


This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.



att'u*-.-ã

Chapter 11

One-Sided Communications

11. 1 Introd uction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes rnay not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer par-ameters.

This may require all processes to participate in a time-consuming global computation, or
to periodically poll for potential comrnunication requests to receive and act upon. The use

of RMA comrnunication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignrnent of the forrn A =
B(map), where map is a permutation vector, and A, B and map are distributed in the same
l1tannel.

Message-passing communication achieves two effectst cornrnun'icati,on of data from
sender to receiver; and syncÌr,ron'ization of sender with receiver. The RMA design sepa-
rates these two functions. [Three]The following comrnunication calls are provided:

MPI-COMPARE-AND-SWAP (remote atomic s,,¡/ap operations), MPI-RPUT, MPI-RGET,
MPI-RACCUMULATE and MPI-RGET-ACCUMULATE, When a reference is made to "ac-

" operations in the following, it refers to the following operations:
MPI-ACCUMULATE, MPI-GET-ACCUMULATE, MPI-FETCH-AND-OP,

assumption about memory consistency and is highly portable. This model is similar to
that of weakly coherent memory systems: correct ordering of memory accesses has to be
imposed by the user, using synchronization calls; for efficiency, the implementation can
delay communication operations until the synchronization calls occur, The second model
can exploit cache-coherent hardware and hardware-accelerated one-sided operations which
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CHAPTER 11. ONE-SIDED COMMUNICA'TIONS

are commonly available in high-performance systems. In this model, communication can
be independent of synchronization calls. The two different models are discussed in detail
in Section 11.4. A large number of synchronization calls are provided for both models to
support different synchronization styles.

The design of the RMA functions allows implementors to take advantage l, il many
cases,] of fast or asynchronous communication mechanisns provided by various platforms,
such as coherent or noncoherent shared memory, DMA engines, hardware-supported put/get
operations, cornrnunication coprocessors, etc. The rnost frequently used RMA communica-
tion mechanisms can be layer-ed on top of message-passing. However, support for asyn-
chronous communication agents in software (handlers, threads, etc.) [is]might be needed,
for certain RMA functions, in a distributed memory environrnent.

We shall denote by origin the process that performs the call, and by target the
process in which the memor), is accessed. Thus, in a put operation, source:origin and
destination:target; in a get operation, source:target and destination:origin.

lL2 lnitialization

[The initialization operation]MPI provides [two]three initialization functions,
M Pl-Wl N-CREATEI and ], M Pl-Wl N-ALLOCATE, and M Pl-Wl N-CREATE-DYNAM I C that
are collective on an intracommunicator. MPI-WIN-CREATE allows each process lin an
irrtracomrnunicatol group] to specify [, in a collective opelation,] a "window" in its memory
that is made accessible to accesses by remote processes. The call returns an opaque object
that represents the group of processes that own and access the set of windows, and the
attributes of each window, as specified by the initialization call. MPI-WlN-ALLOCATE
differs from MPI-WIN-CREATE in that the user does not pass allocated memory;
MPI-WIN-ALLOCATE returns a pointer to memory allocated by the MPI implementation.
MPI-WIN-CREATE-DYNAMIC creates a window that allows the user to dynamically control
which memory is exposed by the window.

L7.2.L Window Creation

MPI-WlN-CREATE(base, size, disp-unit, info, comm, win)

N

N

N

N

N

base

srze

disp- u n it

info

comm

wtn

initial acldless of u'inclow (choice)

size of window in bytes (non-negative integer)

local unit size for clisplacements, in bytes (positive in-

teger')

info argument (handle)

intra-communicator (liandle)

r,vindow ob.ject returned bv the call (handle)OUT

int MPI-V'lin-create(void *base, MPI-Aint size, int disp-unit, MPI-Info info,
MPI-Comm cortrm, MPI-VJin *win)

MPI-Ì'IIN-CREATE (BASE, SIZE, DISP_UNIT, INFO , COMM, I'IIN, IERROR)
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<type> BASE(*)
]NTEGER (KIND=MPI-ADDRESS-KIND) SIZE
INTEGER DISP-UNÏT, INFO, COMM, I¡IIN, IERROR
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{static MPI::!'lin MPI::lrlin::Create(const void+ base, MPI::Aint size, int
disp-unit, const MPI: : Info& info, const MPI : : Intracomm& conrn)

(bi,ndi,ng deprecated,' see Sect'ion 15.2) \
This is a collective call executed by all processes in the group of comm. It retur-ns

a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.

accumulate-ops - if set to same-op, then the implementation will assume that all concurrent
38
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4I
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43

44

Adui,ce to users. (COMMBNT: option 1:) If windows are passed to libraries then the 4s

user needs to ensure that the info keys specified at window creation are communicated 46

to the called library which might need to constrain the operations on the passed 47

window. 48

A process may elect to expose no memory by specifying size : 0. t2

The displacement unit argunent is provided to facilitate address arithmetic in RMA 13

operations: the target displacement argument of an RMA operation is scaled by the factor 14

disp-unit specified by the target process, at window creation. 1s

Rati,onale. The window size is specified using an address sized integer) so as to allow l;
windows that span more than 4 GB of address space. (Even if the physical memory 18

size is less than 4 GB, the address range may be larger than 4 GB, if addresses are 1e

not contiguorc.) (End of rationale.) 20

Ad,ui,ce to users. Cornmon choices for disp-unit are 1 (no scaling), and (in C syntax) :t"
sizeof (type), for a window that consists of an array of eÌements of type type. The 

23

later choice will allow one to use array indices in RMA calls, and have those scaled 
24

correctly to byte displacements, even in a heterogerìeous environment. (End of adui,ce 
2s

to users.) 
26

The info argument provides optimization hints to the runtine about the expected. usage 27

pattern of the window. The following info key[ is]s are predefrned: 2a

no-locks - if set to true, then the implementation may assurrre that the local window is ::
never locked (bV a call to MPI-WIN-LOCK or MPI-WIN-LOCK-ALL). This implies 31

that this window is not used for 3-party communication, and RMA can be implemented 32

with no (less) asynchronous agent activity at this process. 33

accumulate-ordering - controls the ordering of accumulate operations at the target. See ::
Section 11,8.2 for details. 36

do¿s -l'lnis

eXct.¡alc C.hs1.

accumulate calls to the same target address will use the same operation. If set to
same-op-no-op, then the implementation will assume that all concurrent accumulate
calls to the same target address will use the same operation or MPI-NO-OP. This can
eliminate the need to protect access for certain operation types where the hardware
can guarantee atomicity.
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CHAPTER 11. O¡\IE-SIDBD COMMUNICATIO¡\rS

(COMMENT: option 2:) The info query mechanism described in Section ?7 can
be used to query the specified info arguments windows that have been passed to a
library. It is recommended that libraries check attached info keys for each passed

window. (End of aduice to users.)

The various processes in the group of comm may specify completely different target
windows, in location, síze, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular pr"ocess fit their specific target window this
should pose no problem. The sarne area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to [erroneous]undefined results.

Rati,onale. The reason for specifying the memory that may be accessed from another
process in an RMA operation is to permit the programmer to specify what memory
can be a target of RMA operations and for the implementation to enforce that spec-
ification. For example, with this definition, a server process can safely allow a client
process to use RMA operations, knowing that (under the assumption that the MPI
implementation does enforce the specified limits on the exposed memory) an error in
the client cannot affect any memory other than what was explicitly exposed. (End of
rationale.)

Adui,ce to users. A window can be created in any part of the process rnernory.
However, on sorne systerns, the perfolmance of windows in memory allocated by
MPI-ALLOC-MEM (Section 8.2, page 296) will be better. Also, on some systerns,
performance is improved when window boundaries are aligned at "natural" boundaries
(word, double-wor-d, cache line, page fiarne, etc.). (End of adui,ce to users.)

Adui,ce to i,mplementors. In cases where RMA operations use different mechanisms
in different rnernot')¡ areas (e.g., load/store in a shared lnemory segment, and an asyn-
chronous handler in private rnemory), the MPI-WlN-CREATE call needs to flgure out
which type of rrìenrory is used for the window. To clo so, M Pl maintains, internally, the
list of nlenroly segments allocated by MPI-ALLOC-MEM, or by other', irnplementa-
tion specific, rnechanisms, together with information on the type of meìnory segment
allocated. When a call to MPI WIN CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

Vendors rnay provide additional, irnplernentation-specific mechanisms to allocate or
to specify rnemory regions that are preferable for use in one-sided communication. In
particular, such mechanisrns can be used to place static variables into such preferred
regions.

Implementors should document any performance irnpact of window alignment. (End
of adui,ce to i,mplementors.)
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LL.2.2 Window That Allocates Memory

MPI-WlN-ALLOC E(size, disp-unit,

lN size

lN disp-unit

lN info

lN comm

OUT baseptr

OUT win

info, comm, baseptr, win)

size of window in bybes (non-negative integer)

local unit size for displacements, in bytes (positive in-
teger)

info argument (handle)

intra-communicator (handle)

initial address of window (choice)

window object returned by the call

8
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11

(handle) 13

14
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int MPI-Win-allocate(MPI-Aint size, int disp-unit, MPI-Info info,
MPI_Comn comm¡ , MPI_lJin l.r¡in) 16

COMM, BASEPTR, l,¡IN, IERROR) 18

ïNTEGER DISP-UNIT, INF0 , COMM, Î¡llN, IERR0R 1s

INTEGER(KIND=MPI-ADDRESS-KIND) SIZE, BASEPTR 20

This is a collective call executed by all processes in the group of 21

comm. On each process, it allocates memory of at least size size bytes, returns a pointer to 22

it, and returns a window object that can be used by all processes in comm to perform RMA 23

operations. The returned memory consists of size bytes local to each process, starting at 24

address baseptr and is associated with the window as if the user called MPI-WlN-CREATE 25

on existing memory. The size argument may be different at each process and size : 0 is 26

valid, however, a library might allocate and expose more memory in ord.er to create a fast, 27

globally symmetric allocation. The discussion of MPI-ALLOC-MEM in Section 8.2 also 2a

applies to MPI-WIN-ALLOCATE. 2e

Rationale. By allocating (potentially aligned) memory instead of allowing the user ::
to pass in an arbitrary buffer, this call can improve the performance for systems with 32

remote direct memory access significantly. This also permits the collective allocation 33

of memory and supports what is sometimes called the "symmetric allocation" model 34

that can be more scalable (for example, the implementation can arrange to return 35

an address for the allocated memory that is the same on all processes). (End of 36

rationale.) 37

The info argument can be used to specify hints similar to the info argument for ::
MPI-WIN-CREATE and MPI-ALLOC-MEM. The following info key is predefined: 40

same-size - if set to true, then the implementation may assume that the argument size is ::
identical on all processes. 

48

LL.2.3 Window of Dynamically Attached Memory ::
46

The MPI-2 RMA model requires the user to identify the local memory that may be a 4z

target of RMA calls at the time the window is created. This has advantages for both 48
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CHAPTER 11. ONE-SIDED COMMUNICATIONS

the programmer (only this memory can be updated by one-sided operations and provides
greater safety) and the MPI implementation (special steps may be taken to make one-
sided access to such memory more efficient). However, consider implementing a modifiable
linked list using RMA operations; as new items are added to the list, memory must be

allocated. In a C or C+* program, this memory is typically allocated using malloc or
nerr respectively. In MPI-2 RMA, the programmer must create an MPI-Win object with a
predefined amount of memory and then implement routines for allocating memory from
within that memory. In addition, there is no easy way to handle the situation where
the predefined amount of memory turns out to be inadequate. To support this model,
the routine MPI-WIN-CREATE-DYNAMIC creates an MPI-Win that makes it possible to
expose memory without remote synchronization. This is combined with local routines to
add/remove memory from this window.

M Pl-Wl N-CREATE-DYNAMIC(info, comm, win)

info argument (handle)

intra-communicator (handle)

window object returned by the call (handle)

int MPl-Vlin-create-dynamic(MPI-Info info, MPI-Comn conn, MPI-l.lin +r¡in)

MPI-I,IIN-CREATE-DYNAMIC(INFO, COMM, I¡¡IN, IERR0R)

INTEGER INFO, COMM, I,JIN, IERROR

This is a collective call executed by all processes in the group of comm. It returns
a window win without memory attached. Existing process memory can be attached as

described below. This routine returns a window object that can be used by these processes

namic window.
The info argument can be used to specify hints similar to the info argument for

MPI-WIN-CREATE.
In the case of a window created with MPI-WIN-CREATE-DYNAMIC, the target-disp

for all RMA functions is the address at the target. I.e., the effective window-base is
MPI-BOTTOM and the disp-unit is one. Users should use MPI-GET-ADDRESS at the target
process to determine the address of a target memory location and communicate this address
to the origin process.

Aduice to implementors. In environments with heterogeneous data representations,
care must be exercised in communicating addresses between processes. For example,
it is possible that an address valid at the target process (for example, a 64-bit pointer)
cannot be expressed as an address at the origin (for example, the origin uses 32-bit
pointers). For this reason, a portable MPI implementation should ensure that the
type MPI-AINT (cf. Table 3.3 on Page 29) is able to store addresses from any process.

