
502 CHAPTER 11. PROCESS INITIALIZATION, CREATION, AND MANAGEMENT

Advice to implementors. Owing to the restrictions of the MPI_THREAD_SINGLE

thread support level, implementators are discouraged from making this the default
thread support level for Sessions. (End of advice to implementors.)

MPI_SESSION_FINALIZE(session)

IN session session to be finalized (handle)

C binding
int MPI_Session_finalize(MPI_Session *session)

Fortran 2008 binding
MPI_Session_finalize(session, ierror)

TYPE(MPI_Session), INTENT(INOUT) :: session

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SESSION_FINALIZE(SESSION, IERROR)

INTEGER SESSION, IERROR

This routine cleans up all MPI state associated with the supplied session. Every instantiated
Session must be finalized using MPI_SESSION_FINALIZE. The handle session is set to
MPI_SESSION_NULL by the call.

Before an MPI process invokes MPI_SESSION_FINALIZE, the process must perform all
MPI calls needed to complete its involvement in MPI communications with communicators,
files, and windows associated with the supplied session: it must locally complete all MPI
operations that it initiated and it must execute matching calls needed to complete MPI
communications initiated by other processes. For example, if the process executed a non-
blocking send, it must eventually call MPI_WAIT, MPI_TEST, MPI_REQUEST_FREE, or
any derived function; if the process is the target of a send, then it must post the matching
receive; if it is part of a group executing a collective operation, then it must have completed
its participation in the operation.

The call to MPI_SESSION_FINALIZE does not free objects created by MPI calls; these
objects are freed using MPI_XXX_FREE calls.

Advice to users. As an application can potentially initialize and finalize multiple
sessions, users are advised to free MPI objects associated with a session prior to
invocation of MPI_SESSION_FINALIZE to avoid leaking resources. The preferred way
to free communicators associated with a session is by means of
MPI_COMM_DISCONNECT. (End of advice to users.)

Advice to implementors. An MPI implementation should be able to implement
MPI_SESSION_FINALIZE as a local function provided an application frees all MPI
windows, closes all MPI files, and uses MPI_COMM_DISCONNECT to free all MPI
communicators associated with a session prior to invoking MPI_SESSION_FINALIZE
on the corresponding session handle. (End of advice to implementors.)

An MPI implementation may need to take steps as part of MPI_SESSION_FINALIZE
to insure any pending communication on communicators that were associated with the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



11.3. THE SESSIONS MODEL 503

session has been completed prior to return from the function. Consequently,
MPI_SESSION_FINALIZE is a non-local function if communicators associated with session
were not freed using MPI_COMM_DISCONNECT prior to finalizing the session. In cases
where the association of communicators to sessions is not uniform across MPI processes in
an MPI job, it is possible for the sequence of calls to MPI_SESSION_FINALIZE in one process
to match with different sequences of calls to MPI_SESSION_FINALIZE in other processes.
The semantics of MPI_SESSION_FINALIZE is what would be obtained if the callers initiated
a series of MPI_IALLTOALL calls over all communicators still associated with the session,
followed by a call to MPI_WAITALL. The sequence of calls to MPI_SESSION_FINALIZE by
each process must ensure this type of communication pattern would complete at each process
to avoid deadlock. Note this requirement places restrictions on the way communicators,
windows, and files can be associated with sessions in the event the application does not free
MPI objects prior to invoking MPI_SESSION_FINALIZE.

The following pseudo-code snippets illustrate several correct and incorrect sequences of
calls to MPI_SESSION_FINALIZE. To keep the examples compact, full function names are
abbreviated as indicated in the following table.

