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Advice to implementors. Owing to the restrictions of the MPI_THREAD_SINGLE

thread support level, implementators are discouraged from making this the default
thread support level for Sessions. (End of advice to implementors.)

MPI_SESSION_FINALIZE(session)

IN session session to be finalized (handle)

C binding
int MPI_Session_finalize(MPI_Session *session)

Fortran 2008 binding
MPI_Session_finalize(session, ierror)

TYPE(MPI_Session), INTENT(INOUT) :: session

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SESSION_FINALIZE(SESSION, IERROR)

INTEGER SESSION, IERROR

This routine cleans up all MPI state associated with the supplied session. Every instantiated
Session must be finalized using MPI_SESSION_FINALIZE. The handle session is set to
MPI_SESSION_NULL by the call.

Before an MPI process invokes MPI_SESSION_FINALIZE, the process must perform all
MPI calls needed to complete its involvement in MPI communications with communicators,
files, and windows associated with the supplied session: it must locally complete all MPI
operations that it initiated and it must execute matching calls needed to complete MPI
communications initiated by other processes. For example, if the process executed a non-
blocking send, it must eventually call MPI_WAIT, MPI_TEST, MPI_REQUEST_FREE, or
any derived function; if the process is the target of a send, then it must post the matching
receive; if it is part of a group executing a collective operation, then it must have completed
its participation in the operation.

The call to MPI_SESSION_FINALIZE does not free objects created by MPI calls; these
objects are freed using MPI_XXX_FREE calls.

Advice to users. As an application can potentially initialize and finalize multiple
sessions, users are advised to free MPI objects associated with a session prior to
invocation of MPI_SESSION_FINALIZE to avoid leaking resources. The preferred way
to free communicators associated with a session is by means of
MPI_COMM_DISCONNECT. (End of advice to users.)

Advice to implementors. An MPI implementation should be able to implement
MPI_SESSION_FINALIZE as a local function provided an application frees all MPI
windows, closes all MPI files, and uses MPI_COMM_DISCONNECT to free all MPI
communicators associated with a session prior to invoking MPI_SESSION_FINALIZE
on the corresponding session handle. (End of advice to implementors.)

An MPI implementation may need to take steps as part of MPI_SESSION_FINALIZE
to insure any pending communication on communicators that were associated with the
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session has been completed prior to return from the function. Consequently,
MPI_SESSION_FINALIZE is a non-local function if communicators associated with session
were not freed using MPI_COMM_DISCONNECT prior to finalizing the session. In cases
where the association of communicators to sessions is not uniform across MPI processes in
an MPI job, it is possible for the sequence of calls to MPI_SESSION_FINALIZE in one process
to match with different sequences of calls to MPI_SESSION_FINALIZE in other processes.
The semantics of MPI_SESSION_FINALIZE is what would be obtained if the callers initiated
a series of MPI_IALLTOALL calls over all communicators still associated with the session,
followed by a call to MPI_WAITALL. The sequence of calls to MPI_SESSION_FINALIZE by
each process must ensure this type of communication pattern would complete at each process
to avoid deadlock. Note this requirement places restrictions on the way communicators,
windows, and files can be associated with sessions in the event the application does not free
MPI objects prior to invoking MPI_SESSION_FINALIZE.

The following pseudo-code snippets illustrate several correct and incorrect sequences of
calls to MPI_SESSION_FINALIZE. To keep the examples compact, full function names are
abbreviated as indicated in the following table.

MPI Function abbreviation

MPI_SESSION_INIT s_init
MPI_GROUP_FROM_SESSION_PSET g_from_s
MPI_COMM_CREATE_FROM_GROUP c_from_g
MPI_SESSION_FINALIZE s_fin
MPI_COMM_DISCONNECT c_dis

Table 11.1: List of abbreviated function names used in the examples below

Example 11.8 The following code is correct

Process 0 Process 1

--------- ---------

s_init(&s0a) s_init(&s1a)

g_from_s(s0a, "mpi://WORLD", &g0a) g_from_s(s1a, "mpi://WORLD", &g1a)

c_from_g(g0a, "foobar", &cx) c_from_g(g1a,"foobar", &cx)

s_init(&s1b)

g_from_s(s1b, "mpi://WORLD", &g1b)

c_from_g(g0a,"foobar2", &cy) c_from_g(g1b,"foobar2", &cy)

. .

. .

. .

s_fin(&s0a) s_fin(&s1a)

s_fin(&s1b)

In this example, communicators cx and cy are associated with session handle s0a in
process 0 and with s1a and s1b in process 1. This code is correct because the sequence
of two calls to MPI_SESSION_FINALIZE in process 1 matches with the single call to the
function in process 0. The order of calls to MPI_SESSION_FINALIZE in process 1 could be
reversed and the code would remain correct.
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Example 11.9 The following code is incorrect

Process 0 Process 1

--------- ---------

s_init(&s0a) s_init(&s1a)

s_init(&s0b) s_init(&s1b)

g_from_s(s0a, "mpi://WORLD", &g0a) g_from_s(s1a, "mpi://WORLD", &g1a)

g_from_s(s0b, "mpi://WORLD", &g0b) g_from_s(s1b, "mpi://WORLD", &g1b)

c_from_g(g0a, "foobar", &cx) c_from_g(g1a, "foobar", &cx)

c_from_g(g0a, "foobar2", &cy) c_from_g(g1b, "foobar2", &cy)

c_from_g(g0b, "foobar3", &cz) c_from_g(g1a, "foobar2", &cz)

. .

. .

. .

s_fin(&s0a) s_fin(&s1a)

s_fin(&s0b) s_fin(&s1b)

This example is incorrect because no sequence of calls to MPI_SESSION_FINALIZE can
be made from either process that will not lead to deadlock owing to the way communicators
were associated with sessions.

Example 11.10 The following code is correct.

Process 0 Process 1

--------- ---------

s_init(&s0a) s_init(&s1a)

s_init(&s0b) s_init(&s1b)

g_from_s(s0a, "mpi://WORLD", &g0a) g_from_s(s1a, "mpi://WORLD", &g1a)

g_from_s(s0b, "mpi://WORLD", &g0b) g_from_s(s1b, "mpi://WORLD", &g1b)

c_from_g(g0a, "foobar", &cx) c_from_g(g1a, "foobar", &cx)

c_from_g(g0a, "foobar2", &cy) c_from_g(g1b, "foobar2", &cy)

c_from_g(g0b, "foobar3", &cz) c_from_g(g1a, "foobar2", &cz)

. .

. .

. .

c_dis(&cx) c_dis(&cx)

c_dis(&cy) c_dis(&cy)

c_dis(&cz) c_dis(&cz)

s_fin(&s0a) s_fin(&s1a)

s_fin(&s0b) s_fin(&s1b)

This example is correct because the application invokes MPI_COMM_DISCONNECT
on the communicators associated with sessions before invoking MPI_SESSION_FINALIZE.

11.3.2 Processes Sets

Process sets are the mechanism for MPI applications to query the runtime. Process sets are
identified by process set names. Process set names have a Uniform Resource Identifier (URI)
format. Two process set names are mandated: "mpi://WORLD" and
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