(End of adu'ice to i,mplementors.)

Memory in this window may not be used as the target of one-sided accesses in this
window until it is attached using the function MPI-WIN-ATTACH. That is, in addition to

lN info

lN comm

OUT win
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11,2, INITIALIZATIO]V 7

using MPI-WIN-CREATE-DYNAMIC to create an MPI window, the user must use 1

MPI-WIN-ATTACH before any local memory may be the target of an MPI RMA operation. 2

Only memory that is currently accessible may be attached. g

:
MPI-W|N-ATTACH(win, base, size) 

6

lN win window object (handle) 7

lN base initial address of memory to be attached a

lN size size of memory to be attached in bytes :

int MPl-Llin-attach(MPl-ltin win, void xbase, MPI-Aint size) t;

MPI-I¡IN-ATTACH(I¡¡IN, BASE, SIZE, IERROR) 13

INTEGER I.JIN, IERROR 14

<type> base 15

INTEGER (KIND=MPI-ADDRESS-SIZE) síze 16

Attaches a local memory region beginning at base for remote access within the given l:
window. The entire region of memory specified must not be attached with the window win, 1s

that is, attaching overlapping memory concurrently within the same window are erroneous. 20

The argument win must be a window that was created with MPI-WIN-CREATE-DYNAMIC. 27

Multiple (but non-overlapping) memory regions may be attached to the same window. 22

Rationale. Requiring that memory be explicitly attached before it is exposed to ::
one-sided access by other processes can signifrcantly simplify implementations and 2s

improve performance. The ability to make memory available for RMA operations 26

without requiring a collective MPI-WIN-CREATE call is needed for some one-sided 27

programming models. (End of rationale.) 2a

Ad,aice to users. Memory registration may require the use of scarce resources; thus, ::
attaching large regions of memory is not recommended in portable programs. Memory 31

registration may fail if sufficient resources are not available; this is similar to the 32

behavior of MPI-ALLOC-MEM. 33

The user is also responsible for ensuring that memory registration at the target has s4

completed before a process attempts to target that memory with an MPI RMA call. 35

Performing an RMA operation to memory that has not been attached from a window 36

created with MPI-WlN-CREATE-DYNAMIC is erroneous. (End, of ad,uice to users.) :"

Aduice to i,rnplernentors. A high-quality implementation will attempt to make as 3e

much memory available for registration as possible. Any limitations should be docu- 40

mented by the [vendor]implementor. (End of aduice to implernentors.) 41

Memory registration is a local operation as defined by MPI; that means that the call is ::
not collective and completes without requiring any MPI routine to be called on any other 44

process. Memory may be detached with the routine MPI-WIN-DETACH. After memory has 45

been detached, it may not be the target of an MPI RMA operation in that window (unless 46

that memory is re-attached with MPI-WIN-ATTACH). 47
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M Pl-Wl N- DETACH (win, base)

IN wrn

lN base

CHAPTER 11, ONE.SIDED COMMUNICATIONS

window object (handle)

initial address of memory to be detached

int MPI-lJin-detach(MPI-lJin win, void +base)

MPI-hIIN-DETACH(I.¡IN, BASE, IERROR)

ÏNTEGER IJIN, TERROR

<type> base

Detaches a previously attached memory region beginning at base. The arguments base

and win must match the arguments passed to a previous call to MPI-WIN-ATTACH.

Adui,ce to users. Detaching memory may permit the implementation to make more
efficient use of special memory or provide memory that may be needed by a subsequent
MPI-WIN-ATTACH. Users are encouraged to detach memory that is no longer needed.
Memory should be detached before it is freed by the tser. (End of adur,ce to users.)

lt.2.4 Window Destruction

MPI-WlN-FREE(win)

INOUT win
"vindow 

object (handle)

int MPI-\,rlin-free (MPI-V'/ in *win)

MPI-l,lIN-FREE (l^lIN, IERROR)

INTEGER I,JIN, IERROR

{void MPI::Vlin::FreeO (bi,ndi,ng deprecated, see Sect'ion 15.2)}

Frees the window object win and returns anull handle (equal to MPI-WIN-NULL). This
is a collective call executed by all processes in the group associated with
win. MPI-W|N-FREE(w|n) can be invoked by a process only after it has cornpleted its
involvement in RMA communications on window win: i.e., the process has called
MPI-WIN-FENCE, or called MPI-WIN-WAIT to rnatch a previous call to MPI-WIN-POST
or called MPI-WIN-COMPLETE to match a previous call to MPI-WIN-START or called
MPI-WIN-UNLOCK to match a previous call to MPI-WIN-LOCK. [When the call retunrs,
the window menrory can be freed,]The memory associated with windows created by a call
to MPI-WIN-CREATE may be freed after the call returns. If the window was created with
MPI-WIN-ALLOCATE, MPI-WIN-FREE will free the window memory that was allocated
in MPI-WIN-ALLOCATE. Freeing a window that was created with a call to
MPI-WIN-CREATE-DYNAMIC detaches all associated memory, i.e., it has the same effect
as if all attached memory was detached by a call to MPI-WIN-DETACH.
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Aduice to i,mplementors. MPI-WlN-FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. The only exception to this rule is when the user passed the
no-locks info argument. In that case, the local window can be freed without barrier
synchronization. (End of aduzce to irnplementors.)

1,1.2.5 Window Attributes

The following [three] attributes are cached with a window[,] when the window is created.

MPI-WIN-BASE
MPI-WIN-SIZE
MPI-WIN-DISP-UNIT
M PI-WI N -CREATE- FLAVOR

/rv\Pl- wtM-¡4DDeL
In C, calls to MP|-Win-get-attr(win, MPI-WIN-BASE, &base, &flag),

M Pl-Win-get-attr(win, M Pl-WlN-SIZE, &size, &flag)[ and]
M Pl-Win-get-attr(win, M Pl-Wl N-DlS P-U N lT, &disp-unit, &flag) [] and
MP|-Win-get-attr(win, MPI-WIN-CREATE-FLAVOR, &create-kind, &flag) will return in
base a pointer to the start of the window win, and will return in size[ and], disp-unit, and
in create-kind pointers to the size[ and], displacement unit of the window, and the kind of
routine used to create the window, respectively. [And similarly, in C*-l,]And similarly, in
C++ (bindi,ng deprecated, see Section 15.2).

fn Fortran, calls to MPI-WIN-GET-ATTR(win, MPI-WIN-BASE, base, flag, ierror),
MPI-WlN-GET-ATTR(w|n, MPI-WlN-SlZE, size, flag, ierror)[ and],
M Pl-Wl N-G ET-ATTR(w|n, M Pl-Wl N -DlS P-U N lT, disp-u nit, flag, ierror) [] and
M Pl-Wl N-GET-ATTR(w|n, M Pl-WlN-CREATE-FLAVOR, create-kind, flag, ierror) will re-
turn in base, sizeI and], disp-unit and create-kind the (integer representation of) the base
address, the size[ and], the displacernent unit of the window win, and the kind of routine
used to create the window, respectively.

The values of create-kind are

M PI-WI N -FLAVOR-CREATE
M P I-WI N -FLAVOR-ALLOCATE
M P I-WI N -FLAVOR- DYNAM I C

window base address.

[]window size, in bytes.
displacement unit associated with the window.
how windolv was created.

Window was created with MPI-WIN-CREATE.
Window was created with MPI-WIN-ALLOCATE.
Window was created with
M P I-WI N -C REATE-DYNAM I C.
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In the case of windows created with MPI-WIN-CREATE-DYNAMIC, the base address
is MPI-BOTTOM and the size is 0. In C, pointers to integers (of size MPI-Aint) are returned
and in Fortran, the values are returned, for the respective attributes. (The window attlibute
access functions are defined in Section 6.7.3, page 252.)

The other "window attribute," nâmellr the group of processes attached to the window,
can be retrieved using the call below.
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M Pl-Wl N-GET-GROU P(win, group)

lN win

OUT group

CHAPTER 11. ONE-SIDED COMMUNICATIONS

window object (handle)

gr'.oup of processes which share access to the r.vinclow

(handle)

iequent synchronization call completes.loperation c[subsequent synchronization call completes.]operation c

a window ]The outcome of conflicti sses to the same memory locations is undefrned;
if a location is updated by a put or accurnulate operation, then I this location cannot be

accessed by a load or anotlìer RMA operation ]the outcome of local loads or other RMA
operations is undefined until the updating operation has completed at the talget. There is
one exception to this rule; namely, the same locatiorì can be updated by sevelal concurrent
accumulate calls, the outcome being as if these updates occurred in sorne order. In addition,
[ [lf] a windorv canl-Lot concurrentlv be updated by a put or accumulate operation and by
a local store operation. This, even if these tu'o updates a,ccess different locations in tire
winclow. The last restr-iction enabìes mole efficient irnpÌementations of RMA opelations or-r

nany systetns. ]the outcome of concurrent local and RMA updates to the same memory
Iocation is undefined. These restrictions are described in more detail in Section 11.8, page 45.

1
on +s

túhòt< uìndr¡^¡ {-

¡".t a-Ê overbç {"r '^#tl



11.3. COMMUNICATION CALLS

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

Fol all [three]RMA calls, the target process may be identical with the origin process;

i.e., a process may use an RMA operation to move data in its memory.

Rationale. The choice of supporting "self-communication" is the same as for message-

passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rati,onale.)

MPI-PROC-NULL is a valid talget rank in [ttre Vet RMA calls MPI-ACCUMULATE,
MPI-GET, and MPI-PUT]all MPI RMA communication calls. The effect is the same as

for MPI-PROC-NULL in MPI point-to-point comrnunication. After any RMA operation with
rank MPI-PROC-NULL, it is still necessary to finish the RMA epoch with the synchronization
method that started the epoch.

11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process

and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call the call executed by the origin process.

23

MPI-PUT(origin-addr, origin-count, origin-datatype, target-rank, target-disp, target-count, 24

target-datatype, win) 25

lN origin-addr initial address of origin buffer (choice) 26

27

lN origin-count number of entries in origin buffer (non-negative inte- za

ger) 2s

lN origin-datatype datatype of each entry in origin buffer (handle) 30

lN target-rank rank of target (non-negative integer) 31

32

lN target-disp displacement from start of window to target buffer 33

(non-negative integer) 34

lN target-count number of entries in target buffer (non-negative inte- 35

ger) 36

11

lN target-datatype

lN win

datatype of each entry in target buffer (handle)

window object used for communication (handle)

I

2

3

4

5

6

7

8

9

10

11

72

13

74

15

16

t7

18

19

20

21

38

39

40

47

42

43

44

45

46

47

48

int MPI-Put(void *origin-addr, int origin-count,
MPI-Datatype origin-datatype, ínt target-rank,
MPI-Aint target-disp, int target-count,
MPI-Datatype target-datatype, MPI-hlin r¡in)

MPI-PUT(ORIGIN-ADDR, ORIGIN-COUNT, ORIGIN-DATATYPE, TARGET-RANK,

TARGET-DISP, TARGET-COUNT, TARGET_DATATYPE, I4ITN, IERROR)
<type> ORIGIN-ADDR(+)
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INTEGER (KIND=MP I -ADDRESS-K IND) TARGET-DI SP

INTEGER ORIGIN-COUNT, ORIGIN-DATATYPE, TARGET-RANK, TARGET-COUNT,

TARGET-DATATYPE, V,IIN, IERROR

{void MPI: :llin: :Put(const void* origin-addr, int origin-count,
const MPI: :Datatype& origin-datatype, int target-rank,
MPI: :Aint target_disp, ínt target_count,
const MPI : :Datatype& target-datatype) const (binding deprecated,

see Sect'ion 15.2) Ì
Transfers origin-count successive entries of the type specified by the origin-datatype)

starting at address origin-addr on the origin node to the target node specified by the
win, target-rank pair. The data are written in the target buffer at address target-addr:
window-base + target-dispxdisp-unit, where window-base and disp-unit are the base address
and window displacement unit specified at window initialization, by the talget process.

The target buffer is specified by the arguments target-count and target-datatype.
The data transfer is the same as that which would occur if the origin process executed

a send operation with arguments origin-addr, origin-count, origin-datatype, target-rank, tag,
comm) and the target process executed a receive operation with arguments target-addr,
target-count, target-datatype, source, tag, comm, where target-addr is the target buffer
address computed as explained above, the values of tag are arbitrary valid identical tag
values, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a sirnilar message-passing
communication. The target-datatype may not specify overlapping entries in the target
buffer. The rnessage sent must frt, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target windowf] or in attached -memory in a dynamic
window.

The target-datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if
the target datatype object was defined at the target process by the same sequence of calls
used to define it at the oligin process. The target datatype rnust contain only relative
displacements, not absolute addresses. The same holds for get and accurnulate. In the
case of windows created with MPI-WIN-CREATE-DYNAMIC, displacements in the target
datatype must be relative to MPI-BOTTOM.

Adui,ce to users. The target-datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. Tìris causes no problems in a homogeneous environment, or in a

heterogeneous environment if only portable datatypes are used (portable datatypes
are defined in Section 2.4, page 1I).