MPI Function abbreviation

MPI_SESSION_INIT s_init
MPI_GROUP_FROM_SESSION_PSET g_from_s
MPI_COMM_CREATE_FROM_GROUP c_from_g
MPI_SESSION_FINALIZE s_fin
MPI_COMM_DISCONNECT c_dis

Table 11.1: List of abbreviated function names used in the examples below

Example 11.8 The following code is correct

Process 0 Process 1

--------- ---------

s_init(&s0a) s_init(&s1a)

g_from_s(s0a, "mpi://WORLD", &g0a) g_from_s(s1a, "mpi://WORLD", &g1a)

c_from_g(g0a, "foobar", &cx) c_from_g(g1a,"foobar", &cx)

s_init(&s1b)

g_from_s(s1b, "mpi://WORLD", &g1b)

c_from_g(g0a,"foobar2", &cy) c_from_g(g1b,"foobar2", &cy)

. .

. .

. .

s_fin(&s0a) s_fin(&s1a)

s_fin(&s1b)

In this example, communicators cx and cy are associated with session handle s0a in
process 0 and with s1a and s1b in process 1. This code is correct because the sequence
of two calls to MPI_SESSION_FINALIZE in process 1 matches with the single call to the
function in process 0. The order of calls to MPI_SESSION_FINALIZE in process 1 could be
reversed and the code would remain correct.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



504 CHAPTER 11. PROCESS INITIALIZATION, CREATION, AND MANAGEMENT

Example 11.9 The following code is incorrect

Process 0 Process 1

--------- ---------

s_init(&s0a) s_init(&s1a)

s_init(&s0b) s_init(&s1b)

g_from_s(s0a, "mpi://WORLD", &g0a) g_from_s(s1a, "mpi://WORLD", &g1a)

g_from_s(s0b, "mpi://WORLD", &g0b) g_from_s(s1b, "mpi://WORLD", &g1b)

c_from_g(g0a, "foobar", &cx) c_from_g(g1a, "foobar", &cx)

c_from_g(g0a, "foobar2", &cy) c_from_g(g1b, "foobar2", &cy)

c_from_g(g0b, "foobar3", &cz) c_from_g(g1a, "foobar2", &cz)

. .

. .

. .

s_fin(&s0a) s_fin(&s1a)

s_fin(&s0b) s_fin(&s1b)

This example is incorrect because no sequence of calls to MPI_SESSION_FINALIZE can
be made from either process that will not lead to deadlock owing to the way communicators
were associated with sessions.

Example 11.10 The following code is correct.

Process 0 Process 1

--------- ---------

s_init(&s0a) s_init(&s1a)

s_init(&s0b) s_init(&s1b)

g_from_s(s0a, "mpi://WORLD", &g0a) g_from_s(s1a, "mpi://WORLD", &g1a)

g_from_s(s0b, "mpi://WORLD", &g0b) g_from_s(s1b, "mpi://WORLD", &g1b)

c_from_g(g0a, "foobar", &cx) c_from_g(g1a, "foobar", &cx)

c_from_g(g0a, "foobar2", &cy) c_from_g(g1b, "foobar2", &cy)

c_from_g(g0b, "foobar3", &cz) c_from_g(g1a, "foobar2", &cz)

. .

. .

. .

c_dis(&cx) c_dis(&cx)

c_dis(&cy) c_dis(&cy)

c_dis(&cz) c_dis(&cz)

s_fin(&s0a) s_fin(&s1a)

s_fin(&s0b) s_fin(&s1b)

This example is correct because the application invokes MPI_COMM_DISCONNECT
on the communicators associated with sessions before invoking MPI_SESSION_FINALIZE.

