonly will be set to one if the variable can be written or
reset by the user, or zero if the variable is only initialized at MPIT_INIT and can only be
read after that.

Upon return, the argument continuous will be set to one if the variable can be started
and stopped by the user, or zero if the variable is automatically activated during MPIT_INIT
and can not by stopped by the user.

Performance Experiment Sessions

Within a single program, multiple components can use the MPIT interface. To avoid col-
lisions with respect to accesses to performance variables, users of the MPIT interface must
first create a session. All subsequent calls accessing performance variables are then within
the context of this session. Any call executed in a session shall not influence the results in
any other session.

MPIT_PERFVAR_SESSIONCREATE(session)

IN session identifier of performance experiment session

int MPIT_Perfvar_Sessioncreate(int *session)

This call creates a new session for accessing performance variables. An identifier of the
current section is returned in session.

MPIT_PERFVAR_SESSIONFREE(session)

IN session identifier of performance experiment session

int MPIT_Perfvar_Sessionfree(int session)

This call frees an existing session, i.e., calls to MPIT can no longer be made within the
freed session. After the call, all active performance variables in this context are deactivated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 13

int MPIT_Perfvar_Sessionfree(int session)

Performance Variable Activation

Before a performance variable can be used, i.e., started, stopped, read, written, or reset, it
must first be activated. Only activated performance variables can be passed to start, stop
or access functions discussed in the next sections.

MPIT_PERFVAR_ACTIVATE(session,num)

IN session identifier of performance experiment session

IN num number of the performance variable

int MPIT_Perfvar_Activate(int session, int num)

This routine activates the performance variable num with respect to session session. If
this variable is not yet activated, the variable will be reset to its default value. Calling this
function on already activated variables (within the same session) has no affect.

MPIT_PERFVAR_DEACTIVATE(session,num)

IN session identifier of performance experiment session

IN num number of the performance variable

int MPIT_Perfvar_Deactivate(int session, int num)

This routine deactivates the performance variable num with respect to session session.

Advice to implementors. The extra step of activating performance variables al-
lows MPIT implementations to selectively enable counters and only monitor activated
events. This can be used to minimize the overhead of any performance monitor when
not used. (End of advice to implementors.)

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating after a call to MPIT_PERFVAR_ACTIVATE and can not be stopped
or paused by the user. All other variables are in a stopped state after their first activation
within a session, i.e., they are not updated as the program executes, and have to be started
by the user.

MPIT_PERFVAR_START(session,num)

IN session Identifier of performance experiment session

IN num number of the performance variable

int MPIT_Perfvar_Start(int session, int num)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 1. TOOL INTERFACES FOR MPI

This functions starts the performance variable with the number num in the session
session. The variable has to be activated before making this call using the function
MPIT_PERFVAR_ACTIVATE.

If the constant MPIT_PERFVAR_ALL is passed in num, the MPI library attempts to
start all activated variables within the session identified by session. In this case, the routine
returns MPI_SUCCESS if all variables are started successfully; continuous variables, variables
that are already started, and not activated variables are ignored when used with
MPIT_PERFVAR_ALL .

MPIT_PERFVAR_STOP(session, num)

IN session Identifier of performance experiment session

IN num number of the performance variable

int MPIT_Perfvar_Stop(int session, int num)

This functions stops the performance variable with the number num in the session
session. The variable has to be activated before making this call using the function
MPIT_PERFVAR_ACTIVATE.

If the constant MPIT_PERFVAR_ALL is passed passed in num, the MPI library attempts
to stop all activated variables within the session identified by session. In this case, the
routine returns MPI_SUCCESS if all variables are stopped successfully; continuous variables,
variables that are already stopped, and not activated variables are ignored when used with
MPIT_PERFVAR_ALL .

Advice to implementors. Although MPI places no requirements on the interaction
with external mechanisms such as signal handlers, it is strongly recommended that the
routines in this section to start and stop performance variables should be safe to call
in asynchronous contexts. Examples of asynchronous contexts include signal handlers
and interrupt handlers. Such safety permits the development of sampling-based tools.
High quality implementations should strive to make the results of any such interactions
intuitive to users, and attempt to document restrictions where deemed necessary. (End
of advice to implementors.)