The perforrnance of a put transfer can be significantly affected, on some systems,

[frorn]by the choice of window location and the shape and location of the origin and
target buffer: transfers to a target window in memory allocated by M PI-ALLOC-M EM
may be much faster on shared memory systerns; transfers from contiguous buffers will
be faster on rnost, if not all, systerns; the alignment of the cornmunication buffers rnay
also impact performance. (End of adui,ce to users.)

Adui,ce to implementors. A high-quality implementation will attempt to prevent
rernote accesses to memory outside the window that was exposed by the process.
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11.3, CONIMUNICATION CALLS

This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on eacìr RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks, (End of adui,ce to i,mplementors.)

7L.3.2 Get

13

M Pl-GET(origin-addr, origin-cou nt,
target-datatype, win)

OUT origin-addr

lN origin _cou nt

lN origin-datatype

lN target_rank

lN target_disp

lN target_count

lN target-datatype

lN win

origin-datatype, target-ra n k, target-disp, target-cou nt,

initial address of origin buffer (choice)

number of entries in origin buffer (non-negative inte-

datatype of each entry in target buffer (handle)

window object used for communication (handle)

ger) 16

datatype of each entry in origin buffer (handle) 17

rank of target (non-negative integer) l:
displacement from window start to the beginning of 20

the target buffer (non-negative integer) 21

number of entries in target buffer (non-negative inte- 22

ger) 23

1

2

3

4

6

8

I

10

L1

I2

L4

t5

25

26

27

28

30

31

33

34

35

38

39

4f)

int MPI-Get(void *origin-addr, int origin-count,
MPl_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPl-Datatype target-datatype, MPI_lúin win)

MPI-GET(ORIGIN-ADDR, ORIGIN-COUNT, ORIGIN-DATATYPE, TARGET-RANK,
TARGET-DISP, TARGET-COUNT, TARGET-DATATYPE, l,TN, IERROR)

<type> 0RIGIN-ADDR(*)
INTEGER(KIND=MPI-ADDRESS-KIND) TARGET DISP
INTEGER ORIGIN-COUNT, ORIGIN-DATATYPE, TARGET-RANK, TARGET-COUNT,

TARGET-DATATYPE, IIIIN, IERROR

{void MPf : :ülin: :Get(void *origin-addr, int origin-count,
const MPI: :Datatype& origin_datatype, int target_rank,
MPf : :Aint target_disp, int target_count,
const MPI: :Datatype& target-datatype) const (bi.ndi,ng deprecated, 42

see Sect'ion 15.2)\ 43

Sirnilar to MPI-PUT, except that the direction of data transfer is reversed. Data ::
are copied frorn the target memory to the origin. The origin-datatype may not specify 46

overlapping entries in the origin buffer. The target buffer must be contained within the 4z
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1 target window[] or within attached memory in a dynamic window, and the copied data
z must fit, without truncation, in the origin buffer.

4 1l_.3.3 ExampleS <- B-îl 4c¡-r Â¿: ^rt ørJ\ ex¡r-,pt g c,+<- qS¡¿¡^åt+l rn'e'r<-

5

u Example 11.1 We show how to irnplement the generic indirect assignrnent A = B(nap),

, where A, B and map have the same distribution, and map is a permutation. To sirnplif¡ we

s assume a block distribution with equal size blocks.

; suBR0urrNE MAPVALS(A, B, mêp, m, comm, p)

11 usE MPr

12 INTEGER m, nap(m), comm, p
REAL A(n), B(n)

l3

'r: INTEGER otype(p), oindex(m), & ! used to construct origin d.atatypes

16 ttype(p), tindex(m), & ! used to construct target datatypes
count(p), total(p), k

77

18 win, ierr
le INTEGER (KIND=MPI-ADDRESS-KIND) towerbound, sizeofreal
20

21 ! This part does the u¡ork that depends on the locations of B.

22 ! Ca¡ be reused while this does not chalge

: CALL MP]-TYPE-GET-EXTENT(MPI-REAL, lowerbouad, sizeofreal, ierr)
24

2s CALL MPI-VIIN-CREATE(8, m*sizeofreal, sízeofreal, MPI-INFO-NULL, k

2t comm, win, ierr)

28 ! This part does the r¿ork that depends on the value of map and

2s ! the locations of the arrays.

30 I Can be reused u¡hil-e these do not change

31

32 ! Cornpute number of entries to be received from each process

:^ Do i=l,p
35 count (i) = 0

36 END D0

zz D0 i=1,m
.i = map (i) /n+I

Jõ

count(j) = count(j)+f
39

40 END D0

41

total-(1) = 0
^^: Do i=2,p

44 total-(i) = total(i-1) + count(i-1)
45 END D0

46

47 D0 i=1,p

48 count (i) = 0

T4
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END D0 1

!computeoriginarrdtargetindicesofentries.rtion
! entry i at current process is received from location
I k at process (j-1), r"rhere map(i) = (j-1)*n + (k-1), 5

! j = 1..p artd k = 1..n 6

",1-$i:,"i;l-it:::".,i,,= 
ioindex(total(j) + count(j)) = i

tindex(total(j)+count(j))=k 13

END DO 74

! create origin arrd target datatypes for each get operation l:
D0 i=1,p 17

CALL MPI-TYPE-CREATE_INDEXED_BLOCK(count(i), 1, oindex(totalli)+1), k 18

MPI-REAL, otype(i), ierr) le

CALL MPI-TYPE-C0MMtT(otype(i), ierr) 20

CALL MPI TYPE CREATE_INDEXED_BLOCK(count(i), 1, rindex(totaI11)+1), k 2r

MPI-REAL, ttype(i), ierr) 22

CALL MPI-TYPE-C0MMIT(ttype(i), ierr) 23

END D0 24

25

! this part does the assignment itself 26

CALL MPr-l4trN-FENCE(0, win, ierr) +--vrci-, int"Lut! yol 27

D0 i=1,p 2a

CALL MPI-GET(4, 1, otype(i), i-1, 0, 1, ttype(i), r^rin, ierr) 2s

END D0 30

CALL MPI-I,IIN-FENCE (0 , win, ierr) 31

32

CALL MPI-!'lIN-FREE(r"rin, ierr) 33

D0 i=1,p 14

CALL MPI TYPE FREE(otype(i), ierr) 3b

CALL MPI-TYPE-FREE(ttype(i), ierr) 36

END D0 27

RETURN 38

END 3e

Example Ll.2 
^ 

simplel version can be written that does not require that a datatype :',
be built for the target buffer. But, one then needs a separate get call for each entr¡ as 42

illustrated below. This code is much simpler, but usually much less efficient, for large arrays. 48

Hr,ä:t':, :ï:;,'""-: ;'o' 

*' c'mm' p) 
:l

REAL A(ni), B(m) 48

15
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i INTEGER win, ierr
z INTEGER (KIND=MPI-ADDRESS-KIND) lowerbound, sizeofreal
3

¿ CALL MPI-TYPE-GET-EXTENT(MPI-REAL, lowerbou¡rd, sizeofreaf, ierr)
s GALL r,rpr-wru-õ*roir,:;J,";î;:ti:ll; "',""rreal, MII-rNFo-NULL, &

7

s CALL MPI-I4IIN-FENCE(0, win, ierr)
g D0 i=1,m
10 j = map(i)/m
11 k = M0D(nap(i),m)
12 CALL MPI-GET(A(i), 1, MPI-REAL, j, k, 1, MPI-REAL, win, ierr)
13 END D0

74 CALL MPI-V'IIN-FENCE(0, win, ierr)
15 CALL MPI-VIIN-FREE(win, ierr)
16 RETURN

rz END

18

1e LL.3.4 Accumulate Functions

:: It is often useful in a put operation to combine the data moved to the target process with the

22 data that resides at that process, rather then replacing the data there. This wilì allow, for

2z example, the accumulation of a sum by having all involved processes add their contribution

24 to the surn variable in the rnemory of one process. Th" u."r-rlut" fu"ct have slightly

25 different semantics than the put and get functions; see Section 11.8 for details.

26

2z Accumulate Function

::
30 MPI-ACCUMULATE(origin-addr, origin-count, origin-datatype, target-rank, target-disp, tar-
31 get-count, target-datatype, op, win)
32 lN origin-addr initial aclclress of buffer (choice)

s4 lN origin-count numbel of entries in buffer (non-negative integer)

3b lN origin-datatype datatype of each buffer entry (handle)

36 lN target-rank rank of target (non-negative integer)

:: lN target-disp displacement from start of window to beginning of tar-

3e get buffer (non-negative integer)

40 lN target-count number of entries in target buffer (non-negative inte-
ger)

:: lN target-datatype datatype of each entry in target buffer (handle)
43 lN op recluce operation (handle)
44

4s lN win window object (handÌe)

46

47 int MPl-Accumul-ate(void +origin-addr, int origin-count,
MPI-Datatype origin-datatype, int target-rank,

16
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MPI-Aint target-disp, int target-count, 1

MPÏ-Datatype target-datatype, MPI-Op op, MPI-Vlin win) 2

MPI-ACCUMULATE(ORIGIN-ADDR, OR]GIN-COUNT, ORTGIN-DATATYPE, TARGET-RANK, .
4

TARGET-DISP, TARGET-COUNT, TARGET-DATATYPE, OP, hIIN, IERROR)

t7

<type> ORIGIN-ADOR(x)
INTEGER (KIND=MP I -ADDRESS-KIND ) TARGET-DI SP

INTEGER ORIGIN-COUNT, ORIGIN_DATATYPE, TARGET-RANK, TARGET-COUNT,

TARGET-DATATYPE, OP, Í¡IN, IERROR

{void MPI : :lrtin: :Accumulate(const voidx origin-addr, int origin-court,
const MPI: :Datatype& origin_datatype, int target_ralk,
MPï: :Aint target_disp, int target_count,
const MPI: :Datatype& target-datatype, const MPI: :0p& op)
(bindi,ng deprecated, see Section 15.2) j

Accumulate the contents of the origin buffer (as defined by origin-addr, origin-count and
origin-datatype) to the buffer specifled by arguments target-count and target-datatype, at
offset target-disp, in the target window specified by target-rank and win, using the operation
op. This is like MPI-PUT except that data is combined into the target area instead of
overwriting it.

Any of the predefined operations for MPI-REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI-SUM, eaclì element of the origin buffer is added
to the corresponding element in the target, replacing the forrner value in the target.

Each datatype argument must be a predeflned datatype or a derived datatype, where
all basic components are of the sarne predeflned datatype, Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. target-datatype must not specify overlapping entries) and the target
buffer must fit in the target window.

A new predefined operation, MPI-REPLACE, is defined. It corresponds to the associative
function f @,b): b; i.e., the current value in the target memory is replaced by the value
supplied by the origin.

MPI-REPLACE can be used only iu MPI-ACCUMULATE, [] MPI-RACCUMULATE,
MPI-GET-ACCUMULATE, and MPI-RGET-ACCUMULATE, but not in collective reduction
operations such as MPI-REDUCE.

Adui,ce to users. MPI-PUT is a special case of MPI-ACCUMULATE, with the op-
eration MPI-REPLACE. Note, however, that MPI-PUT and MPI-ACCUMULATE have

different constraints on concurrent updates. (End of adui,ce to users.)

Example 11.3 \Me want to compute B(j) : D,"p1i¡:¡ A(i). The arrays A, B and map are
distributed in the sarlre manrìer. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)
USE MPI

INTEGER m, map(m), conm, p, win, ierr
REAL A(m), B(m)
INTEGER (KIND=MPI-ADDRESS-KIND) tor,rerbound, sizeofreal

CALL MPI-TYPE-GET-EXTENT(MPI-REAL, lowerbound, sizeofreal, ierr)

6

7

8

10

11

72

const 13
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CALL MPI-WIN-CREATE(B, n+sizeofreal, sizeofreal, MPI-INF0-NULL, &

comm, wi-n, ierr)

CALL MPI-I^/IN-FENCE(0, win, ierr)
D0 i=1,m

j = map(i)/n
k = MOD(nap(i),m)
CALL MPr_ACCUMULATE(A(i), 1, MPr_REAL, j, k, 1, MPI_REAL, 8(,

MPI-SUM, win, ierr)
END DO

CALL MPI-I4IIN-FENCE(0, win, ierr)

CALL MPI-!úIN-FREE(win, ierr)
RETURN

END

This code is identical to the code in Example 11.2, page 15, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B: A(map-l), which is the ïeverse assignment to the one computed in that
previous exarnple.) In a sirnilar rnanner, !vr/e can replace in Exarnple 11.1, page 14, the call to
get by a call to accumulate, thus performing the computation with only one communication
between any two processes.