11.3.2 Processes Sets

Process sets are the mechanism for MPI applications to query the runtime. Process sets are
identified by process set names. Process set names have a Uniform Resource Identifier (URI)
format. Two process set names are mandated: "mpi://WORLD" and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


	Abstract
	History
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction to MPI
	1.1 Overview and Goals
	1.2 Background of MPI-1.0
	1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0
	1.4 Background of MPI-1.3 and MPI-2.1
	1.5 Background of MPI-2.2
	1.6 Background of MPI-3.0
	1.7 Background of MPI-3.1
	1.8 Background of MPI-4.0
	1.9 Who Should Use This Standard?
	1.10 What Platforms Are Targets for Implementation?
	1.11 What Is Included in the Standard?
	1.12 What Is Not Included in the Standard?
	1.13 Organization of This Document

	2 MPI Terms and Conventions
	2.1 Document Notation
	2.2 Naming Conventions
	2.3 Procedure Specification
	2.4 Semantic Terms
	2.4.1 MPI Operations
	2.4.2 MPI Procedures
	2.4.3 MPI Datatypes

	2.5 Datatypes
	2.5.1 Opaque Objects
	2.5.2 Array Arguments
	2.5.3 State
	2.5.4 Named Constants
	2.5.5 Choice
	2.5.6 Absolute Addresses and Relative Address Displacements
	2.5.7 File Offsets
	2.5.8 Counts

	2.6 Language Binding
	2.6.1 Deprecated and Removed Interfaces
	2.6.2 Fortran Binding Issues
	2.6.3 C Binding Issues
	2.6.4 Functions and Macros

	2.7 Processes
	2.8 Error Handling
	2.9 Implementation Issues
	2.9.1 Independence of Basic Runtime Routines
	2.9.2 Interaction with Signals

	2.10 Examples

	3 Point-to-Point Communication
	3.1 Introduction
	3.2 Blocking Send and Receive Operations
	3.2.1 Blocking Send
	3.2.2 Message Data
	3.2.3 Message Envelope
	3.2.4 Blocking Receive
	3.2.5 Return Status
	3.2.6 Passing MPI_STATUS_IGNORE for Status
	3.2.7 Blocking Send-Receive

	3.3 Datatype Matching and Data Conversion
	3.3.1 Type Matching Rules
	Type MPI_CHARACTER

	3.3.2 Data Conversion

	3.4 Communication Modes
	3.5 Semantics of Point-to-Point Communication
	3.6 Buffer Allocation and Usage
	3.6.1 Model Implementation of Buffered Mode

	3.7 Nonblocking Communication
	3.7.1 Communication Request Objects
	3.7.2 Communication Initiation
	3.7.3 Communication Completion
	3.7.4 Semantics of Nonblocking Communications
	3.7.5 Multiple Completions
	3.7.6 Non-Destructive Test of status

	3.8 Probe and Cancel
	3.8.1 Probe
	3.8.2 Matching Probe
	3.8.3 Matched Receives
	3.8.4 Cancel

	3.9 Persistent Communication Requests
	3.10 Null Processes

	4 Partitioned Point-to-Point Communication
	4.1 Introduction
	4.2 Semantics of Partitioned Point-to-Point Communication
	4.2.1 Communication Initialization and Starting with Partitioning
	4.2.2 Communication Completion under Partitioning
	4.2.3 Semantics of Communications in Partitioned Mode

	4.3 Partitioned Communication Examples
	4.3.1 Partition Communication with Threads/Tasks Using OpenMP 4.0 or later
	4.3.2 Send-only Partitioning Example with Tasks and OpenMP version 4.0 or later
	4.3.3 Send and Receive Partitioning Example with OpenMP version 4.0 or later


	5 Datatypes
	5.1 Derived Datatypes
	5.1.1 Type Constructors with Explicit Addresses
	5.1.2 Datatype Constructors
	5.1.3 Subarray Datatype Constructor
	5.1.4 Distributed Array Datatype Constructor
	5.1.5 Address and Size Functions
	5.1.6 Lower-Bound and Upper-Bound Markers
	5.1.7 Extent and Bounds of Datatypes
	5.1.8 True Extent of Datatypes
	5.1.9 Commit and Free
	5.1.10 Duplicating a Datatype
	5.1.11 Use of General Datatypes in Communication
	5.1.12 Correct Use of Addresses
	5.1.13 Decoding a Datatype
	5.1.14 Examples

