
The MPIR Interfaces - 1 - 5/13/2010

The MPIR Interfaces
Written by: John V. DelSignore, Jr.

Last updated: May 13, 2010

Contents
1 Background ... 2

2 MPIR Process Acquisition Interface... 3

2.1 MPIR Process Acquisition Interface Overview.. 3

2.2 MPIR Process Acquisition Interface Definitions.. 4

2.2.1 MPI Process Definition... 4

2.2.2 “Starter” Process Definition.. 4

2.2.2.1 The MPI Rank 0 Process as the Starter Process ... 4

2.2.2.2 A Separate “mpiexec” as the Starter Process.. 4

2.2.3 MPIR Node Definitions .. 4

2.3 MPIR Process Acquisition Interface Requirements ... 4

2.3.1 Symbol Table Requirements... 4

2.3.2 Debugger-Level Process Control Requirements... 5

2.4 MPIR Process Acquisition Interface Limitations ... 5

2.5 MPIR Process Acquisition Interface Models.. 5

2.5.1 MPIR Job Launch and Attach Models.. 5

2.5.2 MPI Process Synchronization Models .. 6

2.6 MPIR Process Acquisition Interface Extensions .. 7

2.6.1 Tool Daemon Launch Extension .. 7

2.6.2 Message Queue Display DLL Search Extension .. 7

2.7 MPIR Process Acquisition Interface Use Case... 8

2.8 MPIR Process Acquisition Interface Specification... 11

2.8.1 VOLATILE... 11

2.8.2 MPIR_PROCDESC .. 11

2.8.3 MPIR_being_debugged .. 12

2.8.4 MPIR_proctable.. 12

2.8.5 MPIR_proctable_size.. 13

2.8.6 MPIR_debug_state.. 13

2.8.7 MPIR_debug_abort_string.. 14

2.8.8 MPIR_debug_gate .. 14

2.8.9 MPIR_Breakpoint ... 15

2.8.10 MPIR_i_am_starter... 15

2.8.11 MPIR_acquired_pre_main.. 15

2.8.12 MPIR_force_to_main ... 16

2.8.13 MPIR_partial_attach_ok... 16

2.8.14 MPIR_dll_name.. 17

2.8.15 MPIR_ignore_queues ... 17

2.8.16 MPIR_executable_path... 17

2.8.17 MPIR_server_arguments .. 18

3 MPIR Message Queue Display... 18

The MPIR Interfaces - 2 - 5/13/2010

1 Background
Back in the mid-1980s, parallel programming techniques for HPC were still evolving, but by the

early 1990s an effort to produce a standard message passing interface was under way, and the

first MPI standard was completed in May 1994. The TotalView debugger, an already mature

parallel debugger for the BBN Uniform System and Oakridge National Laboratory’s Parallel

Virtual Machine (PVM), was quickly adapted to support debugging MPI applications.

In early 1995, TotalView’s Jim Cownie and Argonne National Laboratory’s Bill Gropp and

Rusty Lusk decided to join forces and develop debugging interfaces for use with MPICH, one of

the first widely available MPI implementations. Two interfaces were developed: one for process

discovery and one for message queue extraction. Coined the “MPIR” interfaces, the MPI

debugging interfaces eventually became de facto standards implemented by various MPI

providers such as Compaq, HP, IBM, LAM, MPI Software Technologies, Open MPI, Quadrics,

SCALI, SGI, and other implementations of MPI.

Even though the MPIR debugging interfaces are still widely used today by a number of MPI

implementations and tool vendors, MPIR has not yet been standardized. Bill Gropp writes,

“...there never was a formal ‘MPIR’ spec for the process discovery - there was a hack that was

created for the first prototype implementation with MPICH and the ch_p4 device, but this was

never intended to be a standard. Unfortunately, like so many prototypes, since there wasn’t a

standard, this part of the implementation was reverse-engineered into other implementations.” In

addition to being implemented by many MPI vendors, the MPIR Process Acquisition Interface

used for process discovery has been extended by some vendors to better suit their needs.

This document describes the state of the field for the MPIR Process Acquisition Interface and

MPIR Message Queue Display Interface.

[Martin owes me some words to put here regarding the status of this document in the MPI

Forum.]