Get Accumulate Function

It is often useful to have fetch-and-accumulate semantics such that the sent data is accumu-
lated into the remote data, and the remote data before the accumulate is returned to the
caller. The get and accumulate steps are executed atomically for each basic element in the
datatype (see Section 11.8 for details). The predefined operation MPI-REPLACE provides
fetch-and-set behavior.
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MPI-GET-ACCUMULATE(origin-addr, origin-count, origin-datatype, result-addr, result-count,
results-datatype, target-rank, target-disp, target-count, target-datatype, op, win)

19

N

N

origin-addr

oflgrn_count

lN origin-datatype

OUT result-addr

lN result-count

lN result_datatype

lN target-rank

lN target-disp

lN target_count

lN target-datatype

lN op

lN win

initial address of buffer (choice)

number of entries in origin buffer (non-negative inte-
ger)

datatype of each buffer entry (handle)

initial address of result buffer (choice)

number of entries in result buffer (non-negative inte-
ger)

datatype of each buffer entry (handle)

rank of target (non-negative integer)

displacement from start of window to beginning of tar-
get buffer (non-negative integer)

number of entries in target buffer (non-negative inte-
ger)

datatype of each buffer entry (handle)

reduce operation (handle)

window object (handle)

1

2

3

4

6

7

I
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l3

t4

15

16

t7

18

19

20

2t
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24
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int MPÏ-Get-accumulate(void *origin-addr, int origin-count,
MPl-Datatype origin-datatype, void *result-addr,
int result_count, MPl_Datatype result_datatype,
int target-ralk, MPI-Aint target-disp, int *target-count,
MPl-Datatype target-datatype, MPI-0p op, MPI-Win win)

MPI-GET-ACCUMULATE (ORIGIN-ADDR, ORIGIN-COT]NT, ORTGIN-DATATYPE, RESULT-ADDR,

RESULT-COUNT, RESULT-DATATYPE, TARGET-RANK, TARGET-DISP,
TARGET-COUNT, TARGET-DATATYPE, 0P, I^IIN, IERROR)

<type> oRIGIN-ADDR(*), RESULT-ADDR(*)
INTEGER(KIND=MPI-ADDRESS-KIND) TARGET-DISP

INTEGER ORÏGÏN-COUNT, ORIGIN-DATATYPE, RESULT-COT'NT, RESULT-DATATYPE,

TARGET-RANK, TARGET-COUNT, TARGET-DATATYPE, OP, I,.¡TN, IERROR

Accumulate origin-count elements of type datatype of the origin buffer (origin-addr) to
the buffer at offset target-disp, in the target window specified by target-rank and win, using
the operation op and return in the result buffer result-addr the content of the target buffer
before the accumulation.

Each datatype argument must be a predefined datatype or a derived datatype, where
all basic components are of the same predefined datatype. All datatyþe arguments must be
constructed from the same predefined datatype. The operation op applies to elements of
that predefrned type. target-datatype must not specify overlapping entries, and the target
buffer must fit in the target window or in attached memory in a dynamic window. The
operation is executed atomically for each basic datatype, see Section 11.8 for details.

Any of the predefined operations for MPI-REDUCE, and MPI-NO-OP or MPI-REPLACE
can be specified as op. User-defined functions cannot be used. A new predefined operation,
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MPI-NO-OP, is defined. It corresponds to the associative function l@,b): ¿; i.e., the
current value in the target memory is returned in the result buffer at the origin, and no
operation is performed on the target buffer. MPI-NO-OP can be used only in
M Pl-GET-ACCU M U LATE, M Pl-RG ET-ACCU M U LATE, and M Pl-FETCH-AN D-OP, not in
MPI-ACCUMULATE, MPI-RACCUMULATE, or collective reduction operations, such as

MPI-REDUCE and others. Sìmìto¡- +o
Adui,ce to users. MPI-GET is a. MPI-GET-ACCUMULATE, with the
operation MPI-NO-OP. Note, however, that MPI-GET and MPI-GET-ACCUMULATE
have different constraints on concurrent updates, (End of aduice to users.)

Fetch and Op Function

The generic functionality of MPI-GET-ACCUMULATE might significantly limit the perfor-
mance of fetch-and-inc or fetch-and-add calls that might be supported by special hardware
operations. MPI-FETCH-AND-OP thus allows for a fast implementation of a commonly
used subset of the functionality of MPI-GET-ACCUMULATE.

MPI-FETCH-AND-OP(origin-addr, result-addr, datatype, target-rank, target-disp, op, win)

lN origin-addr

OUT result-addr

lN datatype

lN target-rank

lN target-disp

initial address of buffer (choice)

initial address of result buffer (choice)

datatype of the buffer entry (handle)

rank of target (non-negative integer)

displacement from start of window to beginning of tar-
get buffer (non-negative integer)

reduce operation (handte)

window object (handle)

op

win

N

N

int MPI-Fetch-a¡.d-op(void *origin-addr, void xresult-addr,
MPl-Datatype datatype, int target-rank, MPI-Aint target-disp,
MPI-0p op, MPI-Vlin win)

MPI-FETCH-AND-OP (ORIGIN_ADDR, RESULT-ADDR, DATATYPE, TARGET-RANK,

TARGET-DISP, OP, T,IITN, IERROR)

<type> ORIGIN-ADDR(*), RESULT-ADDR(t)
INTEGER (KIND=MPI-ADDRESS-KIND) TARGET-DISP

INTEGER ORIGIN-COI]NT, ORIGTN-DATATYPE, TARGET-RANK, TARGET-COT'NT,

TARGET-DATATYPE, OP, WIN, IERROR

Accumulate one element of type datatype of the origin buffer (origin-addr) to the buffer
at offset target-disp, in the target window specified by target-rank and
win, using the operation op and return in the result buffer result-addr the content of the
target buffer before the accumulation.

Any of the predefined operations for MPI-REDUCE, and MPI-NO-OP or MPI-REPLACE

can be specified as op, User-defined functions cannot be used. The datatype argument must
be a predefined datatype. The operation is executed atomically.
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Compare and Swap Function I

:

MPI-COMPARE-AND-SWAP(origin-addr, compare-addr, result-addr, datatype, target-rank, 7

target-disp, wín) 8

lN origin-addr initial address of buffer (choice) s

lN compare-addr initial address of compare buffer (choice) l:
OUT result-addr initial address of result buffer (choice) 12

13lN datatype datatype of buffer entry (handle) 
t4

lN target-rank rank of target (non-negative integer) 1s

lN target-disp displacement from start of window to beginning of tar- 16

get buffer (non-negative integer) 17

lN win window object (handle) 1a

;:
int MPI Comoare aad-swap(void xorigin_addr, void *compare_addr, 2r

void +result-addr, MPI-Datatype datatype, int target-rank, 22

MPI-Aint target-disp, MPI-tJin r^rin) 2r

MPI-C0MPARE-AND-SII/AP(0RIGIN-ADDR, COMPARE-ADDR, RESULT-ADDR, DATATYPE, 24

TARGET-RANK, TARGET-DISP, l,ìlIN, IERR0R) 25

<type> 0RIGIN_ADDR(*), C0MPARE_ADDR(*), RESULT_ADDR(*) 26

INTEGER(KIND=MPI-ADDRESS-KIND) TARGET-DISP 27

INTEGER DATATYPE, TARGET-RANK, I,TIN, IERROR 2A

This function compaïes one element of type datatype in the compare buffer ;:
compare-addr with the buffer at offset target-disp, in the target window specified by 31

target-rank and win and replaces the value at the target with the value in the origin buffer z2

origin-addr if the compare buffer and the target com
value at the target is returned in the buffer result-addr
of the following predefined datatypes: C integer, Fo
as specified in Section 5.9.2 on page 164, or can be o

11.3.5 Request-based RMA Communication Operations

Request-based RMA communication operations allow the user to associate a request handle
with the RMA operations and test or wait for the completion of these requests using the
functions described in Section 3.7.3, page 53. Request-based RMA operations are only valid
within a passive-target epoch.

Upon returning from a completion call in which an RMA operation completes, the
MPI-ERROR field in the associated status object is set appropriately (see Section 3.2.5 on
page 31). The values of the MPI-SOURCE and MPI-TAG fields are undefined. It is valid to
mix different request types (i.e., any combinatÍon of RMA requests, collective requests, I/O
requests, generalized requests, or point-to-point requests) irr functions that enable multiple
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1 completions (e.g., MPI-WAITALL). It is erroneous to call MPI-REQUEST-FREE or
z MPI-CANCEL for a request associated with an RMA operation. RMA requests are not
s persistent.
a, The end of the epoch, or explicit bulk synchronization using MPI-WIN-FLUSH,
s MPI-WlN-FLUSH-ALL, MPI-WlN-FLUSH-LOCAL or MPI-WlN-FLUSH-LOCAL-ALL, also
o indicates completion of the RMA operations. However, users must still wait or test on the
z request handle to allow the MPI implementation to clean up any resources associated with
a these requests; in such cases the wait operation will complete locally.

10

11 MPI-RPUT(origin-addr, origin-count, origin-datatype, target-rank, target-disp, target-count,

t2 target-datatype, win, req)

13 lN origin-addr initial address of origin buffer (choice)

'r: lN origin-count number of entries in origin bufier (non-negative inte-

16 ser)

7? lN origin-datatype datatype of each entry in origin buffer (handle)

18 lN target-rank rank of target (non-negative integer)

:: lN target-disp displacement frorn start of window to target buffer

27 (non-negative integer)

22 lN target-count number of entries in target buffer (non-negative inte-
ger)

:: lN target-datatype datatype of each entry i4 target bufier (handle)
25 lN win window object used for communication (handle)

2z OUT req RMA request (handle)

iiin'iMPr-R'""äi-ïî::r'-î',:--:*îrîriïilîïiî:'-'*'
82 MPl-Datatype target-datatype, MPl-lrlin win, MPI-Request *reg)
33 

Mpr-Rpur(ORIcIN-ADDR, oRrcrN-c0uNT, 0RrcrN-DATATypE, TARGET-RANK,

:: <type> ,-#irt-th;-tsP' 
TARGET-.''Nr' TARGET-DATATYPE' lnrrN' REQ' TERR'R)

36 
TNTEGER(KrND=Mpr-ADDRESS-KIND) TARcET-Drsp37 
INTEGER ORIGIN-COUNT, ORIG]N-DATATYPE, TARGET-RANK, TARGET-COUNT,

:: rARcEr-DArArypE, hrrN, REQ, IERR .6sa/r\,^n
40 MPI-RPUT is similar to MPI-PUT, éxcept that it allocates a communication request
41 object and associates it with the request handle (the argument req). The completion of an
42 MPI-RPUT operation indicates that the sender is now free to update the locations in the
48 origin buffer. It does not indicate that the data is available at the target window. If remote
44 completion is required, MPI-WIN-FLUSH, MPI-WIN-FLUSH-ALL, MPI-WIN-UNLOCK or

:: 

MPI-wlN-UNLOCK-ALL can be used.
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1 MPI-RACCUMULATE(origin-addr, origin-count, origin-datatype, target-rank, target-disp, tar-
z get-count, target_datatype, op, win, req)
t lN origin-addr
4

o lN origin_cou nt

o lN origin_datatype

I '* 
target-rank

n lN target-disp

10

11 lN target_count

": 
tN target-daretype

t4

15 lN op

16 lN win
t7 our req
1a

19
int MPl-Raccr¡mulate(void *origin-addr, int origin_count,

20

24

initial address of buffer (choice)

number of entries in buffer (non-negative integer)

datatype of each buffer entry (handle)

rank of target (non-negative integer)

displacement from start of window to beginning of tar-
get buffer (non-negative integer)

number of ent¡ies in target buffer (non-negative inte-
ger)

datatype of each entry in target buffer (handle)

reduce operation (handle)

window object (handle)

RIVIA request (handle)

27

22

MPI_Datatype origin_datatype, int target_ra¡k,
MPï-Aint target-disp, int target-court,
MPI-Datatype target-datatype, MPI_Op op, MPl_trrlin win,

:: Mpr-RACC'MUr^i;;ir".ïrîJ-':îr.rN-c0uNr , 
'RrcrN-DArArypE, 

TARGET-RANK,

TARGET-DISP, TARGET-COUNT, TARGET-DATATYPE, 0P, l¡lIN, REQ,

:'" <type> o*rlctll-oßo*c-r
29 INTEGER(KIND=MPT-ADDRESS-KIND) TARGET-DISP
30 INTEGER ORÏGIN-COUNT, ORIGIN-DATATYPE,TARGET-RANK, TARGET-COT'NT,

:: 
TARGET_DATATYPE, 0p, WIN, REQ, IERRoR 

, r"Qtt þ SaÂøl

33 MPI-RACCUMULATE is similar to MPI-ACCUMULATE, except that it allocates a com-

z4 munication request object and associates it with the request handle (the argument req) that
35 can be used to wait or test for completion. The completion of an MPI-RACCUMULATE op-

36 eration indicates that the origin buffer is free to be updated. It does not indicate that the
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MPI-RGET(origin-addr, origin-count, origin-datatype, target-rank, target-disp, target-count,
target-datatype, win, req)

OUT

IN

IN

IN

IN

IN

IN

IN

OUT

t+s>- a^¡-

origin-addr

origin-count

origin-datatype

target-ra n k

target-d isp

target_cou nt

target-datatype

wtn

req

initial address of origin buffer (choice)

nurnber of entries in origin buffer (non-negative inte-
ger)

datatype of each entry in origin buffer (handle)

rank of target (non-negative integer)

displacement from window start to the beginning of
the target buffer (non-negative integer)

number of entries in target buffer (non-negative inte-
ger)

datatype of each entry in target buffer (handle)

window object used for communication (handle)

