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Shared Memory Synchronization – The Text Basis

MPI-3.0 Sect.11.2.3 on MPI_WIN_ALLOCATE_SHARED

• page 409, line 16

“The locally allocated memory can be the target of load/store accesses by 

remote processes;”

• page 410, line 15-21

“The consistency of load/store accesses from/to the shared memory as 

observed by the user program depends on the architecture. A consistent 

view can be created in the unified memory model (see Section 11.4) by 

utilizing the window synchronization functions (see Section 11.5) or 

explicitly completing outstanding store accesses (e.g., by calling 

MPI_WIN_FLUSH). MPI does not define semantics for accessing shared 

memory windows in the separate memory model.”
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MPI_Win_fence

Section 11.5 Synchronization Calls

• Page 437 lines 44ff

“The MPI_WIN_FENCE collective synchronization call supports a simple 

synchronization pattern that is often used in parallel computations: 

namely a loosely-synchronous model, where global computation phases 

alternate with global communication phases. This mechanism is most 

useful for loosely synchronous algorithms where the graph of 

communicating processes changes very frequently, or where each 

process communicates with many others. 

This call is used for active target communication. An access epoch at an 

origin process or an exposure epoch at a target process are started and 

completed by calls to MPI_WIN_FENCE. A process can access windows at 

all processes in the group of win during such an access epoch, and the 

local window can be accessed by all processes in the group of win during 

such an exposure epoch.”
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MPI_Win_fence

Rank 0

MPI_Win_fence

MPI_Put(val_1,…to A in win on rank 1)

MPI_Win_fence

Rank 1

MPI_Win_fence

MPI_Win_fence

buf=A

print buf

With RMA calls

May be repeated

Rank 0

MPI_Win_fence

A = val_1 (A is in shared memory win)

MPI_Win_fence

Rank 1

MPI_Win_fence

MPI_Win_fence

buf=A

print buf

Shared memory expectation,

based on cited MPI-3.0 wording:

First fence is to switch from computational to 

exposure/access epoch.

Second fence is needed to locally and remotely 

finish the put operation, and to synchronize, i.e., 

to inform process rank 1 that data in A is 

available, and to switch back to the 

computational epoch, i.e., that A can now be 

locally loaded in process rank 1. 

First fence is to switch from computational to 

exposure/access epoch.

Second fence is needed to locally and remotely 

finish the put operation, and to synchronize, i.e., 

to inform process rank 1 that data in A is 

available, and to switch back to the 

computational epoch, i.e., that A can now be 

locally loaded in process rank 1. 
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MPI_Win_fence

Rank 0

A=val_1 (A is in win on rank 0)

MPI_Win_fence

MPI_Win_fence

Rank 1

MPI_Win_fence

MPI_Get(buf,..win)

MPI_Win_fence

print buf

Rank 0

A=val_1 (A is in shared memory window win)

MPI_Win_fence

MPI_Win_fence

Rank 1

MPI_Win_fence

buf = A

print buf

MPI_Win_fence

With RMA calls

Shared memory expectation,

based on cited MPI-3.0 wording:

May be repeated

First fence is needed to synchronize, i.e., to 

inform process rank 1 that data in A is available, 

i.e., to switch from computational to 

exposure/access epoch.

Second fence is needed to locally and remotely 

finish the get operation and to switch back to the 

computational epoch, i.e., that A can now be 

overwritten in process rank 0. 

First fence is needed to synchronize, i.e., to 

inform process rank 1 that data in A is available, 

i.e., to switch from computational to 

exposure/access epoch.