Performance Variable Access Functions

MPIT_PERFVAR_READ(session, num, buf)

IN session Identifier of performance experiment session

IN num number of the performance variable

OUT buf initial address of storage location for variable value

int MPIT_Perfvar_Read(int session, int num, void* buf)

The MPIT_PERFVAR_READ call queries the value of the performance variable with
the number num in the session session and stores the result in the buffer buf. The user is
responsible to ensure that the buffer is of the appropriate size and fits the entire value of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 15

the performance variable (based on the returned type and count during the
MPIT_PERFVAR_GETINFO call). The variable has to be activated before making this call
using the function MPIT_PERFVAR_ACTIVATE.

MPIT_PERFVAR_WRITE(session, num, buf)

IN session Identifier of performance experiment session

IN num number of the performance variable

IN buf initial address of storage location for variable value

int MPIT_Perfvar_write(int session, int num, void* buf)

The MPIT_PERFVAR_WRITE call attempts to write the value of the performance vari-
able with the number num in the session session The value to be written is passed in the
buffer buf. The user is responsible to ensure that the buffer is of the appropriate size and fits
the entire value of the performance variable (based on the returned type and count during
the MPIT_PERFVAR_GETINFO call). The variable has to be activated before making this
call using the function MPIT_PERFVAR_ACTIVATE.

If it is not possible to change the variable the function returns
MPIT_ERR_PERFVAR_WRITE.

MPIT_PERFVAR_RESET(session,num)

IN session Identifier of performance experiment session

IN num number of the performance variable

int MPIT_Perfvar_reset(int session, int num)

The MPIT_PERFVAR_RESET call sets the value of the performance variable to its
default starting value. If it is not possible to change the variable the function returns
MPIT_ERR_PERFVAR_WRITE.

If the constant MPIT_PERFVAR_ALL is passed in num, the MPI library attempts to reset
all activated variables within the session identified by session. In this case, the routine
returns MPIT_SUCCESS if all variables are reset successfully; readonly variables, and not
activated variables are ignored when used with MPIT_PERFVAR_ALL .

MPIT_PERFVAR_READRESET(session,num, buf)

IN session Identifier of performance experiment session

IN num number of the performance variable

OUT buf initial address of storage location for variable value

int MPIT_Perfvar_Readreset(int session, int num, void* buf)

The MPIT_PERFVAR_READRESET call atomically queries the value of the performance
variable, stores the result in the buffer buf, and then sets the value of the performance
variable to its default starting value. The user is responsible to ensure that the buffer is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 1. TOOL INTERFACES FOR MPI

of the appropriate size and fits the entire value of the performance variable (based on the
returned type and count during the query call). If it is not possible to change the variable
the function returns MPIT_ERR_PERFVAR_WRITE. In this case, the value returned in buf is
the same as if the variable would have been read by the MPIT_PERFVAR_READ call.

Advice to implementors. Although MPI places no requirements on the interaction
with external mechanisms such as signal handlers, it is strongly recommended that the
routines in this section to read, write, and reset performance variables should be safe to
call in asynchronous contexts. Examples of asynchronous contexts include signal han-
dlers and interrupt handlers. Such safety permits the development of sampling-based
tools. High quality implementations should strive to make the results of any such
interactions intuitive to users, and attempt to document restrictions where deemed
necessary. (End of advice to implementors.)

1.2.6 Performance and Control Variable Taxonomic Information

MPI implementations can optionally provide information that describes the relationship of
performance and control variables to each other. For this, an MPI implementation can define
names that represent sets of variables and then associate each performance/control variable
with zero or more sets. Sets may contain zero or more performance/control variables and
zero or more other sets. Sets may not contain themselves either directly or indirectly. More
formally, these sets and performance/control variables form a directed acyclic graph (DAG).
This information is accessible via several interrogative routines.