RMA request (handle)

int MPI-Rget(void *origin-addr, int origin-count,
MPI-Datatype origin-datatype, int target-rank,
MPI-Aint target-disp, int target-count,
MPl-Datatype target-datatype, MPI-tJin win, MPl-Request *reg)

MPI-RGET(ORIGIN-ADDR, ORIGIN-COUNT, ORIGIN-DATATYPE, TARGET-RANK,

TARGET-D]SP, TARGET-COUNT, TARGET-DATATYPE, I,]IN, REQ, IERROR)

<type> ORIGIN-ADOR(+)
INTEGER (KTND=MP I -ADDRES S-KTND ) TARGET-DI SP

INTEGER ORIGIN-COUNT, ORIGIN-DATATYPE, TARGET-RANK, TARGET-COUNT,

TARGET-DATATYPE, IIIIN, REQ, IERROR
? 521"

MPI-RGET is similar to MPI-GET, except that it allocates a communication request
object and associates it with the request handle (the argument req) that can be used to

+-- re6. bqs4J Ç^.hn^s oJl'.--*e-'Ç c¡^

tkur&rt a) a [rro,I 5h-r( 5ú rr rwuÈ( t,r\u rta'U',ûW
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Figure 11.1: Schematic description of [window]the public/private window operations in the
MPI-WIN-SEPARATE memory model €." ,f *wo a¡ertafpì'^¡, ,rìrn4o'os'

tL.4 Memory Model

The memory semantics of RMA is best understood by using the concept of public and
private window copies. 'We 

assume that systems have a public memory region which is
addressable by all processes (e.g., the shared memory in shared memory machines or the
exposed main memory in distributed memory machines). In addition to this, most machines
have fast private buffers (e.g., transparent caches or explicit communication buffers) local to
each process where copies of data elements from the main memory can be stored for faster

access. Such buffers are either coherent, i.e., all updates to main memory are reflected in all
private copies consistently, or non-coherent, i.e., conflicting accesses to main memory need to
be synchronized and updated in all private copieÀ explicitly. Coherent systems allow direct
updates to remote memory without any participation of the remote side. Non-coherent
systems, however, need to call RMA functions in order to reflect updates to the public
window in their private memory. Thus, in coherent memory, the public and the private
window are identical while they remain logically separate in the non-coherent case. MPI

thus differentiates between two memory models called RMA unified, if public and private
window are logically identical, arrd RMA separate, [if they remain separate]otherwise.

In the RMA separate model, there is only one instance of each variable in process

memory, but a distinct publi,c copy of the variable for that contains it. A load
accesses the instance in process memory (this includes
updates the instance in process memory (this inclu
affect other public copies of the same locations. A get o accesses the public copy

of that window. A put or accumulate on a window accesses and updates the public copy of
that window, but the update may affect the private copy of the same locations in process

memory, and public copies of other overlapping windows. This is illustrated in Figure 11.1.

In the RMA unified model, public and private copy are identical and updates via put
or accumulate calls are observed by load operations without additional RMA calls, A store
access to a window is visible to remote get or accumulate calls without additional RMA calls.

i
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MPI-RGET-ACCUMULATE(origin-addr, origin-count, origin-datatype, result-addr, result-count, 1

results-datatype, target-rank, target-disp, target-count, target-datatype, op, win, req) 2

lN origin-addr initial address of bufier (choice) 3

lN origin-count nurnber of entries in origin buffer (non-negative inte- :
ger) 6

lN origin-datatype datatype of each buffer entry (handle) 7

OUT result-addr initial address of result buffer (choice) 8

9

lN 
. 

result-count number of entries in result buffer (non-negative inte- 10

ger) 
11

lN result-datatype datatype of each buffer entry (handle) 12

lN target-rank rank of target (non-negative integer) 13

lN target-disp clisplacement from start of windor,v to beginning of tar- 
tr:

get buffer (non-negative integer) 16

lN target-count number of entries in target buffer (non-negative inte- r7

ger) 18

lN target-datatype datatype of each buffer entry (handle) 1e

lN op reduce operation (handle) ::
lN win window object (handle) 22

OUT req RMA request (handle) 23

::
int MPI Reet accumulate(void *origin-addr, int xorigin-count,e-26

MPl_Datatype origin_datatype, void *result_addr, 
27int *resul-t_count, MPï_Datatype result_datatype, 
2aint target-rank, MPI_Aínt target_disp, int *target-count, 
2s

MPI_Datatype target_datatype, MPI_Op op, MPI-Win win, 
,o

MPI-Request xreg) 
3r

MP]-RGET-ACCUMULATE (ORIGIN-ADDR, ORIGTN-COUNT, ORIGIN-DATATYPE, 32

RESULT-ADDR, RESULT-COUNT, RESULT-DATATYPE, TARGET-RANK, 33

TARGET-DISP, TARGET-COUNT, TARGET-DATATYPE, OP, hITN, TERROR) 34

<type> 0RIGIN-ADDR(*), RESULT-ADDR(*) 35

INTEGER(KIND=MPI-ADDRESS-KIND) TARGET-DISP 36

INTEGER ORTGIN-COUNT, OR]GIN-DATATYPE, RESULT-COUNT, RESULT-DATATYPE, 37

TARGET-RANK, TARGET-C0UNT, TARGET-DATATYPE, 0P, l4rIN, REQ f 38

r.¿t. 
3e

MPI-RGET-ACCUMULATE is similar to MPI-GET-ACCUMULATE, except that it al- 
40

Iocates a communication request object and associates it with the request handle (the 
47

argument req) that can be used to wait or test for completion. The completion of an 
42

MPI-RGET-ACCUMULATE operation indicates that the data is avaiìable in the result buffer 
43

and the origin buffer is free to be updatecl. It cloes not indicate that the operation has been 
44

completed at the target window. 
45

::



11.5. SY¡\¡CIIRONIZATION CALLS

Aduice to users. If accesses in the RMA unified model are not synchronized (with
locks or flushes), load and store operations might observe changes to the memory
while they are in progress. The order in which data is written is not specified unless

further synchronization is used. This might lead to inconsistent views on memory
and programs that assume that a transfer is complete by only checking parts of the
message are erroneous. (End of adui,ce to users.)

L1.4.1, Memory Model Query

RMA provides an interface to query the memory model of the underlying hardware. The
RMA unified model strengthens some of the semantic guarantees of the RMA separate model
and enables more flexible programming. An application can then adapt to and optimize for
the underlying hardware model. This query functionality is a similar approach as used in
M Pl-2 for thread-safety define several possibilities and then allow the user to both request
and determine, at runtime, what level is available. This provides a way to compromise
between a minimum (but universally implementable) functionality and a more powerful set

of capabilities that may require additional hardware and software support from the MPI
environment.
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M Pl-Wl N-QUERY(win, model)

lN win

OUT model

window object (handle)

memory model (integer)

I
I

I

f

I

!

l

j
i
I

I

I
l

I
I
I

I

int MPI-tlin-query(MPI-[rlin win, int *model)

MPI-I4IIN-QUERY(hrIN, MODEL, IERROR)

INTEGER I,IIN, MODEL, IERROR

This call queries the memory model for a particular
Possible returned memory models are MPI-WIN-SEPARATE
MPI-WlN-SEPARATE is the weakest model and is returned
supported.

The memory model indicates the relation between the
Iocal memory windows, see Section 17.4.

11.5 SynchronizationCalls

RMA communications fall in two categories:

e.

and MPI-WIN-UNlFlED.
if MPI-WlN-UNIFIED cannot be

public and the private view of

o active target communication, whele data is moved from the memory of one process

to the memory of another, and both are explicitly involved in the communication. This
cornrnunication pattern is sirnilar to rnessage passing, except that all the data transfer
argurnents are provided by one process, and the second process only participates in
the synchronization.

o passive target communication, where data is rnoved from the memory of one process

to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes rnay communicate by accessing the same location
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in a target window. The process that owns the target window may be distinct from
the two cornmunicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared mernory
model, where shared data can be accessed by all processes, irrespective of location.

RMA comrnunication calls with argurnent win must occur at a process only within
an access epoch for win. Such an epoch starts with an RMA synchronization call on
win; it proceeds with zero or more RMA communication calls (e.g., MPI-PUT, MPI-GET
or MPI-ACCUMULATE) on win; it completes with another synchronization call on win.
This allows users to amortize one synchronization with multiple data transfers and provide
implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the sarne process rnust be disjoint. On the other hand,
epochs pertaining to different win argurnents may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs fol the same or other win argunents. There
is a one-to-one matching betweerì access epocÌrs at origin plocesses and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target comrrrunication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.

MPI provides three synchronization mechanlsms:

1. The MPI-WlN-FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in palallel computations: narnely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosel)¡ synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process conmuni-
cates with rnany others.

This call is used for active target communication. An access epoch at an origin
process ol an exposule epoch at a target process are started and completed by calls to
MPI-WlN-FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all plocesses
in the group of win duling such an exposure epoch.

2. The four functions MPI-WIN-START, MPI-WIN-COMPLETE, MPI-WIN-POST and
MPI-WlN-WAIT can be used to restrict synchronization to the rninirnurn: only pails
of comrnunicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses

to that same window. This mechanisrn may be more efficient when each process

cornmunicates with few (logical) neighbors, and the comrnunication graph is fixed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the oligin process by a call to MPI-WIN-START and is terminated by a call to
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Figure 11.2: Active target communication. Dashed arrows represent syÌÌchronizations (or-
dering of events).

MPI-WIN-COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process

by a call to MPI-WIN-POST and is completed by a call to MPI-WIN-WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

3. [Finally, shared and exclusive locks are provided by the two functions MPI-WlN-LOCK
and MPI-WlN-UNLOCK.]Finally, shared lock access is provided by the functions
MPt_WtN_LOCK, MPt_WtN_LOCK_ALL, MPt_WtN_UNLOCK, and
M Pl-Wl N-U N LOCK-ALL. M Pl-Wl N-LOCK and M Pl-Wl N-U N LOCK also provide ex-
clusive lock capability. Lock synchronization is useful for MPI applications that
emulate a shared memory model via MPI calls; e.g., in a "billboard" model, where
pr-ocesses can, at random times, access or update different parts of the billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI-WIN-LOCK and terrninated by a call to MPI-WIN-UNLOCK. I Only
one target window can be accessed during that epoch witli win. ]

Figure 11.2 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start erìsures that the put call of the origin
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Figure 11.3: Active target comrnunication, with weak synchronization. Dashed arrows
represent synchronizations (ordering of events)

process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process'will execute following local accesses to the target r,vindow only after the r¡ait
returned.

Figure 11..2 shows operations occurring in the natural ternporal order implied by the
synchronizations: the post occuls before the matching start) and complete occurs before
the matching wait. Howevel, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as

illustrated in Figure 11.3. The access to the target window is delayed until the window is ex-
posed, after the post. However the start rnay complete earlier; the put and complete may
also terminate earlier, if put data is buffered by the irnplenentation. The synchronization
calls order correctly window accesses) but do not necessarily synchronize other operations.
Tlris weaker synchronization semantic allows for more efficient implementations.

Figure 11.4 illustrates the general synchronization pattern for passive target comrnu-
nication. The first or-igin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unfock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.
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MPI-WlN-FENCE(assert, win) 
42

lN assert program assertion (integer) 48

lN win window object (handÌe) 44

45

int MPI-VJin-fence(int assert, MPI-Vlin wj.n) 
46

47

MPI-I,IIN-FENCE(ASSERT, l^rIN, IERROR) 48
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TNTEGER ASSERT, l,'TN, IERROR

{void MPI::llin::Fence(int assert) const (bi,ndi,ng deprecated, see Section 15.2)}

The MPI call MPI-WlN-FENCE(assert, win) synchronizes RMA calls on win. The call
is collective on the group of win. All RMA operations on win originating at a given process

and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI-WlN-FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
cornpletes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, waì-t.

A fence call usually entails a barrier synchronization: a process cornpletes a call to
MPI-WIN-FENCE only after all other processes in the group entered their matching call.
Howevet, a call to MPI-WIN-FENCE that is known not to end any epoch (in particular, a

call with assert: MPI-MODE-NOPRECEDE) does not necessarily act as a barrier.
The assert argument is used to provide assertions on the context of the call that may

be used for various optimizations. This is described in Section 11.5.5. A value of assert:
0 is always valid.

Aduice to users, Calls to MPI-WIN-FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of adu'ice to
users.)