The MPIR Interfaces - 3 - 5/13/2010

2 MPIR Process Acquisition Interface
The MPIR Process Acquisition Interface, also known as the MPI Automatic Process

Acquisition (MPI APA) Interface, is used by tools such as debuggers and performance

analyzers to locate MPI processes that are part of an MPI job. The tool can then automatically

attach to the MPI processes in the job with no additional information required from the tool user.

The MPI APA interface supports both launching an MPI job under the control of a tool and

attaching a tool to an already running job.

2.1 MPIR Process Acquisition Interface Overview

The MPI APA interface is not an application programming interface (API). It is a rendezvous

protocol used between the tool (such as a debugger or performance analyzer) and the MPI

implementation. The MPI APA interface requires that the tool read symbol table information and

trace the starter process, including starting and stopping the process, reading the memory and

registers of the starter process, planting breakpoints, and handling events. MPI APA defines the

starter process as the process that contains information about the location of the MPI processes.

The starter process may or may not be an MPI process itself.

The MPI APA interface provides three fundamental pieces of information about each MPI

process in an MPI job, as follows:

1. The location of the process in the form of a name that is resolvable to an IP address or

node number.

2. The name of the executable the MPI process is running.

3. The process ID of the MPI process.

Collectively for each process, this information is known as the MPIR process descriptor. The

MPI job control runtime system gathers the MPIR process descriptors into a single MPIR

process descriptor table that is located in the memory of the starter process.

The MPI runtime system raises an event to the tool by setting an integer global variable and

calling a breakpoint function in the starter process. The defined set of events is limited to MPI

job spawn and abort. When the tool receives an MPI job spawn event, it reads the MPIR process

descriptor out of the starter process and attaches to MPI processes.

Under the MPIR interface, the tool does not create the parallel job. The MPI job control runtime

system creates the job and the tool attaches to the MPI processes after the processes have been

created.

The MPIR interface also allows the MPI process to specify the path to the MPIR Message Queue

Display (MQD) shared library, which allows the tool to display the state of the message queues

in the MPI processes.

The MPIR Interfaces - 4 - 5/13/2010

2.2 MPIR Process Acquisition Interface Definitions

This section contains definitions of terms used in the MPIR Process Acquisition Interface.

2.2.1 MPI Process Definition

An MPI process is defined to be a process that is part of the MPI application as described in the

MPI standard.

In this document, the rank of a process is assumed to be in MPI_COMM_WORLD. For

example, “the MPI rank 0 process” means the MPI process that is rank 0 in

MPI_COMM_WORLD.

2.2.2 “Starter” Process Definition

The starter process is the process that is primarily responsible for launching the MPI job. The

starter process may be a separate process that is not part of the MPI application, or the MPI rank

0 process may act as a starter process. By definition, the starter process contains functions, data

structures, and symbol table information for the MPIR Process Acquisition Interface.

The MPI implementation determines which launch discipline is used, as described in the

following subsections.

2.2.2.1 The MPI Rank 0 Process as the Starter Process

The MPICH-1 p4 channel is implemented such that the MPI rank 0 process launches the

remaining MPI processes of the MPI application. In MPICH-1 p4 channel implementation, the

MPI rank 0 process is the starter process.

2.2.2.2 A Separate “mpiexec” as the Starter Process

Most MPI implementations use a separate “mpiexec” process that is responsible for launching

the MPI processes. In these implementations, the “mpiexec” process is the starter process. Note

that the name of the starter process executable varies by implementation and “mpirun” is a name

commonly used by several implementations. Other names include “orterun”, “srun”, and “prun”.

2.2.3 MPIR Node Definitions

For the purposes of this document, the host node is defined to be the node running the tool

process, and a target node is defined to be a node running the target application processes the

tool is controlling. A target node might be the host node, that is, the target application processes

might be running on the same node as the tool process.

2.3 MPIR Process Acquisition Interface Requirements

The MPIR Process Acquisition Interface requires the tool to contain several capabilities typically

found in a debugger.

2.3.1 Symbol Table Requirements

The MPIR Process Acquisition Interface requires the starter process contain symbol table

information for the functions, data structures, and types defined by the interface. The symbol

table information must be contained within the starter process executable or a shared library used

The MPIR Interfaces - 5 - 5/13/2010

by the starter process. If the implementation places the symbol table information in a shared

library, the shared library may either be loaded as a requirement of the starter process executable,

or dynamically loaded at runtime by the MPIR starter process.

The symbol table requirements are as follows:

• The starter process compilation unit(s) containing the functions, data structures, and

types defined by the interface must be built with symbolic debugging information (for

example, on Linux, that typically means compiling with the “-g” option).