Second fence is needed to locally and remotely 

finish the get operation and to switch back to the 

computational epoch, i.e., that A can now be 

overwritten in process rank 0. 
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MPI_Win_fence on shared memory can be summarized with:

Process rank 0

A=val_1

MPI_Win_fence

load(B)

MPI_Win_fence

C=val_3

MPI_Win_fence

Process rank 1

MPI_Win_fence

load(A)

MPI_Win_fence

B=val_2

MPI_Win_fence

C=val_4

load(C)

Three rules for A, B, C in a shared memory windows:
(accessed in both processes through the same variable name)

It is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the 

store of val_2 in P1 (read-write-rule) 

… that the load(C) in P1 loads val_4

(write-write-rule)
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MPI_Win_post / _start / _complete / _wait  (based on MPI-3.0 pages 438-439) 

Rank 0

A=val_1 (A is in win)

MPI_Win_post

MPI_Win_wait

Rank 1

MPI_Win_start

MPI_Get(buf,..win)

MPI_Win_complete

print buf

With RMA calls Shared memory expectation:

May be repeated

MPI_Win_post + _start is needed to synchronize, i.e., to 

inform process rank 1 that data in A is available, i.e., to 

switch from computational to exposure/access epoch.

MPI_Win_complete is needed to locally and remotely 

finish the get operation and to switch back to the 

computational epoch in process rank 1. 

MPI_Win_wait is needed to finish the exposure/access 

epoch in process rank 0, i.e., that A can now be 

overwritten.

Rank 0

A=val_1 (A is in shared memory window win)

MPI_Win_post

MPI_Win_wait

Rank 1

MPI_Win_start

buf = A

print buf

MPI_Win_complete

MPI_Win_post + _start is needed to synchronize, i.e., to 

inform process rank 1 that data in A is available, i.e., to 

switch from computational to exposure/access epoch.

MPI_Win_complete is needed to locally and remotely 

finish the get operation and to switch back to the 

computational epoch in process rank 1. 

MPI_Win_wait is needed to finish the exposure/access 

epoch in process rank 0, i.e., that A can now be now 

overwritten.
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MPI_Win_post / _start / _complete / _wait

Rank 0

A=val_old (A is in win)

MPI_Win_post

MPI_Win_wait

buf = A

print buf

Rank 1

MPI_Win_start

MPI_Put(val_1,..to A)

MPI_Win_complete

With RMA calls Shared memory expectation:

May be repeated

MPI_Win_post + _start is needed to synchronize, i.e., to 

inform process 1 that data in A can be overwritten, i.e., 

to switch from computational to exposure/access epoch.

MPI_Win_complete is needed to locally and remotely 

finish the put operation and to synchronize, i.e., to 

inform process  0 that new data in A is available. 

MPI_Win_wait is needed to finish the exposure/access 

epoch in process rank 0, i.e., that A can now be locally 

loaded.

Rank 0

A=val_old (A is in shared memory window win)

MPI_Win_post

MPI_Win_wait

buf = A

print buf

Rank 1

MPI_Win_start

A = val_1

MPI_Win_complete

MPI_Win_post + _start is needed to synchronize, i.e., to 

inform process  1 that data in A can be overwritten, i.e., 

to switch from computational to exposure/access epoch.

MPI_Win_complete is needed to locally and remotely 

finish the put operation and to synchronize, i.e., to 

inform process  0 that new data in A is available. 

MPI_Win_wait is needed to finish the exposure/access 

epoch in process rank 0, i.e., that A can now be locally 

loaded.
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Summarizing MPI_Win_post / _start / _complete / _wait

Process rank 0

A=val_1

MPI_Win_post

load(B)

MPI_Win_post

C=val_3

MPI_Win_post

Process rank 1

MPI_Win_start

load(A)

MPI_Win_start

B=val_2

MPI_Win_start

C=val_4

load(C)

Three rules for A, B, C in a shared memory windows:
(accessed in both processes through the same variable name)

It is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the 

store of val_2 in P1 (read-write-rule) 

… that the load(C) in P1 loads val_4

(write-write-rule)
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Summarizing MPI_Win_post / _start / _complete / _wait

Process rank 0

A=val_1

MPI_Win_complete

load(B)

MPI_Win_complete

C=val_3

MPI_Win_complete

Process rank 1

MPI_Win_wait

load(A)