MPIT_TAXON_QUERY_SET_SETS(iterator, setname, name, namelen, type)

INOUT iterator iterator variable passed in by user (iterator)

IN setname name of the set to be queried (string)

OUT name name of the set returned on this iteration (string)

OUT namelen length of the name of the set returned on this iteration

(string)

OUT type type of the set returned this iteration (integer)

int MPIT_Taxon_query_set_sets(MPIT_Taxonquery_iterator *iterator, char

*setname, char *name, int *namelen, int *type);

Iterate over all sets contained in the set identified by setname. A unique identifying
name for the contained set is returned in name and namelen is set to the number of characters
written. The value of namelen cannot be larger than MPIT_MAX_SET_NAME-1. The set of all
root sets (sets that no other set contains) available in the implementation can be queried by
using a setname of MPIT_ROOT_SETS. The type parameter is set to MPIT_TYPE_CTRLVAR if
the variable is a control variable and to MPIT_TYPE_PERFVAR if it is a performance variable.

On the first call to MPIT_TAXON_QUERY_SET_SETS, the caller must initialize a
variable to MPIT_TAXON_QUERY_START and pass this variable as the
iter parameter. Subsequent calls require the user to pass the returned value iter to query
further taxonomic information. Once all taxonomic information is returned, the call to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 17

MPIT_TAXON_QUERY_SET_SETS returns MPIT_END and sets iter to
MPIT_TAXON_QUERY_END.

MPIT_TAXON_QUERY_VARIABLE_SETS(iterator, varname, name, namelen, type)

INOUT iterator iterator variable passed in by user (iterator)

IN varname name of the variable to be queried (string)

OUT name name of the set returned this iteration (string)

OUT namelen length of the name of the set returned this iteration

(integer)

OUT type type of the set returned this iteration (integer)

int MPIT_Taxon_query_variable_sets(MPIT_Taxonquery_iterator *iterator, char

*varname, char *name, int *namelen, int *type);

Iterate over all sets that contain the performance/control variable identified by varname.
A unique identifying name for the set is returned in name and namelen is set to the number
of characters written. The value of namelen cannot be larger than MPIT_MAX_SET_NAME-1.
The type parameter is set to MPIT_TYPE_CTRLVAR if the variable is a control variable and
to MPIT_TYPE_PERFVAR if it is a performance variable.

On the first call to MPIT_TAXON_QUERY_VARIABLE_SETS, the caller must initialize
a variable to MPIT_TAXON_QUERY_START and pass this variable as the
iter parameter. Subsequent calls require the user to pass the returned value iter to query
further taxonomic information. Once all taxonomic information is returned, the call to
MPIT_TAXON_QUERY_VARIABLE_SETS returns MPIT_END and sets iter to
MPIT_TAXON_QUERY_END.

MPIT_TAXON_QUERY_SET_VARIABLES(iterator, setname, name, namelen, type)

INOUT iterator iterator variable passed in by user (iterator)

IN setname name of the set to be queried (string)

OUT name name of the variable returned this iteration (string)

OUT namelen length of the name of the variable returned this itera-

tion (integer)

OUT type type of the variable returned this iteration (integer)

int MPIT_Taxon_query_set_variables(MPIT_Taxonquery_iterator *iterator, char

*setname, char *name, int *namelen, int *type);

Iterate over all variables directly contained in the set identified by setname. That is,
variables contained indirectly by a contained set will not be returned by this call. A unique
identifying name for the variable is returned in name and namelen is set to the number of
characters written. The value of namelen cannot be larger than MPIT_MAX_SET_NAME-1.
The type parameter is set to MPIT_TYPE_CTRLVAR if the variable is a control variable and
to MPIT_TYPE_PERFVAR if it is a performance variable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 1. TOOL INTERFACES FOR MPI

On the first call to MPIT_TAXON_QUERY_SET_VARIABLES, the caller must initialize
a variable to MPIT_TAXON_QUERY_START and pass this variable as the
iter parameter. Subsequent calls require the user to pass the returned value iter to query
further taxonomic information. Once all taxonomic information is returned, the call to
MPIT_TAXON_QUERY_SET_VARIABLES returns MPIT_END and sets iter to
MPIT_TAXONQUERY_END.

MPIT_TAXON_CHANGED(flag)

OUT flag true if the taxonomic information has changed since

the last call to a query function (boolean)

int MPIT_Taxon_changed(int *flag);

This routine returns true in the flag argument if the list of available performance/control
variables or sets has changed since the last time the user has called any of the
MPIT_TAXON_QUERY_ routines with the argument MPIT_TAXON_QUERY_START as the
first argument. If the user has not yet called any such routines, the argument flag will
contain the value true.