• The starter process implementation must ensure that the functions, data structures,

types, and symbol table information are not discarded as a result of compiler or linker

optimizations.

• The packaging, distribution, and installation procedures for the starter process

implementation must ensure that the symbol table information is not stripped,

separated or otherwise discarded.

2.3.2 Debugger-Level Process Control Requirements

The debugger-level process-control requirement is as follows:

• The MPIR Process Acquisition Interface requires that the tool be able to exercise

debugger-level control over the starter process. The tool is required to be able control

the execution, read and write the address space, plant breakpoints, and handle

breakpoint events in the starter process.

2.4 MPIR Process Acquisition Interface Limitations

The MPIR Process Acquisition Interface has the following limitation:

• The MPIR Process Acquisition Interface does not support the dynamic process

creation or communication facilities of MPI 2, such as MPI_Comm_spawn,

MPI_Comm_accept, or MPI_Comm_connect.

2.5 MPIR Process Acquisition Interface Models

The MPIR Process Acquisition Interface supports several process acquisition and

synchronization models to accommodate various MPI implementations and tools deployment

scenarios, as described in the following subsections.

2.5.1 MPIR Job Launch and Attach Models

The MPIR Process Acquisition Interface supports both launching an MPI application under the

control of the tool, and attaching the tool to an already running MPI application.

The MPIR Interfaces - 6 - 5/13/2010

Under the MPIR job launch model, the tool is invoked on the starter process executable, which

in turn starts the MPI application. Consider the following example command, where tool is the

tool executable, mpiexec is the starter process executable and mpiapp is the MPI application

executable:

$ tool tool-args mpiexec mpiexec-args mpiapp
$

Under the MPIR job attach model, the MPI job is already running when the tool is attached to

the starter process, as shown in the following example commands:

$ mpiexec mpiexec-args mpiapp &
[Shell prints the process ID “pid” of the background mpiexec process]
$

Some amount of time elapses, and the tool is attached to the mpiexec process (perhaps because

the job is hung), as follows:

$ tool tool-args –pid pid mpiexec
$

2.5.2 MPI Process Synchronization Models

Under the job launch model the MPI implementation must ensure that the MPI processes do not

return from MPI_Init. This requirement guarantees that the tool can acquire the MPI processes

early in their lifetime.

The MPIR Process Acquisition Interface provides an optional interface (see the description of

MPIR debug gate variable named MPIR_debug_gate (§2.8.8)) that allows the tool to

synchronize with the start up of the MPI processes. The goal of the MPIR debug gate is to

prevent the MPI processes from “running away,” before the tool has a chance to attach to them.

An MPI implementation is not required to use the MPIR_debug_gate variable for

synchronization. In fact, implementations are encouraged to use a synchronization technique that

does not involve the use of MPIR_debug_gate in the MPI processes. Other synchronization

techniques include the following:

• The MPI processes form a barrier with the starter process. During startup, the MPI

processes are created and allowed to run to barrier. The starter process joins the

barrier, but only after it has set MPIR_debug_state (§2.8.6) to

MPIR_DEBUG_SPAWNED (§2.8.6) and called the MPIR_Breakpoint (§2.8.9)

function to notify the tool of the spawn event.

• The starter process arranges for the MPI processes to be created in a stopped state,

before they have executed any user-mode instructions. For example, on Posix-like

systems, the MPI processes may be stopped on exit from execve. After the starter

process has set MPIR_debug_state to MPIR_DEBUG_SPAWNED and called the

MPIR_Breakpoint function to notify the tool of the spawn event, the MPI processes

are continued.

When an implementation uses a synchronization technique that does not use the MPIR debug

gate, and does not require the tool to attach to and continue the MPI process, it should define the

The MPIR Interfaces - 7 - 5/13/2010

symbol MPIR_partial_attach_ok (§2.8.13) in the starter process, and avoid defining

MPIR_debug_gate in the MPI processes.

2.6 MPIR Process Acquisition Interface Extensions

MPIR has been extended by some vendors, as described in the following subsections.

2.6.1 Tool Daemon Launch Extension

The MPIR Process Acquisition Interface does not specify how the tool launches its daemons, and

does not support tool daemon launch.

However, the interface has been extended on IBM Blue Gene systems to support tool daemon

launch, and that extension has also been implemented in Open MPI. The extension provides

support only for tool daemon launch, not for communication between the tool and its daemons;

the tool is responsible for establishing its own communication channels.