LL.5.2 General Active Target Synchronization
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M Pl-WlN-START(group, assert, win)

lN group

lN assert

lN win

group of target processes (hanclle)

program assertion (integer)

window object (handle)

int MPl-Vlin-start (MPI-Group group, int assert, MPI-l,Jin win)

MPI-üIIN-START(GROUP, ASSERT, I^/IN, IERROR)

ïNTEGER GROUP, ASSERT, l4¡IN, IERROR

{void MPI::llin::Start(const MPI::Group& group, int assert) const (bindi,ng
deprecated, see Sect'ion 15.2) j

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI-WlN-POST. RMA accesses to each target window will be delayed, if necessary,
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until the target process executed the matching call to MPI-WIN-POST. MPI-WIN-START 1

is allowed to block until the corresponding MPI-WIN-POST calls are executed, but is not 2

required to. 3

The assert argument is used to provide assertions on the context of the call that rnay 4

be used for various optimizations. This is described in Section 11.5.5. A value of assert : b

0 is always valid. 6

,"

MPI-WIN-COMPLETE(w|n) 
e

lN win window object (handle) 10

int MPl-lüin-compl-ete (MPI-!üin win) 

""
13

MPI-I,¡IN-COMPLETE(bITN, IERROR) 74

INTEGER WrN, IERROR 15

{void MPI: :l'lin: :CompleteO const (binding deprecated, see Sect'ion 15.2)} 16

Completes an RMA access epoch on win started by a call to MPI-WIN-START. All i:
RMA communication calls issuecl on win during this epoch will have completed at the origin 1e

when the call r-eturns. .2o

MPI-WlN-COMPLETE enforces cornpletion of preceding RMA calls at the oligin, but 2r

not at the target. A put or accumulate call may not have completed at the target when it 22

has completed at the origin. 22

Consider the sequence of calls in the example below. 24

Example 11.4 MPI-l,Jin-start(group, flag, win) i "o

MPl-Put(,,.,r¡in)t 26

MPl-lrlin-conplete (win) ; "
2A

The call to MPI-WIN-COMPLETE does not return until the put call has completed 2e

at the origin; and the target window wilì be accessed by the put operation only after the 30

call to MPI-WIN-START has matched a call to MPI_WIN_POST by the target process. 31

This still leaves much choice to irnplementors. The call to MPI-WIN-START can block 32

until the matching call to MPI-WIN-POST occurs at all target processes. One can also 33

have implementations where the call to MPI-WIN_START is nonblocking, but the call to 34

MPI-PUT blocks until the matching call to MPI-WIN-POST occurred; or implementations 35

where the first two calls are nonblocking, but the call to MPI-WIN-COMPLETE blocks 36

until the caÌl to MPI-WIN-POST occurred; or even implernentations where all three calls 37

can complete before any target process called MPI-WIN-POST the data put must be 38

buffered, in this last case, so as to allow the put to complete at the origin ahead of its 3e

cotnpletion at the target. However, once the call to MPI-WlN-POST is issued, the sequence a0

above must complete, without further depeldencies. ,^:

,:ï
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1 MPI-WlN-POST(group, assert, win)

I '* sroup

, lN assert

: 't 
win
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group of origin processes (handle)

program assertion (integer)

window object (handle)

7 int MPI-!'lin-post(MPI-Group group, int assert, MPI-htin win)
I

. MPI-IdIN-POST(GROUP, ASSERT, I,IIN, TERROR)

10 INTEGER GROUP, ASSERT, I,/IN, IERROR

'rt" {voj-d MPI::l'lin::Post(const MPI::Group& group, int assert) const (bi,ndi,ng

13 deprecated, see Sect'ion 15.2) \
74 Starts an RMA exposure epoch for the local window associated with win, Only processes

rb in group should access the window with RMA calls on win during this epoch. Each process

ï 
in group must issue a rnatching call to MPI-WIN-START. MPI-WIN-POST cloes not block.

,: MPt-wrN-wArr(win)

20 lN win window object (hanclle)

2I

22 int MPÏ-l,Jin-wait (MPI-!üin win)
23

24 MPI_ÍIIN_IÀIAIT(htIN, IERRoR)

2s INTEGER I^IIN, IERROR

26 {void MPI: :Vlin: :WaitO const (binding deprecated, see Sect'ion 15.2)}

2a Completes an RMA exposure epoch started by a call to MPI- IN-POST on win. This

zs call matches calls to MPI-WIN-COMPLETE(win) issued by each of the origin processes that

30 were granted access to the winclow during this epoch. The call to MPI WIN WAIT will block

31 until all matching calls to MPI-WIN-COMPLETE have occurred. This guarantees that all

32 these origin processes have cornpleted their RMA accesses to the local winclow. When the

38 call returns, all these RMA accesses will have completed at the target window.

24 Figure 11.5 illustrates the use of these four functions. Process 0 puts data in the

3s windows of processes 1 and 2 arrd process 3 puts data in the window of process 2. F,ach

36 start call lists the ranks of the processes whose windows will be accessed; each post call lists

17 the ranks of the processes that access the local window. The flgure illustrates a possible

38 timing for the events, assuming strong synchronization; in a weak synchronization, the start,

:: 
put or complete calls rnay occur ahead of the rnatching post calls

:: MPr_wrN_rESr(win, rag)

4r lN win indow object (hanclle)

:: 
OUT flag success flag (logical)

:: 
int MPI-l'tin-test(MPI-l/in win, int +flag)

4a MPr_l.lrN_TEST(!,¡rN, FLAG, TERR0R)
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PROCESSO PROCESS 1 PROCESS2 PROCESS3 ,

-z Post(0) ---Post([,3) -- 
2

at - - - 
3

^.t --t-, . -\ 4

start(l'2) 2z- - start(2) 
5

put(l) 6

- 

put(2) 7

put(2)

complete0ì.--- : /,.complete0 :\ \_ .\\
\ -'* 

- ' ' 11\\
\ .-. ' 2 

12

walr() - :r.y¿¡¡1¡,/l
13

Figure 11.5: Active target communication. Dashed arrows represent synchronizations and t4

solid arrows represent data transfer. 15

16

I7

INTEGER l.lIN, IERROR 18

LOGICAL FLAG re

{boo1 MPI: :!lin: :TestO const (bi,nd,i,ng d,eprecated,, see Sect'ion 15.2)} 20

27

This is the nonblocking version of MPI-WIN-WAIT. It returns flag : true if all accesses 22

to the local window by the group to which it was exposed by the corresponding 23

MPI-WIN-POST call have been completed as signalled by matching MPI-WIN-COMPLETE zq

calls, and flag: false otherwise. In the former case MPI-WIN-WAIT would have returned 2s

immediately. The effect of returrÌ of MPI-WIN-TEST with flag : true is the same as the 26

effect of a return of MPI-WIN-WAIT. If flag : false is returned, then the call has no visible 27

effect. 2a

MPI-WIN-TEST should be invoked only where MPI-WIN-WAIT can be invoked. Once 2s

the call has returned flag : true, it rnust not be invoked anew, until the window is posted 30

AneW. 31

35

Assume that window win is associated with a "hidden" comrÌunicator wincomm, used
for comrnunication by the processes of win. The rules for matching of post and start calls
and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI-WlN-POST(group,0,win) initiate a nonblocking send with tag tag0 to each process

in group, using wincomm. No need to wait for the completion of these sends.

MPI-WlN-START(group,0,win) initiate a nonblocking receive with tag tag0 from each
process in group, using wincomm. An RMA access to a window in talget process i is
delayed until the receive from i is completed.

MPI-WIN-COMPLETE(wIn) initiate a nonblocking send with tag tagl to each process

in the group of the preceding start call. No need to wait for the completion of these
sends.

MPI-WlN-WA|T(win) initiate a nonblocking receive with tag tagl frorn each process in
the group of the preceding post call. Wait for the completion of all receives.
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No races can occur in a correct program: each of the sends matches a unique receive,

viceþ] versa.

Rati,onale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maxirnum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each "knows" the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more "anonymous') communication will be required to use the fence or lock
mechanisms. (End of rati,onale.)

Adui,ce to users. Assume a communication pattern that is represented by a di-
rected graph G : 1 V,E ), where V : {0,...,r1 - 7} and i,j e E if origin
process i accesses the window at target process j. Then each process i issues a

call to MPI-WlN-POST(i.ngroup¡, .. . ), followed by a call to
MPI-WIN-START(ouúgroupi,...), where outgroup¿: {¡ : i,j Ç.Ð} and 'ingroup¡:
{j : ji e E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finall¡ each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of adu'ice to users.)
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11.5.3 Lock

M P l-Wl N - LOC K(lock-type,

lN lock_type

lN rank

lN assert

lN win

rank, assert, win)

eithel MPl-LOCK-EXCLUSIVE or
M Pl-LOCK-SHARED (state)

lank of locked window (non-negative integer')

program assertion (integer)

winclow object (handle)

int MPI-Vlin-l-ock(int lock-type, int rank, int assert, MPI-llin win)

MPI-hIIN-LOCK(LOCK-TYPE, RANK, ASSERT, InifN, IERROR)

INTEGER LOCK-TYPE, RANK, ASSERT, I,]TN, IERROR

{void MPI: :llin: :Lock(int lock-type, int ralk, int assert) const (bi,ndi,ng

deprecated, see Sect'ion 15.2) )

Starts an RMA access epoch. Only the window at the process with rank rank can be
accessed by RMA operations on win during that epoch.
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MPI-WlN-LOCK-ALL(assert, win) 1

lN assert program assertion (integer) 2

lN win window object (handle) "n

5

int MPl-l.lin-lock-a1t(int assert, MPI_VJin win) 6

MPI-I¡¡IN-L0CK-ALL(ASSERT, V,IIN, IERROR) 7

INTEGER ASSERT, }IIN, IERROR 8

Starts a[ shared]n RMA access epoch to all processes in win, with a lock type of ;
MPI-LOCK-SHARED. The memory on all processes in the window win can be accessed by 11

RMA operations on win during that epoch by the calling process. A window locked with 72

MPI-WIN-LOCK-ALL must be unlocked with MPI-WIN-UNLOCK-ALL. This routine is not 13

collective - the ALL refers to all members of the group of the window. t4

MPI-W|N-UNLOCK(rank, win) i;
lN rank rank of window (non-negative integer) 18

lN win window object (handle) ls

:,int MPl_lrlin_unlock(int ra¡k, MPI_Win win) 
22

MPI-I,IIN-UNL0CK(RANK, I,IIN, IERR0R) 23

INTEGER RANK, l,iIN, IERROR 24

{void MPI: :Win: :Unlock(int ra¡rk) const (bi,nd,i,ng d,eprecated,, see Sect'ion 15.2)} ::
Cornpletes an RMA access epoch started by a call to MPI-WIN-LOCK(...,win). RMA 27

operations issued during this period will have completed both at the origin and at the target 2a

when the call returns. 2s

::
MPI-WIN-UNLOCK-ALL(win) 12

lN win window object (handle) 33

,,, îîi-î,,;äl^il;,lii'li;ï0i,"'"' :;
INTEGER l,lIN, IERROR 38

Completes a shared RMA epoch started by a call to MPI-WIN-LOCK-ALL(assert, 3e

win). RMA operations issued this period witl have completed both at the origin and 40

at the target when the call returns
Locks are used to protect accesses to the locked target window effected by RMA calls 42

issued between the lock and unlock calls, and to protect local load/store accesses to a locked 43

local window executed between the lock and unlock call. Accesses that are protected by 44

an exclusive lock will not be conculrent at the window site with other accesses to the sarne 45

window that are lock protected. Accesses that are protected by a shared lock will not be 46

nn'"

,ft
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concurrent at the window site with accesses protected by an exclusive lock to the same

window.
It is erroneous to have a window locked and exposed (in an exposure epoch) concur-

rently. [I.e.]E.g.,, a process may not call MPI-WIN-LOCK to lock a target window if the
target process has called MPI-WIN-POST and has not yet called MPI-WIN-WAIT; it is

erroneous to call MPI WIN POST while the local window is locked.

Rati,onale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads

when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronizatíon. (End, of rati,onale.)

Aduzce to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
adu'ice to users.)

Implementors may restrict the use of RMA communication that is synchronized by
lock calls to windows in memory allocated by MPI-ALLOC-MEM (Section 8.2, page 296),
MPI-WIN-ALLOCATE (Section 17.2.2, page 5), or attached with MPI-WIN-ATTACH (Sec-

tion 11.2,3, page 5). Locks can be used portabÌy only in such rnemory.

Rati,onale. The implernentation of passive target communication when melnory is not
shared frequires]fmight]may require an asynchronous software agent. Such an agent
can be irnplernented more easily, and can achieve better performance, if restricted to
specially allocated memory. It can be avoided altogether if shared memory is used.

It seerns natural to impose restrictions that allows one to use shared memory for

[3-rd]third party communication in shared rnemoly machines.

The downside of this decision is that passive target communication cannot be used

without taking advantage of lonstanclard For-tral features: namely, tire availability
of C-like pointers; these are not supported by sorne Fortran compilers[(g77 and Win-
dows/NT compilers, at the tirne of writing)]. [Also. passive talget commtrnication
cannot be portabìy targeted to COMMON blocks or otirel statìcally cleclared Fortran
arrays.] (End of rati,onale.)

Consider the sequence of calls in the example below.

Example 11.5

MPI-llin-lock(MPI-L0CK-EXCLUSIVE, rank, assert, win)
MPI-Put(..., rank, ..., win)
MPI-lrlin-unl-ock (ra¡rk, wi-n)

The call to MPI-WIN-UNLOCK will not return until the put transfer has completed
at the origin and at the target. This still leaves rnuch freedom to implementors. The
call to MPI-WIN-LOCK rnay block until an exclusive lock on the window is acquired; or,
the call MPI-WIN-LOCK may not block, while the call to MPI-PUT blocks until a lock
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is acquired; or, the first two calls may not block, while MPI-WIN-UNLOCK blocks until a
lock is acquiled[ t]. The update of the target window is then postponed until the call to
MPI-WIN-UNLOCK occurs. However, if the call to MPI-WIN-LOCK is used to lock a local
window, then the call must block until the lock is acquired, since the lock may protect local
load/store accesses to the window issued after the lock call returns.