MPIT_TAXON_DESCRIBE_SET(name, desc, desclen)

IN name name of the set to describe (string)

OUT desc description of the set (string)

OUT desclen length of the string returned in desc (int)

int MPIT_Taxon_describe_set(char *name, char *desc, int desclen);

Retrieve the description for the set identified by name and store it in desc. The desclen
parameter is set to the number of characters written. The value of desclen cannot be larger
than MPIT_MAX_SET_DESC-1.

Set and Variable Names MPI does not specify the character encoding of strings in the
MPIT interface. The only requirement is that strings are terminated with a null character.

MPI reserves all set and variable names with the prefixes “MPI_” and “MPIT_” for
its own use.

1.2.7 Return and Error Codes

All MPIT functions return a return or error code. The following constants are available
for this for the specific calls. None of the error codes returned by a MPIT routine shall be
considered fatal to the overall MPI implementation or shall invoke an MPI error handler.
In any case, the execution of the MPI program shall continue as if the call would have
succeeded. However, the MPIT implementation is not required to check all user provided
parameters; if a user passes illegal parameter values to any MPIT routine that are not caught
by the implementation, the behavior of the library is undefined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. MPIT PERFORMANCE INTERFACE 19

Return Code Description

MPIT_SUCCESS No error, call completed
MPIT_ERR_MEMORY Out of memory
MPIT_ERR_NOTINITIALIZED MPIT not initialized
MPIT_ERR_CANTINIT MPIT not in the state to be initialized

Table 1.5: Return codes used by any MPIT function.

Return Code Description

MPIT_ERR_PREDEFINED Datatype is a predefined type and not an enumaration
MPIT_ERR_INVALIDTYPE Datatype is not a valid datatype
MPIT_ERR_INVALIDITEM The item number queried is out of range

(for MPIT_TYPE_ENUMITEM only)

Table 1.6: Return codes used by MPIT type functions.

Return Code Description

MPIT_ERR_SETNOTNOW Variable cannot be set at this moment
MPIT_ERR_SETNEVER Variable cannot be set until end of execution
MPIT_ERR_INVALIDVAR Control variable does not exist

Table 1.7: Return codes used by MPIT control variable access functions.

Return Codes for all MPIT Functions

The return codes in Table 1.5 apply to all MPIT functions.

Return Codes for Type Functions

The return codes in Table 1.6 apply to MPIT_TYPE_ENUMQUERY,
MPIT_TYPE_GETCLASS and MPIT_TYPE_ENUMITEM.

Return Codes for Control Variable Access Functions

The return codes in Table 1.7 apply to MPIT_CONFIG_READ and MPIT_CONFIG_WRITE.

Return Codes for Performance Variable Access and Control

The return codes in Table 1.8 apply to MPIT_PERFVAR_START ,
MPIT_ERR_PERFVAR_STOP , MPIT_PERFVAR_READ , MPIT_ERR_PERFVAR_WRITE ,
MPIT_PERFVAR_RESET , and MPIT_PERFVAR_READRESET .

Return Codes for Taxonomy Functions

The return codes in Table 1.9 apply to MPIT_TAXON_ routines.

1.2.8 Profiling Interface

All requirements for the profiling interfaces, as described in Section ??, also apply to the
MPIT interface. In particular, this means that a complying MPI implementation has to pro-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 1. TOOL INTERFACES FOR MPI

Return Code Description

MPIT_ERR_INVALIDVAR Performance variable does not exist
MPIT_ERR_INVALIDSESSION Session argument is not a valid session
MPIT_ERR_NOSTARTSTOP Variable can not be started or stopped

for MPIT_PERFVAR_START and
MPIT_PERFVAR_STOP

MPIT_ERR_NOWRITE Variable can not be written or reset
for MPIT_PERFVAR_WRITE and
MPIT_PERFVAR_RESET

Table 1.8: Return codes used by MPIT performance variable access, start, stop, or activation
functions.