The tool daemon launch extension adds two character array variables to the MPIR interface that

are named MPIR_executable_path (§2.8.16) and MPIR_server_arguments (§2.8.17).

They are used as follows:

1. Immediately after launching or attaching to the starter process, the tool writes the path

name of its tool daemon’s executable file to the MPIR_executable_path variable, and

writes the tool daemon’s command line arguments to the MPIR_server_arguments

variable.

2. The tool then sets MPIR_being_debugged (§2.8.3) to a non-zero value, and continues

the starter process.

3. The starter process notices that the value of MPIR_being_debugged changed to a non-

zero value, and launches the executable named by the MPIR_executable_path variable

and passes the command line arguments contained in the MPIR_server_arguments

variable.

4. It is then the responsibility of the tool and its daemon to establish communications.

See the description of the MPIR_executable_path and MPIR_server_arguments variables for

more information.

2.6.2 Message Queue Display DLL Search Extension

The text from the follow Tex document should be integrated into this document

https://svn.mpi-forum.org/svn/mpi-forum-docs/trunk/MPI-3.0/wg/tools/new-tools-chapter/chap-

prof/symbol.tex

The MPIR Interfaces - 8 - 5/13/2010

2.7 MPIR Process Acquisition Interface Use Case

Figure 1 shows a collaboration diagram of a typical MPI session under the control of a tool using

the MPIR Process Acquisition Interface. Note that the interface can be used in several different

ways, thus there are several different possible relationships. The collaboration diagram depicts

one of the possible (and most common) relationships for an MPI implementation that uses a

separate starter executable named “mpiexec” to launch a set of MPI tasks running an executable

named “a.out”.

Figure 1: Example collaboration diagram for MPIR Process Acquisition Interface

MPI Starter Process

MPIR_PROCDESC *MPIR_proctable;

int MPIR_proctable_size;

void MPIR_Breakpoint() {}

char *host_name;
char *executable_name;

int pid;

rank[0]

char *host_name;
char *executable_name;

int pid;

rank[n-1]

…

MPIR Process Acquisition Interface

int MPIR_debug_state;

MPI Starter “mpiexec”

Executable or Shared Library
(contains symbol information)

Tool Process

Debugging Subsystem

Symbol Table
Information

(ELF, DWARF,

etc).

Process Control
(ptrace, /proc,

etc.)

Tool Daemon Process

int MPIR_being_debugged;

MPI “rank[0]” Process

MPIR Process

Acquisition Interface

int MPIR_debug_gate;

char MPIR_dll_name[];

MPI “rank[n-1]” Process

MPIR Process

Acquisition Interface

int MPIR_debug_gate;

char MPIR_dll_name[]; …

Symbol reading
Spawn/attach

MPI Daemon

Process

MPI Daemon

Process

Spawn Spawn

MPI job control

Tool Daemon Process

Tool daemon launch/protocol

…

MPI Rank “a.out”

Executable(s) & DLLs

Attach Attach

Process Control

(ptrace, /proc, etc.)

Process Control

(ptrace, /proc, etc.)

1

2

3

4

5, 6, 10

7

8

9

Read/write memory

11

12

13

14

15

16
17

R/W

18

19

int MPIR_i_am_starter;

The MPIR Interfaces - 9 - 5/13/2010

Startup processing:

1. The tool is started on the “mpiexec” executable.

2. The debugging subsystem of the tool reads the symbol table information from the

executable, and any shared libraries used by the executable.

3. The tool discovers the executable is a starter program by querying the symbol table for

the MPIR_Breakpoint symbol. If the symbol exists, then the tool should consider this a

starter program.

4. The tool spawns or attaches to the starter process, and arranges for the starter process to

remain stopped after the spawn or attach operation completes.

5. The tool reads the value of MPIR_proctable_size (§2.8.5) out of the starter process to

determine the number of MPI processes already created by the starter process. If the tool

spawned the starter process, then this value is expected to be 0. However, if the tool

attached to the starter process, then this value could be greater than zero.

6. If MPIR_proctable_size is greater than zero, then the tool should attach to any

additional MPI processes that might exist. If the symbol MPIR_i_am_starter is not

defined in the starter process, then the starter process is the MPI rank 0 process, thus the

tool is already controlling the MPI rank 0 process.