MPI_Win_wait

B=val_2

MPI_Win_wait

C=val_4

load(C)

Three rules for A, B, C in a shared memory windows:
(accessed in both processes through the same variable name)

It is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the 

store of val_2 in P1 (read-write-rule) 

… that the load(C) in P1 loads val_4

(write-write-rule)
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Summarizing MPI_lock / _unlock

Process rank 0

MPI_Win_lock

A=val_1

MPI_Win_unlock

MPI_Win_lock

load(B)

MPI_Win_unlock

MPI_Win_lock

C=val_3

MPI_Win_unlock

Process rank 1

MPI_Win_lock

load(A)

MPI_Win_unlock

MPI_Win_lock

B=val_2

MPI_Win_unlock

MPI_Win_lock

C=val_4

load(C)

MPI_Win_unlock

Three rules for A, B, C in a shared memory windows (in both processes with the same name)

and for the case that the lock in process 0 is granted before process 1:

It is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the 

store of val_2 in P1 (read-write-rule) 

… that the load(C) in P1 loads val_4

(write-write-rule)
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It is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the 

store of val_2 in P1 (read-write-rule) 

… that the load(C) in P1 loads val_4

(write-write-rule)

Ticket 456 - Rolf Rabenseifner

Summarizing MPI_Win_sync

Three rules for A, B, C in a shared memory windows (in both processes with the same name):

Process rank 0

A=val_1
MPI_Win_sync
Any-process-sync

load(B)
MPI_Win_sync
Any-process-sync

C=val_3
MPI_Win_sync
Any-process-sync

Process rank 1

Any-process-sync
MPI_Win_sync
load(A)

Any-process-sync
MPI_Win_sync
B=val_2

Any-process-sync
MPI_Win_sync
C=val_4
load(C)

"Any-process-sync" may be done with methods from MPI (e.g. with 

send-->recv as in Example 11.13, but also with some synchronization 

through MPI shared memory loads and stores as in Example 11.14).
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Summarizing these rules

• Always three rules: W-R,  R-W,  W-W

• All is based on the small MI-3.0 text

“A consistent view can be created in the unified memory model (see Section 

11.4) by utilizing the window synchronization functions (see Section 11.5)”

• and the description in Section 11.5, pages 437-439.
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Open questions

• How to get the details right?

• (A) Remote shared memory load/store 

= Remote memory access operation (RMA operations)

in the sense of Section 11.7 Semantics and Correctness

or

• (B) Saying that RMA operations are only RMA procedure calls

and writing a new section on 

The semantics of Shared Memory Synchronization

(in the RMA-WG-telcon on … we preferred this second approach)

or

• (C) Saying that RMA operations are only RMA procedure calls

and removing the shared memory consistency-requirement 

on MPI-3.0 page 410, line 15-21
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Pros and Cons

(A) RMA Operations 

= Both, shared memory RMA (load/store) + RMA routines (Get, Put, …)

• Pro: This is more or less the current text

• Con: Hard to read, text may not fit to both, hard to fix such details

• Con: “Remote” and “local” shared memory load/store does not fit to the

nature of shared memory: We only have accesses from different 

processes, no process is “owner” of a portion. 

(B) New section on shared memory load/store synchronization semantics

• Pro: Can define exactly the shared memory synchronization services

• Pro: Maintenance independent of RMA operations

• Con: Not easy to fit exactly to the current text and its implied expectations

(C) No shared memory synchronization semantics

• Pro: No conflict with missing/vague language/compiler support

• Con: Portable MPI programming is language dependent

• Con: Risk of double/multiple memory fences (one/some inside of MPI process-to-

process synchronization and one/some on application level ���� high latency!
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Concentrating on Performance Aspects

(A) + (B) No shared memory synchronization semantics

• Pro: MPI library can minimize the total number of memory fences

• Pro: User need not to learn about

− C11 / C++11, Section 7.17.4.1 The atomic_thread_fence function

page 278-278, http://port70.net/~nsz/c/c11/n1570.pdf, (pdf: 296-297)

− How to use C11 atomic_thread_fence through Fortran???