11.5.4 Flush and Sync

All flush and sync functions can be called only within lock-unlock or lockall-unlockall epochs.

39

int MPI-lJin-flush(int rank, MPI-l¡Jin win)

MPI-I/IN-FLUSH(RANK, hIIN, IERROR)

ÏNTEGER RANK, IIIN, IERROR

MPI-WlN-FLUSH completes all outstanding RMA operations initiated by the calling
process at the specified target rank on the selected window and at the origin process. RMA
operations issued prior to this call with rank as the target will have completed both at the

ßS
t

requiring the target process to call any MPI
' )O'g

M Pl-Wl N- FLUS H-ALL(win)

lN win window object (handle)

int MPI-VJin-flush-alt (MPI-tlin wín)

MPI-L¡IN-FLUSH-ALL (l¡lIN, IERROR)

ÏNTEGER I4IIN, IERROR

All RMA operations issued by the calling process to any target prior to this call and
in the specified window will have completed both at the origin and at the target when this
call returns. -IvriS etoQ.l. 6qrc> C,ør, flÀ4e5 lcecdft

M Pl-WlN-FLUSH(rank, win)

lN rank

lN win

M Pl-Wl N-FLUSH-LOCAL(rank, win)

lN rank

lN win

rank of target window (non-negative integer)

window object (handle)

rank of target window (non-negative integer)

window object (handle)
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int MPI-!úin-flush-1oca1(int rank, MPI-VJin win)

MPl-1.¡IN-FLUSH-L0CAL(RANK, l4rIN, IERROR)

ÏNTEGER RANK, I^ITN, IERROR
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At the origin, locally complete all outstanding RMA operations initiated by the calling
process to the target process specified by rank on the selected window. E.g., after this
routine completes, the user may reuse any buffers provided to put, get, or accumulate
operations.

M Pl-Wl N-FLUSH- LOCAL-ALL(win)

lN win window object (handle)

int MPI-l{in-f lush-1ocal-al1 (MPI-LJin win)

MPI-I,IIN-FLUSH-LOCAL-ALL (WTN, IERROR)

ÏNTEGER I^¡IN, IERROR

10

11

72

l3

t4

15

16

I7

18

't9

AII RMA operations issued to any
completed at the origin when MPI-WIN

MPI-WlN-SYNC(win)

lN win

target prior to this call in this window will have

- FLUSH-LOCAL-ALL returns.

window object (handle)

27
int MPI-lüin-sync (MPI-LIin win)

22

23 MPI-hIIN-SYNC(hIIN, IERROR)
24 INTEGER hIIN, IERROR

2a 11.5.5 Assertions

29

30

31

34

35

38

39

40

41

42

43

44

45

46

47

4A

The assert argument in the calls MPI-WIN-POST, MPI-WIN-START, MPI-WIN-FENCE
and MPI-WIN-LOCK is used to provicle assertions on the context of the call that may be

used to optimize performance. The assert argument does not change program semantics
if it provides correct information on the program - it is erroneous to provide[s] incorrect
information. Users may always provide assert : 0 to indicate a general case where no
guarantees are made.

Adui,ce to users. Many implernentations may not take advantage of the inforrnation
in assert; some of the infornation is relevant only for noncoherent shared rnemory ma-
chines. Users should consult their implementation manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-

tions whenever applicable are portable and will take advantage of assertion specific
optimizations whenever available. (End of adu'ice to users.)

Adui,ce to i,mplementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on tlreir implementation. (End of aduice to r,mplementors.)

assert is the bit-vector OR of zero ot more of the following integer constants:
MPI-MODE-NOCHECK, MPI-MODE-NOSTORE, MPI-MODE-NOPUT,
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MPI-MODE-NOPRECEDE and MPI-MODE-NOSUCCEED. The signiflcant options are listed 1

below for each call. 2

Adui,ce to users. C/C++ users can use bit vector or (l) to cornbine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of adu,ice to users.)

MPI-\MIN-STAR.T:

MPI-MODE-NOCHECK - the matching calls to MPI-WIN-POST have already com-
pleted on all target processes when the call to MPI-WIN-START is made. The
nocheck option can be specified in a start call if and only if it is specifled in
each matching post call. This is sirnilar to the optimization of "ready-send" that
may save a handshake when the handshake is irnplicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI-WIN-POST:

MPI-MODE-NOCHECK - the rnatching calls to MPI-WIN-START have not yet oc-
curred on any origin processes when the call to MPI-WIN-POST is made. The
nocheck option can be specified by a post call if and only if it is specified by each
matching start call.

MPI-MODE-NOSTORE the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.

MPI-MODE-NOPUT - the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI-\VIN_FENCE:

4
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72

13
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t7

18

20

27

24

25

26

30

31

MPI-MODE-NOSTORE the local window was not updated by local stores (or local 32

get or receive calls) since last synchronization. 33

MPI-MODE-NOPUT - the local window will not be updated by put or accumulate 
t:

calls after the fence call, until the ensuing (fence) synchronization. 35

MPI-MODE-NOPRECEDE - the fence does not complete any sequence of locally issued ::
RMA calls. If this assertion is given by any process in the window group, then it 38

must be given by all processes in the group. 
:Js

MPI-MODE-NOSUCCEED - the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPr_\MrN_LOCK, MPr_\MrN_LOCK_ALL:

MPI-MODE-NOCHECK no other process holds, or will attempt to acquire a con-
flicting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other rneans, but the coherence opelations that may be
attached to the lock and unlock calls are still required.
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1 Adu'i,ce to users. Note that the nostore and noprecede flags provide information on
2 what happened before the call; the noput and nosucceed flags provide information on
3 what will happen after the call. (End of adui,ce to users.)
4

5 11.5.6 Miscellaneous Clarifications

I On"" an RMA routine cornpletes, it is safe to free any opaque objects passed as argument

. to that routine. For example, the datatype argument of a MPI-PUT call can be freed as

s soon as the call returns, even though the communication may not be complete.

10 As in message-passing, datatypes must be committed before they can be used in RMA

11 communication.

12

13 11.6 Examples

Ï Example 11.6 The f'oltowing example shows a generic loosely synchronous, iterative code,
16 using fence synchronization. The window at each process consists of array A, which contains

l: 
the origin and target buffers of the put calls.

19

20 r,¡hile( ! converged(A)){
2t update(A);
22 MPI-!úin-fence(MPI-M0DE-N0PRECEDE, win);
23 for(i=O; i < toneighbors; i++)
24 MPI-Put (&fronbuf [i] , 1, fromtype [i] , toneighbor [i] ,

2s todisp[iJ , 1, totype [i] , win) ;

26 MPl-Llin-fence((MPI-M0DE-N0ST0RE I MPI-M0DE-N0SUCCEED), r,¡in);
27Ì

28

2s The sarne code could be written with get[,] rather than put. Note that, during the com-

s0 munication phase, each window is concurrently read (as origin buffer of puts) and written
31 (as target buffer of puts). This is OK, provided that there is no overlap between the target

82 buffer of a put and another communication buffer.

s4 Example 11.7 Same generic example, with more computation/communication overlap.

35 \Me assume that the update phase is broken in two subphases: the first, where the "bound-

86 ary," which is involved in cornmunication, is updated, and the second, where the "core,"

3z which neither use nor provide comrnunicated data, is updated.

38

3e while( ! converged(A)){
40 update-boundary(A);
4I MPI-lIin_fence((MPI-MODE-NOPUT I MPI-MODE-NOPRECEDE), win);
42 for(i=0; i < fromneighbors; i++)

:^ 
MPI-Get (&tobuf [i] , 1, totype [i] , fromneighbor [i] ,

fromdisp [iJ , 1, fromtype [iJ , win) ;45 update-core(A);
46 MPl-llin-fence(MPI-M0DE-N0SUCCEED, wín);
nn', ]

42
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The get communication can be concurrent with the core update, since they do not access the 1

same locations, and the local update of the origin buffer by the get call can be concurrent 2

with the local update of the core by the update-core call. In order to get similar overlap g

with put communication we would need to use separate windows for the core and for the 4

boundary. This is requiled because we do not allow local stores to be concurrent with puts b

on the same, or on overlapping, windows. 6

:.1"-Ot. 

11.8 Same code as in Example 11.6, rewritten using post-start-complete-wait. 
j

r"rhile ( ! converged(A) ) {
update (A) ; 

11

MPï-llin-post(frongroup, O, win) i "
MPI-VJin-start(togroup, 0, win); tt

for(i=0; i < toneighbors; i++) 14

MPI-Put (&frombuf [i] , 1, fromtype lil , toneighbor [i] , 
tu

todisp lil , 1, totype [i] , "irr) ; 
'u

MP I _l,Jin_ c ompl et e (r,rin) ;

MPI-l,lin-wait (win) ;

Ì

Example 11.9 Same exarnple, with split phases, as in Example 11.7.

while ( ! converged(A) ) {
update_boundary(A) ;

MPI-VJín-post(togroup, MPI-MODE-N0PUT, win) ;

MPf-lrlin_start(fromgroup, 0, win) ;

for(1=9; i < fronneighbors; i++)
MPI_Get (&tobuf [i] , 1, totype [i] , fromneighbor [iJ ,

fromdisp [iJ , 1, fromtype [il , win) ;

update-core (A) ;

MPf -!üin-complete (r¡in) ;

MP I -!'lin-r¿ait (r"rin) ;

Ì

Example 11.10 A checkerboard, or double buffer communication pattern, that allows
rnore cornputation/cornmunication overlap. Array A0 is updated using values of array 41,
and vice versa. We assume that communication is symmetric: if process A gets data from
process B, th.en process B gets data from process A. Window wini consists of array Ai.

if ( ! converged(40,41))
MPl-1,lin-post(neighbors, (MPI-M0DE_N0CHECK I MPI_M0DE_N0PUT), winO);

MPf-Barrier(commO);
/+ t}:re barrier is needed because the start call inside the
loop uses the nocheck option */
while( ! converged(40, A1)){

/* communication on A0 and conputation on AI */



44 CHAPTER 11. ONE-SIDED COMMUNICATIO¡üS

update2(A1, A0)i /* loca]- update of A1 that depends on A0 (and AI) */
MPI-!üin-start (neighbors, MPI-M0DE-NOCHECK, winO) ;

for(i=O; i < neighbors; i++)
MPI_Get (&tobuf0 [i] , 1, totypeo [iJ , neighbor [i] ,

fromdispO [i] , 1, fromtypeO iiJ , winO) ;

updatel(41); /* focal update of A1 that is
concurrent v¡ith cornmunj.cation that updates A0 */

MPI-VJin-post(neighbors, (MPI-M0DE-N0CHECK I MPI-M0DE-N0PUT), winl) ;

MPI _l,Jin_ c ompl et e (r"¡inO ) ;

MPI-Vlin-wait (win0) ;

,/* conmunication on A1 and computation on A0 */
update2(AO, A1); /* l.ocal- update of A0 that depends on A1 (and A0)*/
MPl-tlin-start (neighbors , MPI-MODE-NOCHECK, r^rin1) ;

for(i=0; i < neighbors; i++)
MPI_Get (&tobufl [i] , 1, totypel [i] , neighbor [i] ,

fromdispl [i] , 1, fromtypel [i] , winl) ;

updatel(AO); /* local update of A0 that depends on A0 onIy,
concurrent with cornmunication that updates AI */

if ( ! converged(40,41) )
MPI-lrrin-post(neighbors, (MPI-M0DE-N0CHECK I Upf-UO¡E-N0PUT), winO) ;

MPI-Vlin-complete (win1 ) ;

MPI-Viin-wait (win1) ;

]
A process posts the local window associated with r,¡inO before it completes RMA accesses

to the remote windows associated with win1. When the r¡ait (win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait (r"rinO) call returns, then all neighbors of the calling process have posted the
windows associated with r¿inl. Therefore, the nocheck option can be used with the calls to
MPI-WIN-START.

Put calls can be used, instead of get calls, if the ar-ea of alray A0 (resp. A1) used by
the update(41, A0) (resp. update(40, A1)) call is disjoint frorn the area modified by the
RMA communication. On some systerns, a put call rnay be more efficient than a get call,
as it requires information exchange only in one direction.

II.7 Error Handling

L1,.7.L Error Handlers

Errols occurring during calls to [MPl-WlN-CREATE(...,comm,...)]routines that create MPI
Windows (e.g., MPI-WlN-CREATE) cause the error handler currently associated with comm

to be invoked. All other RMA calls have an input win argument. When an error occurs
during such a call, the error handler currently associated with win is invoked.

The default error handler associated with win is MPI-ERRORS-ARE-FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3,
page 298).
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LL.7.2 Error Classes

The [following]error classes for one-sided communication are defined in Table 11.1. RMA
routines may (and almost certainly will) use other MPI error classes, such as MPI-ERR-OP
or MPI-ERR-RANK.