	5.2 Pack and Unpack
	5.3 Canonical MPI_PACK and MPI_UNPACK

	6 Collective Communication
	6.1 Introduction and Overview
	6.2 Communicator Argument
	6.2.1 Specifics for Intra-Communicator Collective Operations
	6.2.2 Applying Collective Operations to Inter-Communicators
	6.2.3 Specifics for Inter-Communicator Collective Operations

	6.3 Barrier Synchronization
	6.4 Broadcast
	6.4.1 Example using MPI_BCAST

	6.5 Gather
	6.5.1 Examples using MPI_GATHER, MPI_GATHERV

	6.6 Scatter
	6.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

	6.7 Gather-to-all
	6.7.1 Example using MPI_ALLGATHER

	6.8 All-to-All Scatter/Gather
	6.9 Global Reduction Operations
	6.9.1 Reduce
	6.9.2 Predefined Reduction Operations
	6.9.3 Signed Characters and Reductions
	6.9.4 MINLOC and MAXLOC
	6.9.5 User-Defined Reduction Operations
	Example of User-Defined Reduce

	6.9.6 All-Reduce
	6.9.7 Process-Local Reduction

	6.10 Reduce-Scatter
	6.10.1 MPI_REDUCE_SCATTER_BLOCK
	6.10.2 MPI_REDUCE_SCATTER

	6.11 Scan
	6.11.1 Inclusive Scan
	6.11.2 Exclusive Scan
	6.11.3 Example using MPI_SCAN

	6.12 Nonblocking Collective Operations
	6.12.1 Nonblocking Barrier Synchronization
	6.12.2 Nonblocking Broadcast
	Example using MPI_IBCAST

	6.12.3 Nonblocking Gather
	6.12.4 Nonblocking Scatter
	6.12.5 Nonblocking Gather-to-all
	6.12.6 Nonblocking All-to-All Scatter/Gather
	6.12.7 Nonblocking Reduce
	6.12.8 Nonblocking All-Reduce
	6.12.9 Nonblocking Reduce-Scatter with Equal Blocks
	6.12.10 Nonblocking Reduce-Scatter
	6.12.11 Nonblocking Inclusive Scan
	6.12.12 Nonblocking Exclusive Scan

	6.13 Persistent Collective Operations
	6.13.1 Persistent Barrier Synchronization
	6.13.2 Persistent Broadcast
	6.13.3 Persistent Gather
	6.13.4 Persistent Scatter
	6.13.5 Persistent Gather-to-all
	6.13.6 Persistent All-to-All Scatter/Gather
	6.13.7 Persistent Reduce
	6.13.8 Persistent All-Reduce
	6.13.9 Persistent Reduce-Scatter with Equal Blocks
	6.13.10 Persistent Reduce-Scatter
	6.13.11 Persistent Inclusive Scan
	6.13.12 Persistent Exclusive Scan

	6.14 Correctness

	7 Groups, Contexts, Communicators, and Caching
	7.1 Introduction
	7.1.1 Features Needed to Support Libraries
	7.1.2 MPI's Support for Libraries

	7.2 Basic Concepts
	7.2.1 Groups
	7.2.2 Contexts
	7.2.3 Intra-Communicators
	7.2.4 Predefined Intra-Communicators

	7.3 Group Management
	7.3.1 Group Accessors
	7.3.2 Group Constructors
	7.3.3 Group Destructors

	7.4 Communicator Management
	7.4.1 Communicator Accessors
	7.4.2 Communicator Constructors
	7.4.3 Communicator Destructors
	7.4.4 Communicator Info

	7.5 Motivating Examples
	7.5.1 Current Practice #1
	7.5.2 Current Practice #2
	7.5.3 (Approximate) Current Practice #3
	7.5.4 Communication Safety Example
	7.5.5 Library Example #1
	7.5.6 Library Example #2

	7.6 Inter-Communication
	7.6.1 Inter-Communicator Accessors
	7.6.2 Inter-Communicator Operations
	7.6.3 Inter-Communication Examples
	Example 1: Three-Group ``Pipeline''
	Example 2: Three-Group ``Ring''