7. The tool sets MPIR_being_debugged to 1 to inform the starter process that the debugger

is present.

8. The tool plants a breakpoint at MPIR_Breakpoint to receive MPIR events (defined

below). The tool may then continue the starter process.

Event processing:

9. If the starter process hits the breakpoint at MPIR_Breakpoint then by definition this

raises an “MPIR event”. The tool then reads the value of the MPIR_debug_state

variable out of the starter process, and performs an action based on the variable’s value,

which typically results in the tool attaching to the MPI processes listed in the process

descriptor table. See the description of MPIR_debug_state in section 2.8.6 for more

information on MPIR events.

Process descriptor table processing:

10. The tool reads the value of MPIR_proctable_size variable out of the starter process to

determine the number of MPI processes already created by the starter process. If this

value is not greater than zero, then the table is empty.

11. The tool determines the size and member layout of the MPIR_PROCDESC (§2.8.2)

process descriptor structure by reading the type information from symbol table of the

starter process. The tool can find the process descriptor structure type information either

using a lookup on the type name, or by looking up the MPIR_proctable (§2.8.4) variable

and dereferencing the variable’s type. The latter approach is more reliable because the

name MPIR_PROCDESC is a typedef, which may not be available for by-name lookup.

12. The tool reads the value of the MPIR_proctable pointer variable out of the starter

process. The pointer is the base address of the process descriptor table.

The MPIR Interfaces - 10 - 5/13/2010

13. The tool reads the process descriptor table out of the starter process, starting at the

MPIR_proctable pointer variable value. The length in bytes of the process descriptor

table is the size of the MPIR_PROCDESC process descriptor structure in bytes

multiplied by the value of MPIR_proctable_size variable.

14. The tool iterates over the process descriptor table information to identify the node name

or IP address, executable path name, and process ID of each of the MPI processes.

15. The tool launches its tool daemons, if necessary, on the set of nodes being used by the

MPI processes.

16. The tool attaches to the MPI processes.

17. The tool reads the symbol table information of the MPI processes.

MPI process attach:

18. If the symbol MPIR_partial_attach_ok is defined in the starter process, then this

informs the tool that the initial startup barrier is implemented by the MPI system, and it is

not necessary to set the MPIR_debug_gate variable in any of MPI processes. However,

if the symbol MPIR_partial_attach_ok is not defined in the starter process, the tool

must attach and set the MPIR_debug_gate variable to 1 in each MPI processes to release

them from the gate, even if the tool user has instructed the tool to not attach to all of the

MPI processes.

19. The tool reads the value of the MPIR_dll_name (§2.8.14) character string variable out of

the MPI processes. The string is the path name of a shared library that the tool can

dynamically load into its own address space to gather MPI message queue information

for the MPI process. The MPI Message Queue Display (MQD) DLL is described in a

separate document. As an optimization, the tool can assume that the value of the

MPIR_dll_name character string variable is identical for all MPI processes that are

running the same executable. For example, in a single program multiple data (SPMD)

style program, all MPI processes are running the same executable so the tool may assume

that the value of MPIR_dll_name is the same in each process. In a multiple program

multiple data (MPMD) style program consisting of two executables named “a.out” and

“b.out”, the tool may assume that all MPI processes executing “a.out” have the same

MPIR_dll_name value, and all MPI processes executing “b.out” have the same

MPIR_dll_name value, however the MPIR_dll_name value may differ between “a.out”

and “b.out”.

The MPIR Interfaces - 11 - 5/13/2010

2.8 MPIR Process Acquisition Interface Specification

The MPIR Process Acquisition Interface is specified as a set of C-language definitions. The

following sections enumerate those definitions. Each subsection covers one definition, specifies

if the definition belongs in the starter process or the MPI processes, states whether or not the

definition is required, and describes how the definition is used.

2.8.1 VOLATILE

Macro definition:

#ifndef VOLATILE
#if defined(__STDC__) || defined(__cplusplus)
#define VOLATILE volatile
#else
#define VOLATILE
#endif
#endif

Definition is required.

Definition is used by the starter process and MPI processes.

The VOLATILE macro is defined to the volatile keyword for C++ and ANSI C. Declaring a

variable volatile informs the compiler that the variable could be modified by an external entity

and that its value can change at any time. VOLATILE is used with MPIR variables defined in

the starter and MPI processes but are set by the tool.

