349: Dynamic Widow
Displacements

RMA WG Plenary Presentation
June 6, 2013

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/349

What’s the problem?

 Dynamic windows require arithmetic on MPI_Aint values
that represent addresses
— Indexing into an array
— Accessing a field in a struct

* Arithmetic on MPI_Aints that represent addresses cannot
be done portably
— MPI_Aints are signed integers, but addresses ain’t (are not)

— Value is relative to MPI_BOTTOM, which varies across processes
and language bindings (e.g., F*****N)
e MPI_BOTTOM is address of a variable in a common block
— Arithmetic can overflow!
— Arithmetic overflow behavior is not specified

Dynamic Window Displacement
Arithmetic Example

Rank p Rank g

double array[1000]; MPI Aint array disp;
MPI Aint array disp; i
o MPI Bcast(&array disp,p);
MPI Win_attach(array);

MPI Get address(array, MPI Get(array disp +
&array disp); i*sizeof (double), ..);

MPI Bcast(&array disp,p);

This can overflow!

Proposed Solution

* Add a function that can “safely” add an
address and a displacement

* Implementation:
— Must correctly handle overflows
— Just add them, if system is two’s complement

Proposed Text (draft)

MPI Aint MPI Aint _add(MPI_Aint base, MPI Aint disp)

This function produces a new MPI_Aint value that is
equivalent to the sum of the base and disp arguments, where
base represents an address and disp represents a signed
integer displacement. The value of base may be relative to a
non-zero value of MPI_BOTTOM that is unknown at the
process performing the call to MPI_Aint_add. The addition is
performed in a manner that results in the correct MPI_Aint
representation of the output address, as if the process that
originally produced base had called:

MPI Get address((char *) base + disp, &out addr)

Straw Polls

* How would you vote for this proposal?
— () yes, () no, () abstain

 Can we handle this as an erratum?
— () ves, () no, () abstain