	7.7 Caching
	7.7.1 Functionality
	7.7.2 Communicators
	7.7.3 Windows
	7.7.4 Datatypes
	7.7.5 Error Class for Invalid Keyval
	7.7.6 Attributes Example

	7.8 Naming Objects
	7.9 Formalizing the Loosely Synchronous Model
	7.9.1 Basic Statements
	7.9.2 Models of Execution
	Static Communicator Allocation
	Dynamic Communicator Allocation
	The General Case



	8 Process Topologies
	8.1 Introduction
	8.2 Virtual Topologies
	8.3 Embedding in MPI
	8.4 Overview of the Functions
	8.5 Topology Constructors
	8.5.1 Cartesian Constructor
	8.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE
	8.5.3 Graph Constructor
	8.5.4 Distributed Graph Constructor
	8.5.5 Topology Inquiry Functions
	8.5.6 Cartesian Shift Coordinates
	8.5.7 Partitioning of Cartesian Structures
	8.5.8 Low-Level Topology Functions

	8.6 Neighborhood Collective Communication
	8.6.1 Neighborhood Gather
	8.6.2 Neighbor Alltoall

	8.7 Nonblocking Neighborhood Communication
	8.7.1 Nonblocking Neighborhood Gather
	8.7.2 Nonblocking Neighborhood Alltoall

	8.8 Persistent Neighborhood Communication
	8.8.1 Persistent Neighborhood Gather
	8.8.2 Persistent Neighborhood Alltoall

	8.9 An Application Example

	9 MPI Environmental Management
	9.1 Implementation Information
	9.1.1 Version Inquiries
	9.1.2 Environmental Inquiries
	Tag Values
	Host Rank
	IO Rank
	Clock Synchronization
	Inquire Processor Name


	9.2 Memory Allocation
	9.3 Error Handling
	9.3.1 Error Handlers for Communicators
	9.3.2 Error Handlers for Windows
	9.3.3 Error Handlers for Files
	9.3.4 Error Handlers for Sessions
	9.3.5 Freeing Errorhandlers and Retrieving Error Strings

	9.4 Error Codes and Classes
	9.5 Error Classes, Error Codes, and Error Handlers
	9.6 Timers and Synchronization

	10 The Info Object
	11 Process Initialization, Creation, and Management
	11.1 Introduction
	11.2 The World Model
	11.2.1 Starting MPI Processes
	11.2.2 Finalizing MPI
	11.2.3 Determining Whether MPI Has Been Initialized When Using the World Model
	11.2.4 Allowing User Functions at MPI Finalization

	11.3 The Sessions Model
	11.3.1 Session Creation and Destruction Methods
	11.3.2 Processes Sets
	11.3.3 Runtime Query Functions
	11.3.4 Sessions Model Examples

	11.4 Common Elements of Both Process Models
	11.4.1 MPI Functionality that is Always Available
	11.4.2 Aborting MPI Processes

	11.5 Portable MPI Process Startup
	11.6 MPI and Threads
	11.6.1 General
	11.6.2 Clarifications

	11.7 The Dynamic Process Model
	11.7.1 Starting Processes
	11.7.2 The Runtime Environment

	11.8 Process Manager Interface
	11.8.1 Processes in MPI
	11.8.2 Starting Processes and Establishing Communication
	11.8.3 Starting Multiple Executables and Establishing Communication
	11.8.4 Reserved Keys
	11.8.5 Spawn Example

	11.9 Establishing Communication
	11.9.1 Names, Addresses, Ports, and All That
	11.9.2 Server Routines
	11.9.3 Client Routines
	11.9.4 Name Publishing
	11.9.5 Reserved Key Values
	11.9.6 Client/Server Examples