2.8.2 MPIR_PROCDESC

Type definition:

typedef struct {
 char *host_name;
 char *executable_name;
 int pid;
} MPIR_PROCDESC;

Definition is required.

Definition is contained within the symbol table of the starter process.

MPIR_PROCDESC is a typedef name for an anonymous structure that holds process descriptor

information for a single MPI process. The structure must contain three members with the same

names and types as specified above. The tool must use the symbol table information to determine

the overall size of the structure, and offset and size of each of the structure’s members.

The host_name member is a pointer to a null terminated character string in the address space of

the starter process that specifies the target node location of the MPI process in the form of a host

name or IP address string that must be translatable to an IP address. On Beowulf Distributed

Process Space (BProc) systems, the string is an integer node number (e.g., “42”).

The executable_name member is a pointer to a null terminated character string in the address

space of the starter process that specifies the name of the executable the MPI process is running.

The MPIR Interfaces - 12 - 5/13/2010

The string should be the full path name to the executable, which may be relative to the host node

or target node.

The pid member is the integer process identifier of the MPI process. Note that historically pid

was defined as a C language int, which is an integer of an unknown size, which might be smaller

than the size of a process identifier for the target system. Implementations should define pid as

an integer size that is large enough to hold a process identifier for the target system. For

example, implementations should use pid_t as the type of pid provided that pid_t is an integer

type.

The MPI implementation should share the host and executable name character strings across

multiple process descriptor entries whenever possible. For example, if all of the MPI processes

are executing “/path/a.out”, then the executable name field in each process descriptor should

point to the same null terminated character string. Sharing the strings enhances the tool’s

scalability by allowing it to cache data from the starter process and avoid reading redundant

character strings.

2.8.3 MPIR_being_debugged

Global variable definition:

VOLATILE int MPIR_being_debugged;

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is written by the tool, and read by the starter process.

MPIR_being_debugged is an integer variable that is set or cleared by the tool to notify the

starter process that a tool is present.

The tool sets the variable to 1 immediately after spawning or attaching to the starter process. The

tool sets the variable to 0 immediately before detaching from the starter process.

The starter process may monitor the state of the variable and perform certain operations

differently. For example, this variable might control whether or not the starter process forces the

MPI processes to wait for the MPIR_debug_gate to be set.

2.8.4 MPIR_proctable

Global variable definition:

MPIR_PROCDESC *MPIR_proctable;

Definition is required.

Definition is contained within the address space of the starter process.

Variable is written by the starter process, and read by the tool.

The MPIR Interfaces - 13 - 5/13/2010

MPIR_proctable is a pointer variable set by the starter process that points to an array of

MPIR_PROCDESC structures containing MPIR_proctable_size elements. This array of

structures is the process descriptor table.

The index position in the process descriptor table is the rank of the process in

MPI_COMM_WORLD. For example, index 0 in the table specifies rank 0 in

MPI_COMM_WORLD, index 1 in the table specifies rank 1 in MPI_COMM_WORLD, and so

forth.

2.8.5 MPIR_proctable_size

Global variable definition:

int MPIR_proctable_size;

Definition is required.

Definition is contained within the address space of the starter process.

Variable is written by the starter process, and read by the tool.

MPIR_proctable_size is an integer variable set by the starter process that specifies the number

of elements in the procedure descriptor table pointed to by the MPIR_proctable variable.

2.8.6 MPIR_debug_state

Macro definitions:

#define MPIR_NULL 0
#define MPIR_DEBUG_SPAWNED 1
#define MPIR_DEBUG_ABORTING 2

Global variable definition:

int MPIR_debug_state;

Definition is required.

Definition is contained within the address space of the starter process.

Variable is written by the starter process, and read by the tool.

MPIR_debug_state is an integer variable set by the starter process that specifies the state of the

MPI job at the point where the starter process calls the MPIR_Breakpoint function. The starter

process can raise an MPIR event in the tool by setting MPIR_debug_state and calling the

MPIR_Breakpoint function.

The tool must set a breakpoint at the MPIR_Breakpoint function and read the value of the

MPIR_debug_state variable to process an MPIR event. The following events are defined:

• If the value is MPIR_NULL (0), then the tool should ignore the event and continue

the starter process.

The MPIR Interfaces - 14 - 5/13/2010

• If the value is MPIR_DEBUG_SPAWNED (1), then the starter process has spawned

the MPI processes and filled in the process descriptor table. The tool can attach to any

additional MPI processes that have appeared in the process descriptor table.