• Pro: Fortran only need to add C11 memory/optimization semantics

to buffers declared as ASYNCHRONOUS

• Con: If an application uses on a shared memory window both,

shared memory load/store and MPI_Put/Get, 

then MPI synchronization may issue not needed memory fences

− Can be easily resolved with appropriate assertions
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Concentrating on Performance Aspects

(C) shared memory fences as part of MPI RMA synchronization

without further fences on application programming level

• Con: MPI library can minimize the total number of memory fences

− Risk of double/multiple memory fences (one/some inside of MPI process-to-

process synchronization and one/some on application level ���� high latency!

• Con: User need to learn about

− C11 / C++11, Section 7.17.4.1 The atomic_thread_fence function

page 278-278, http://port70.net/~nsz/c/c11/n1570.pdf, (pdf: 296-297)

• Con: No support for Fortran

• Con: Does not fit to currently implemented behavior

− Including books / tutorials / publications from forum members

• Con: Not backward compatible to current text

− Requires long-term changes � deprecating current text � removing
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Ticket #456 as a possible solution

• Based on the rules on slides 6 and 9-12

• These rules should be a complete set of necessary and sufficient rules

• Parts:

− “The rules for RMA operations do not apply to these remote load/store accesses”

� MPI-3.0 Sect.11.2.3 on MPI_WIN_ALLOCATE_SHARED, page 409, lines 13-22

− “The visibility of loads and stores in several processes may not be at the same time 

and not in the same sequence” + a rationale

� MPI-3.0 Section 11.4 Memory Model, page 436, lines 37-41 –

text on the RMA unified model

Remark: I do not describe "local" and "remote" loads/stores.

I describe loads and stores "from different processes".  

− New Section “Shared Memory Synchronization”

� before MPI-3.0 11.5.5 Assertions, page 451, line 4

− Assertions: “stores” � “local stores” +   “In the case of a shared memory window 

(i.e., allocated with MPI_WIN_ALLOCATE_SHARED), such local stores can be issued to 

any portion of the shared memory window.”
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Ticket #456 as a possible solution (continued)

• Parts (continued):

− Necessary corrections to passed ticket #413:

− Advice to users: can be removed due to new Section “Shared Memory 

Synchronization”

− Correction to example about MPI_Win_sync:

Second pair of MPI_Win_sync due to read-write-rule 

(was overseen when developing this example)

− New MPI shared memory example with a MPI-communication-free synchronization 
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Open questions

• I understood the implications for shared memory synchronizations with

o MPI_Win_fence

o MPI_Win_post / _start / _complete / _wait

o MPI_Win_lock / _unlock

o MPI_Win_sync

• I did not understood nor included

o MPI_Win_lock_all / _unlock_all

o MPI_Win_flush / _flush_all / _flush_local / _flush_local_all

Should be included if useful and/or implied from the existing consistency rule

• Which additional rules do we need in the next Fortran standard for 

ASYNCHRONOUS buffers?

o Can be included when including TS29113 into next Fortran standard. 
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Other problems:

MPI-3.0, page 248 lines 1-6 define for MPI_COMM_SPLIT_TYPE():

“MPI_COMM_TYPE_SHARED this type splits the communicator into 

subcommunicators, each of which can create a shared memory region.

Advice to implementors. Implementations can dene their own types, or use the 

info argument, to assist in creating communicators that help expose platform-

specific information to the application. (End of advice to implementors.)”

• Missing information: MPI_Win_allocate_shared() is allowed on any 

communicator with a group of processes being a subgroup the group of 

processes of the returned subcommunicator. On such communicator, 

MPI_Win_allocate_shared() will return a window in the unified model.

• Can be included into this ticket or handled separately.
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