	11.10 Other Functionality
	11.10.1 Universe Size
	11.10.2 Singleton MPI Initialization
	11.10.3 MPI_APPNUM
	11.10.4 Releasing Connections
	11.10.5 Another Way to Establish MPI Communication


	12 One-Sided Communications
	12.1 Introduction
	12.2 Initialization
	12.2.1 Window Creation
	12.2.2 Window That Allocates Memory
	12.2.3 Window That Allocates Shared Memory
	12.2.4 Window of Dynamically Attached Memory
	12.2.5 Window Destruction
	12.2.6 Window Attributes
	12.2.7 Window Info

	12.3 Communication Calls
	12.3.1 Put
	12.3.2 Get
	12.3.3 Examples for Communication Calls
	12.3.4 Accumulate Functions
	Accumulate Function
	Get Accumulate Function
	Fetch and Op Function
	Compare and Swap Function

	12.3.5 Request-based RMA Communication Operations

	12.4 Memory Model
	12.5 Synchronization Calls
	12.5.1 Fence
	12.5.2 General Active Target Synchronization
	12.5.3 Lock
	12.5.4 Flush and Sync
	12.5.5 Assertions
	12.5.6 Miscellaneous Clarifications

	12.6 Error Handling
	12.6.1 Error Handlers
	12.6.2 Error Classes

	12.7 Semantics and Correctness
	12.7.1 Atomicity
	12.7.2 Ordering
	12.7.3 Progress
	12.7.4 Registers and Compiler Optimizations

	12.8 Examples

	13 External Interfaces
	13.1 Introduction
	13.2 Generalized Requests
	13.2.1 Examples

	13.3 Associating Information with Status

	14 I/O
	14.1 Introduction
	14.1.1 Definitions

	14.2 File Manipulation
	14.2.1 Opening a File
	14.2.2 Closing a File
	14.2.3 Deleting a File
	14.2.4 Resizing a File
	14.2.5 Preallocating Space for a File
	14.2.6 Querying the Size of a File
	14.2.7 Querying File Parameters
	14.2.8 File Info
	Reserved File Hints


	14.3 File Views
	14.4 Data Access
	14.4.1 Data Access Routines
	Positioning
	Synchronism
	Coordination
	Data Access Conventions

	14.4.2 Data Access with Explicit Offsets
	14.4.3 Data Access with Individual File Pointers
	14.4.4 Data Access with Shared File Pointers
	Noncollective Operations
	Collective Operations
	Seek

	14.4.5 Split Collective Data Access Routines

	14.5 File Interoperability
	14.5.1 Datatypes for File Interoperability
	14.5.2 External Data Representation: external32
	14.5.3 User-Defined Data Representations
	Extent Callback
	Datarep Conversion Functions

	14.5.4 Matching Data Representations

	14.6 Consistency and Semantics
	14.6.1 File Consistency
	14.6.2 Random Access vs. Sequential Files
	14.6.3 Progress
	14.6.4 Collective File Operations
	14.6.5 Nonblocking Collective File Operations
	14.6.6 Type Matching
	14.6.7 Miscellaneous Clarifications
	14.6.8 MPI_Offset Type
	14.6.9 Logical vs. Physical File Layout
	14.6.10 File Size
	14.6.11 Examples
	Asynchronous I/O


	14.7 I/O Error Handling
	14.8 I/O Error Classes
	14.9 Examples
	14.9.1 Double Buffering with Split Collective I/O
	14.9.2 Subarray Filetype Constructor


	15 Tool Support
	15.1 Introduction
	15.2 Profiling Interface
	15.2.1 Requirements
	15.2.2 Discussion
	15.2.3 Logic of the Design
	15.2.4 Miscellaneous Control of Profiling
	15.2.5 MPI Library Implementation
	15.2.6 Complications
	Multiple Counting
	Linker Oddities
	Fortran Support Methods