• If the value is MPIR_DEBUG_ABORTING (2), then the MPI job has aborted and

the tool can notify the user of the abort condition. The tool can read the reason for

aborting the job by reading the character string out of the starter process, which is

pointed to by the MPIR_debug_abort_string variable in the starter process.

The tool may continue or leave the starter process stopped after processing the event. The tool

decides when to continue the starter process. For example, a debugger may allow the user to

control the execution of the starter process in conjunction with controlling the execution of the

MPI processes. However, a performance analyzer might automatically continue the starter

process after processing the MPIR event. Note that some MPI implementations may require that

the starter process be running while one or more of the MPI processes are running. Therefore, the

tool may be required to implicitly continue the starter process when any of the MPI processes are

continued.

2.8.7 MPIR_debug_abort_string

Global variable definition:

char *MPIR_debug_abort_string;

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is written by the starter process, and read by the tool.

MPIR_debug_abort_string is a pointer to a null-terminated character string set by the starter

process when MPI job has aborted. When an MPIR_DEBUG_ABORTING event is reported,

the tool can read the reason for aborting the job by reading the character string out of the starter

process. The abort reason string can then be reported it to the user, and is intended to be a human

readable string.

2.8.8 MPIR_debug_gate

Global variable definition:

VOLATILE int MPIR_debug_gate;

Definition is not required.

Definition is contained within the address space of the MPI processes.

Variable is written by the tool, and read by the MPI processes.

MPIR_debug_gate is an integer variable that is set to 1 by the tool to notify the MPI rank

processes that the debugger has attached. An MPI rank process may use this variable as a

synchronization mechanism to prevent it from running away before the tool has time to attach to

the process.

The MPIR Interfaces - 15 - 5/13/2010

An MPI implementation is not required to use the MPIR_debug_gate variable for

synchronization. However, the MPI job control runtime system must prevent the created MPI

rank processes from running beyond the return from the application’s call to MPI_Init.

2.8.9 MPIR_Breakpoint

Global subroutine definition:

void MPIR_Breakpoint() {}

Definition is required.

Definition is contained within the address space of the starter process.

MPIR_Breakpoint is the subroutine called by the starter process to notify the tool that an MPIR

event has occurred. The starter process must set the MPIR_debug_state variable to an

appropriate value before calling this subroutine. The tool must set a breakpoint at the

MPIR_Breakpoint function, and when a thread running the starter process hits the breakpoint,

the tool must read the value of the MPIR_debug_state variable to process an MPIR event.

2.8.10 MPIR_i_am_starter

Global variable definition:

int MPIR_i_am_starter;

Definition is required when the MPIR starter process is not also an MPI process.

This symbol must not be defined if the process is an MPI process.

Definition is contained within the address space of the starter process.

Variable is neither read nor written.

MPIR_i_am_starter is a symbol of any type (preferably int) that marks the process containing

the symbol definition as a starter process that is not also an MPI process. This symbol serves as a

flag to mark the process as a separate starter process or an MPI rank 0 process.

If MPI rank process 0 is the starter process, this symbol must not be defined.

2.8.11 MPIR_acquired_pre_main

Global variable definition:

int MPIR_acquired_pre_main;

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is neither read nor written.

MPIR_acquired_pre_main is a symbol of any type (preferably int) that informs the tool that

under the MPI job launch model the MPI processes are stalled or stopped before entering the

main subprogram (main in the C language).

The MPIR Interfaces - 16 - 5/13/2010

If the symbol is defined, the tool may assume that the MPI processes to which it is attaching are

stopped upon creation (for example, on exit from the execve system call or inside a shared

library’s init section code) and have not yet entered the main subprogram.

The presence or absence of this symbol may cause the tool to behave differently. For example, if

this symbol is present, a debugger may choose to the display the source code of the main

subprogram after acquiring the MPI processes during an MPI job launch startup. If the symbol is

absent, then a normal display showing the place at which the code was executing may be shown.

2.8.12 MPIR_force_to_main

Global variable definition:

int MPIR_force_to_main;

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is neither read nor written.

MPIR_force_to_main is a symbol of any type (preferably int) that informs the tool that it

should display the source code of the main subprogram after acquiring the MPI processes. The

presence of the symbol MPIR_force_to_main does not imply that the MPI processes have been

stopped before dynamic linking has occurred.