Return Code Description

MPIT_ERR_NOSET The set does not exist
MPIT_ERR_NODATA No description for this set available

Table 1.9: Return codes used MPIT taxonomy functions.

vide matching PMPIT calls for every MPIT call. All rules, guidelines, and recommendations
from Section ?? apply equally to PMPIT calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] mpi-debug: Finding Processes. http://www-unix.mcs.anl.gov/mpi/mpi-debug/.

[2] James Cownie and William Gropp. A Standard Interface for Debugger Access to Mes-
sage Queue Information in MPI. In Proceedings of the 6th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machin e and Message Passing
Interface, pages 51–58, Barcelona, Spain, September 1999.

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI_BYTE, 3
MPI_CHAR, 3
MPI_COMM_SELF, 8
MPI_DOUBLE, 3
MPI_FLOAT, 3
MPI_INT, 3
MPI_LOGICAL, 3
MPI_LONG, 3
MPI_LONG_LONG, 3
MPI_SHORT, 3
MPI_SUCCESS, 14
MPI_VERBOSITY_USER_BASIC, 5
MPIT_BYTE, 3
MPIT_CHAR, 3
MPIT_DOUBLE, 3
MPIT_END, 17, 18
MPIT_ERR_CANTINIT, 19
MPIT_ERR_INVALIDITEM, 19
MPIT_ERR_INVALIDSESSION, 20
MPIT_ERR_INVALIDTYPE, 19
MPIT_ERR_INVALIDVAR, 19, 20
MPIT_ERR_MEMORY, 19
MPIT_ERR_NODATA, 20
MPIT_ERR_NOSET, 20
MPIT_ERR_NOSTARTSTOP, 20
MPIT_ERR_NOTINITIALIZED, 19
MPIT_ERR_NOWRITE, 20
MPIT_ERR_PERFVAR_WRITE, 15, 16
MPIT_ERR_PREDEFINED, 19
MPIT_ERR_SETNEVER, 9, 19
MPIT_ERR_SETNOTNOW, 9, 19
MPIT_FLOAT, 3
MPIT_INT, 3
MPIT_LOGICAL, 3
MPIT_LONG, 3

MPIT_LONG_LONG, 3
MPIT_MAX_SET_DESC, 18
MPIT_MAX_SET_NAME, 16, 17
MPIT_PERFVAR_ALL, 14, 15
MPIT_ROOT_SETS, 16
MPIT_SCOPE_GLOBAL, 8
MPIT_SCOPE_LOCAL, 8
MPIT_SCOPE_READONLY, 8
MPIT_SHORT, 3
MPIT_SUCCESS, 2, 15, 19
MPIT_TAXON_QUERY_END, 17
MPIT_TAXON_QUERY_START, 16–18
MPIT_TAXONQUERY_END, 18
MPIT_TYPE_CTRLVAR, 16, 17
MPIT_TYPE_PERFVAR, 16, 17
MPIT_TYPECLASS_ENUMERATION, 5
MPIT_TYPECLASS_PREDEFINED, 5
MPIT_VERBOSITY_MPIDEV_BASIC, 5
MPIT_VERBOSITY_MPIDEV_DETAILED,

5
MPIT_VERBOSITY_MPIDEV_VERBOSE,

5
MPIT_VERBOSITY_TUNER_BASIC, 5
MPIT_VERBOSITY_TUNER_DETAILED,

5
MPIT_VERBOSITY_TUNER_VERBOSE,

5
MPIT_VERBOSITY_USER_BASIC, 5
MPIT_VERBOSITY_USER_DETAILED,

5
MPIT_VERBOSITY_USER_VERBOSE,

5

22

MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_COMM_SELF, 9
MPI_FINALIZE, 3
MPI_INIT, 3

23

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Tool Interfaces for MPI
	Introduction
	MPIT Performance Interface
	Initialization and Finalization
	Type System
	Verbosity Levels
	Control Variables
	Control Variable Query Functions
	Control Variable Access Functions

	Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Performance Variable Activation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions

	Performance and Control Variable Taxonomic Information
	Return and Error Codes
	Return Codes for Type Functions
	Return Codes for Control Variable Access Functions
	Return Codes for Performance Variable Access and Control
	Return Codes for Taxonomy Functions

	Profiling Interface

	Bibliography
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index