	15.2.7 Multiple Levels of Interception

	15.3 The MPI Tool Information Interface
	15.3.1 Verbosity Levels
	15.3.2 Binding MPI Tool Information Interface Variables to MPI Objects
	15.3.3 Convention for Returning Strings
	15.3.4 Initialization and Finalization
	15.3.5 Datatype System
	15.3.6 Control Variables
	Control Variable Query Functions
	Handle Allocation and Deallocation
	Control Variable Access Functions

	15.3.7 Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Handle Allocation and Deallocation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions

	15.3.8 Events
	Event Sources
	Callback Safety Requirements
	Event Type Query Functions
	Handle Allocation and Deallocation
	Handling Dropped Events
	Reading Event Data
	Reading Event Meta Data

	15.3.9 Variable Categorization
	Category Query Functions
	Category Member Query Functions

	15.3.10 Return Codes for the MPI Tool Information Interface
	15.3.11 Profiling Interface


	16 Deprecated Interfaces
	16.1 Deprecated since MPI-2.0
	16.2 Deprecated since MPI-2.2
	16.3 Deprecated since MPI-4.0

	17 Removed Interfaces
	17.1 Removed MPI-1 Bindings
	17.1.1 Overview
	17.1.2 Removed MPI-1 Functions
	17.1.3 Removed MPI-1 Datatypes
	17.1.4 Removed MPI-1 Constants
	17.1.5 Removed MPI-1 Callback Prototypes

	17.2 C++ Bindings

	18 Backward Incompatibilities
	18.1 Backward Incompatibilities Starting in MPI-4.0

	19 Language Bindings
	19.1 Support for Fortran
	19.1.1 Overview
	19.1.2 Fortran Support Through the mpi_f08 Module
	19.1.3 Fortran Support Through the mpi Module
	19.1.4 Fortran Support Through the mpif.h Include File
	19.1.5 Interface Specifications, Procedure Names, and the Profiling Interface
	19.1.6 MPI for Different Fortran Standard Versions
	19.1.7 Requirements on Fortran Compilers
	19.1.8 Additional Support for Fortran Register-Memory-Synchronization
	19.1.9 Additional Support for Fortran Numeric Intrinsic Types
	Parameterized Datatypes with Specified Precision and Exponent Range
	Support for Size-specific MPI Datatypes
	Communication With Size-specific Types

	19.1.10 Problems With Fortran Bindings for MPI
	19.1.11 Problems Due to Strong Typing
	19.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets
	19.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts
	19.1.14 Special Constants
	19.1.15 Fortran Derived Types
	19.1.16 Optimization Problems, an Overview
	19.1.17 Problems with Code Movement and Register Optimization
	Nonblocking Operations
	Persistent Operations
	One-sided Communication
	MPI_BOTTOM and Combining Independent Variables in Datatypes
	Solutions
	The Fortran ASYNCHRONOUS Attribute
	Calling MPI_F_SYNC_REG
	A User Defined Routine Instead of MPI_F_SYNC_REG
	Module Variables and COMMON Blocks
	The (Poorly Performing) Fortran VOLATILE Attribute
	The Fortran TARGET Attribute

	19.1.18 Temporary Data Movement and Temporary Memory Modification
	19.1.19 Permanent Data Movement
	19.1.20 Comparison with C

	19.2 Support for Large Count and Large Byte Displacement
	19.3 Language Interoperability
	19.3.1 Introduction
	19.3.2 Assumptions
	19.3.3 Initialization
	19.3.4 Transfer of Handles
	19.3.5 Status
	19.3.6 MPI Opaque Objects
	Datatypes
	Callback Functions
	Error Handlers
	Reduce Operations

	19.3.7 Attributes
	19.3.8 Extra-State
	19.3.9 Constants
	19.3.10 Interlanguage Communication


	A Language Bindings Summary
	A.1 Defined Values and Handles
	A.1.1 Defined Constants
	A.1.2 Types
	A.1.3 Prototype Definitions
	C Bindings
	Fortran 2008 Bindings with the mpi_f08 Module
	Fortran Bindings with mpif.h or the mpi Module