2.8.13 MPIR_partial_attach_ok

Global variable definition:

int MPIR_partial_attach_ok;

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is neither read nor written.

MPIR_partial_attach_ok is a symbol of any type (preferably int) that informs the tool that the

MPI implementation supports attaching to a subset of the MPI processes.

If the symbol MPIR_partial_attach_ok is present, then this informs the tool that the initial

startup synchronization is implemented in such a way that the tool need not attach nor continue

MPI processes that the user is not interested in controlling. For example, the MPI

implementation synchronization startup may be implemented as a barrier, rather than by having

each of the MPI processes hang in a loop waiting for the MPIR_debug_gate variable to be set

by the tool.

Thus, the tool need only release the starter process to release the whole MPI job, which can

therefore be run without requiring the tool to acquire all of the MPI processes included in the

MPI job. This is useful in tools that include the possibility of attaching to processes later in the

tool session (for example, by selecting only processes in a specific communicator, or a specific

The MPIR Interfaces - 17 - 5/13/2010

process in MPI_COMM_WORLD). This method of operation is preferred because operating on

a subset of processes is a valuable feature on high-scale systems.

The tool may choose to ignore the presence of the MPIR_partial_attach_ok symbol and

acquire all MPI processes. The presence of this symbol does not prevent the tool from using the

MPIR synchronization technique to acquire all of the processes, if it so chooses, because setting

the MPIR_debug_gate variable (if present) is harmless.

The type or value of this symbol is not tested by the tool. The presence or absence of this symbol

is all that is tested.

2.8.14 MPIR_dll_name

Global variable definition:

char MPIR_dll_name[];

Definition is not required.

Definition is contained within the address space of the MPI processes.

Variable is written by the MPI process and read by the tool.

The use of this variable is deprecated.

MPIR_dll_name is a null-terminated character string that contains the pathname of a

dynamically loadable message queue debugging shared library. The shared library is intended to

be dynamically loaded into the address space of the tool itself. An MPI implementation can use

this variable to override any default message queue debugging library the tool uses.

Unfortunately, this interface has the limitation that allows for naming only one library, thus on

systems where various tools could be using different ABIs (e.g., 32-bit vs. 64-bit), there is no

single right library name value. To fix this problem, use the interface described in the “Message

Queue Display DLL Search Extension” section.

2.8.15 MPIR_ignore_queues

Global variable definition:

int MPIR_ignore_queues;

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is neither read nor written.

MPIR_ignore_queues is a symbol of any type (preferably int) that informs the tool that MPI

message queues support should be suppressed. This is useful when the MPIR Process

Acquisition Interface is being used in a non-MPI environment.

2.8.16 MPIR_executable_path

Global variable definition:

The MPIR Interfaces - 18 - 5/13/2010

char MPIR_executable_path[256];

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is written by the tool, and read by the starter process.

MPIR_executable_path is a null-terminated character string that is written by the tool into the

address space of the starter process. The string is the path name of the tool daemon’s executable

file on the target node.

When the tool then sets MPIR_being_debugged to a non-zero value and continues the starter

process, the starter process notices that the value of MPIR_being_debugged changed to a non-

zero value, and launches the executable named by the MPIR_executable_path variable and

passes the arguments contained in the MPIR_server_arguments variable.

2.8.17 MPIR_server_arguments

Global variable definition:

char MPIR_server_arguments[1024];

Definition is not required.

Definition is contained within the address space of the starter process.

Variable is written by the tool, and read by the starter process.

MPIR_server_arguments is a sequence of zero or more null-terminated character strings

followed by a null character that is written by the tool into the address space of the starter

process. Each null-terminated character string is passed as a single argument to the tool daemon.

A null character terminates the list. It is not possible to pass the empty string (“”) as an argument.

For example, the following C string contains four arguments:

″-callback\010.0.0.10\0-name\0has spaces and\ttabs\0\0″

The starter process should split the above string into an argv-style vector as follows:

argv[0] = ″-callback″
argv[1] = ″10.0.0.10″
argv[2] = ″-name″
argv[3] = ″has spaces and\ttabs″
argv[4] = 0

When the tool then sets MPIR_being_debugged to a non-zero value and continues the starter

process, the starter process notices that the value of MPIR_being_debugged changed to a non-

zero value, and launches the executable named by the MPIR_executable_path variable and

passes the arguments contained in the MPIR_server_arguments variable.

3 MPIR Message Queue Display
TBD.