	A.1.4 Deprecated Prototype Definitions
	A.1.5 String Values
	Default Communicator Names
	Reserved Data Representations
	Process Set Names
	Info Keys
	Info Values


	A.2 Summary of the Semantics of all Op.-Related Routines
	A.3 C Bindings
	A.3.1 Point-to-Point Communication C Bindings
	A.3.2 Partitioned Communication C Bindings
	A.3.3 Datatypes C Bindings
	A.3.4 Collective Communication C Bindings
	A.3.5 Groups, Contexts, Communicators, and Caching C Bindings
	A.3.6 Process Topologies C Bindings
	A.3.7 MPI Environmental Management C Bindings
	A.3.8 The Info Object C Bindings
	A.3.9 Process Creation and Management C Bindings
	A.3.10 One-Sided Communications C Bindings
	A.3.11 External Interfaces C Bindings
	A.3.12 I/O C Bindings
	A.3.13 Language Bindings C Bindings
	A.3.14 Tools / Profiling Interface C Bindings
	A.3.15 Tools / MPI Tool Information Interface C Bindings
	A.3.16 Deprecated C Bindings

	A.4 Fortran 2008 Bindings with the mpi_f08 Module
	A.4.1 Point-to-Point Communication Fortran 2008 Bindings
	A.4.2 Partitioned Communication Fortran 2008 Bindings
	A.4.3 Datatypes Fortran 2008 Bindings
	A.4.4 Collective Communication Fortran 2008 Bindings
	A.4.5 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings
	A.4.6 Process Topologies Fortran 2008 Bindings
	A.4.7 MPI Environmental Management Fortran 2008 Bindings
	A.4.8 The Info Object Fortran 2008 Bindings
	A.4.9 Process Creation and Management Fortran 2008 Bindings
	A.4.10 One-Sided Communications Fortran 2008 Bindings
	A.4.11 External Interfaces Fortran 2008 Bindings
	A.4.12 I/O Fortran 2008 Bindings
	A.4.13 Language Bindings Fortran 2008 Bindings
	A.4.14 Tools / Profiling Interface Fortran 2008 Bindings
	A.4.15 Deprecated Fortran 2008 Bindings

	A.5 Fortran Bindings with mpif.h or the mpi Module
	A.5.1 Point-to-Point Communication Fortran Bindings
	A.5.2 Partitioned Communication Fortran Bindings
	A.5.3 Datatypes Fortran Bindings
	A.5.4 Collective Communication Fortran Bindings
	A.5.5 Groups, Contexts, Communicators, and Caching Fortran Bindings
	A.5.6 Process Topologies Fortran Bindings
	A.5.7 MPI Environmental Management Fortran Bindings
	A.5.8 The Info Object Fortran Bindings
	A.5.9 Process Creation and Management Fortran Bindings
	A.5.10 One-Sided Communications Fortran Bindings
	A.5.11 External Interfaces Fortran Bindings
	A.5.12 I/O Fortran Bindings
	A.5.13 Language Bindings Fortran Bindings
	A.5.14 Tools / Profiling Interface Fortran Bindings
	A.5.15 Deprecated Fortran Bindings


	B Change-Log
	B.1 Changes from Version 3.1 to Version 4.0
	B.1.1 Fixes to Errata in Previous Versions of MPI
	B.1.2 Changes in MPI-4.0

	B.2 Changes from Version 3.0 to Version 3.1
	B.2.1 Fixes to Errata in Previous Versions of MPI
	B.2.2 Changes in MPI-3.1

	B.3 Changes from Version 2.2 to Version 3.0
	B.3.1 Fixes to Errata in Previous Versions of MPI
	B.3.2 Changes in MPI-3.0

	B.4 Changes from Version 2.1 to Version 2.2
	B.5 Changes from Version 2.0 to Version 2.1

	Bibliography
	General Index
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index