MPI-ERR-WIN invalid win argurnent
MPI-ERR-BASE invalid base argument
MPI-ERR-SIZE invalid size argurnent
MPI-ERR-DISP invalid disp argument
MPI-ERR-LOCKTYPE invalid locktype argument
MPI-ERR-ASSERT invalid assert argument
MPI-ERR-RMA-CONFLICT conflicting accesses to window
MPI-ERR-RMA-SYNC [wrong]invalid synchronizationof RMA calls
MPI-ERR-RMA-RANGE target memory is not part of the window (in the case

of a window created with
MPI-WlN-CREATE-DYNAMIC, target memory is not

45

/4t^'-ffiffiia'ffi, Ê.{
Table 11.1: Error classes in one-sided cornmunication routines -'722

ø{.

11.8 Semantics and Correctness

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is

visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accurnulate call in the public copy of the target window is visible when the put
or accumulate has cornpleted at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI-WIN-COMPLETE, MPI-WIN-FENCE [or MPI-WIN-UNLOCK]
MPI-WIN-FLUSH, MPI-WIN-FLUSH-ALL, MPI-WIN-FLUSH-LOCAL,
M Pl-Wl N-FLUSH-LOCAL-ALL, M Pl-WlN- U N LOCK, or M Pl-Wl N-U N LOCK-ALL that
synchronizes this access at the origin.

2. If an RMA operation is cornpleted at the origin by a call to MPI-WIN-FENCE then
the operation is completed at the target by the rnatching call to MPI-WlN-FENCE by
the target process.

3. If an RMA operation is completed at the origin by a call to MPI-WIN-COMPLETE
then the operation is completed at the target by the matching call to MPI-WIN-WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI-WIN-UNLOCK,
MPI-WlN-UNLOCK-ALL, MPI-WIN-FLUSH(rank:target), or

24

26

2A

29

30

31

34

38

39

40

47

42

43

44

45

47

48



46 CHAPTER 11. ONE-SIDED COMMUNICATIONS

a,\so

5. An update of a location in a private window copy in process memory becomes visi-
ble in the public window copv at latest when an ensuing call to MPI-WIN-POST,
MPI-WIN-FENCE, lor MPI-WIN-UNLOCKIMPI-WIN-UNL
MPI-WIN-UNLOCK-ALL, or MPI-WIN-SYNC is

1
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Cn rrn4u
17
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^a6bD'Ìa
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þiar ^t<

Th-s/
ed memory
becomes vir

I

becomes visible without additional RMA calls when
the RMA operation completes at the target.

The MPI-WIN-FENCE or MPI-WIN-WAIT call that completes the transfer frorn public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2,3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI-WlN-UNLOCK or MPI-WlN-UNLOCK-ALL. [On the other hancl]In the RMA separate
memory model, the update of private copy in the process memorJ¿ may be delayed until
the target process executes a synchronization call on that windo* (6). Thus, updates to
process memory can always be delayed in the RMA separate memory model until the process

executes a suitable synchronization call while they have to complete in the RMA unified
model without additional synchronization calls. fUpdates to a, public window copy cau also
be delayed until the rvinclow owner executes a synchronization call, if fences or post-start-
contplete-wait, synchronization is usecl.]If fence or post-start-complete-wait synchronization
is used, updates to a public window copy can be delayed in both memory models until the
window ownel executes a synchronization call. [Only wheu lock synchronization is used does
it becomefs] necessary to update the public window copy, even if the window owner does not
execute any related synchronization call.]When passive-target synchronization (lock/unlock
or even flush) is used, it is necessary to update the public window copy in the RMA separate
model, or the private window copy in the RMA unified model, even if the window owner
does not execute any related synchronization call.

The rules above also define, by inplication, '"r'hen an update to a public window copy
becornes visible in another overlapping public window copy. Consider, for exarnple, two
overlapping windows, winl and win2. A call to MPI-WlN-FENCE(0, winl) by the window
owner nakes visible in the process mernory previous updates to window winl by remote
plocesses. A subsequent call to MPI-WlN-FENCE(0, win2) makes these updates visible in
the public coplr ef *¡n2.

The behavior of some MPI RMA operations in some situations may be undefi,ned. For
example, the results of performing several MPI-PUT operations to the same target location
from several different origin processes within the same access epoch is undefrned. For
example, the result at the target may have all of the data from one of the MPI-PUT
operations (the "last" one, in some sense), or bytes from some of each of the operations,

h{P

,. 
^" "oa*"r'o;;;, ;"""-ffi'¿1;ìî;#S$P#.#läîreco,nes visibre in the
private copy in process memory at latest when an ensuing call to MPI-WIN-WAIT,
MPI-WlN-FENCE,I or M Pl-WlN-LOCKIMPI-WlN-LOCK, MPI-WIN-LOCK-ALL, or
MPI-WIN-SYNC 

. -fL-s,
unifled memory
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or something else. In MPI-2, such operations were erroneou* That meant that an MPI
implementation was permitted to signal an MPI exception. Thus, user programs or tools
that used MPI RMA could not portably permit such operations, even if the application code
could function correctly with such an undefined result. In MPI-3, these operations are not

Rati,onale. As discussed in [1], requiring operalioirs rlapping puts to be
erroneous makes it very difficult to use MPI RMA to implement programming models,

these operations as erroneous, the MPI Forum is unaware of any implementation
that enforced this rule, as that would require significant overhead. Thus, relaxing
this condition does not impact existing implementations or applications. (End of
rati,onale.)

Adui,ce to i,mplementors. Because overlapping accesses (and other operations that
MPI-3 specifies) are undefi.ned, implementations may wish to provide a mode in which
such operations are erroneous to aid in debugging code. Note, however, that in MPI-3,
such operations must not generate an M Pl exception. (End of aduice to implementors.)

A correct program in the MPI-WIN-SEPARATE memory model must obey the following
rules.

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process

memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates [that use the sarne operation, ]with the
same predeflned datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversel¡ a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.,

Note that MPI-WIN-SYNC may be used, within a passive target epoch, to synchronize the
private and public window copies (that is, updates to one are made visible to the other).

In the MPI-WIN-UNIFIED memory model, the rules are much simpler because the pub-
lic and private windows are the same. However, there are restrictions based on avoiding
concurrent access to the same memory locations by different processes. The rules that a

has started, I

prrJrucrå -^cf¿{tvv-{ røu\ts .
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crr, %in";,tlr.sh¡^)
(WDG COMMENT: This item for discussion:) Locally accessing (but not updating)
a location in the window that is also the target of a remote update is valid (not
erroneous) but the precise result will depend on the behavior of the hardware. Up-
dates from a remote process will appear in the memory of the target, but there is
no atomicity guarantee or ordering guarantee if more than one byte is updated. This
permits polling on a location for a change from zero to non-zero, but not polling for
a particular update. Users are cautioned that polling on one memory location and
then accessing a different memory location has defined behavior only if the other rules
given here and in this chapter are followed.

A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update completes at the target.
There is one exception to this rule, in the case where the same variable is updated by
two concurrent accumulates that use the same operation, with the same predefined
datatype, on the same window.

A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update completes at the target window. Conversely, a

local update in process memory to a location in a window must not start once a put
or accumulate update to that target window has started, until the put or accumulate
update completes at the target. In both cases, the restriction applies to operations
even if they access disjoint locations in the window.

Note that MPI-WlN-FLUSH and MPI-WlN-FLUSH-ALL may be used, within a passive

target epoch, to complete RMA operations at the target process.
A program [is erroneous if it violates these rules]that violates these rules has undefined

behavior.

Rati,onale. The last constraint on correct RMA accesses may seern unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on sorne architectures, explicit coherence restoring
operations rnay be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accurnulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a

put or accumulate call. The additional overhead of maintaining such information is

considered prohibitive. (End of rati,onale.)

Adui,ce to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accurnulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
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(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls sÌrould not be updated while the window
is posted.

With the post-start synchronization, the target process can tell the origin process

that its window is now ready for RMA access; with the cornplete-wait synchro-
nization, the origin process can tell the target process that it has finished its
RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict.
Nonconflicting accesses (such as read-only accesses or accurnulate accesses) are
protected by shared locks, both for local accesses and for RMA accesses.

changing window or synchronization rnode: One can change synchronization
mode, or change the window used to access a location that belongs to two over-
lapping windows, when the process rnemory and the window copy are guaranteed
to have the same values. This is true after a local call to MPI-WIN-FENCE, if
RMA accesses to the window are synchronized with fences; after a local call to
MPI-WlN-WAlT, if the accesses are synchronized with post-start-complete-wait;
after the call at the origin (local or remote) to MPI_WlN-UNLOCK if the accesses

are synchlonized with locks.

In addition) a process should not access the local buffer of a get operation until the
operation is complete, and should not update the local buffer of a put or accumulate
operation until that operation is complete.

The RMA synchronization operations define when updates are guaranteed to become

visible in public and private windows. Updates may becorne visible eallier, but such

behavior is implementation dependent. (End of adutce to users.)

The sernantics are illustrated by the following examples:

Example 11.11 The following example demonstrates updating a memory location inside
a window for the separate memory model, according to Rule 5. The MPI-WIN-LOCK
and MPI-WIN-UNLOCK calls around the store to X in process necessary to ensure

consistency between the public and private copies of the window. øy¿

49

Process A:

MPI-Barrier

Process B:
window location X

MPI -llin-1o ck (EXCLUSIVE, B)
store X /* focal update to private copy of B */
MPI-Llin-unlock (B)

/* nou visibte in public r.rindow copy */

MPI_Barrier

I
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MPI -hrin- lock (EXCLUSIVE, B)
MPI-Get(X) /* ok, read fron public r.rindow t,/
MPI-Win-unlock (B)

When using the RMA unified memory model, the MPI-WIN-LOCK/MPI-WIN-UNLOCK
synchronization in Process B is not required, as shown in Example lI.I2.
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Example tL.L2 Similar to the previous example, but in the RMA unifled memory model.
Process B only needs to call MPI-WIN-LOCK-ALL prior to the store to X, as the store
updates both the public and private copies of the window.
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Process A:

MPI-lJin-tock-all ( )

Process B:
window location X

store ¡1 /x update to private&public copy of B */
MPl-Barrier MPI-Bärrier
MPI-Get 6) /* ok, read from wíndout */
MPI -tlin-f lush- 1oca1 (B)

/* read value */
MPI-l¡Jin-unlock-all ( ) MPI-l.lin-unlock-allo

The synchronization in this example is achieved through a combination of
MPI-WIN-FLUSH-LOCAL and MPI-BARRIER. Note that this example is not guaranteed to
work correctly when using the RMA separate memory model.

Example 11.13 The following example demostrates the reading a memory location up-
dated by a remote process (Rule 6) in the RMA separate memory model. The
MPI-WIN-LOCK and MPI-WIN-UNLOCK around the load of X by process B are necessary
to ensure that the private copy of the wind has been updated with changes made to the
public copy by process A,

Process A: Process B:
window location X

MPI -LJin-lock (EXCLUSIVE, B)
MPI-Put (X) /* update to public window */
MPI-tJin-u¡lock (B)

MPï-Barrier MPI-Barrier

MP I -l'lin-lock (EXCLUSIVE, B)

/* novt visible in private copy of B */
load X

MPI-lJin-unlock (B)

Note that the private copy of X has not necessarily been updated after the barrier, so

omitting the lock-unlock at process B may lead to the load returning an obsolete value.

Example LL.IA Similar to the previous example, but in the RMA unified memory model.
Process B does not need to explicitly synchronize the public and private copies through
MPI-WIN-LOCK as the MPI-PUT will update both the public and private copies of the
window.



11.8. SEMANTICS AND CORRECT¡\IESS

Process A: Process B:
window location X

MPl-tJin-1ock-a11 ( ) MPl-Win-lock-a11 ( )
MPI-Put (X) /* update to window */
MPI-l,Iin_f Iush (B)

MPf-Ba¡rier MPI_Barrier
load X 8

MPl-l¡Iin-u¡Iock-a11() MPl-hlin-unlock-a11() s

Note that the private copy of X has been updated after the barrier and that this example r:
is not guaranteed to work correctly when using the RMA separate memory model. t2

Example 11.15 The following example further clarifies Rule 5. MPI-WIN-LOCK and
MPI-WIN-LOCK-ALL do not update the public copy of a window with changes to the
private copy. Therefore, there is no guarantee in the RMA separate memory model that
proces A in the following sequence will see the value of X as updated by the local store by
B before the lock.

Process A: Process B:
window location X

store X /x update to private copy of B */
MPI-VJin-1o ck (SHARED, B)
MPI-BarrierMPf-Barrier

MPI-VJin-lock (SHARED, B)
MPI-Get(X) /x X nay not be in public window copy *r/
MPI-trlin-u¡lock (B)

MPI-hlin-unlock (B)

/x update on X now visible in public window */

The addition of an MPI-WIN-SYNC before the call to MPI-BARRIER by process B would
guarantee process A would see the updated value of X, as the public copy of the window
would be explicitly synchronized with the private copy.

Example 11.16 Similar to the previous example, Rule 5 can have unexpected implications
for general active target synchronization with the RMA separate memory model. lt is not
guaranteed that process B reads the value ofX as per the local update by process A, because
neither MPI-WIN-WAIT nor MPI-WIN-COMPLETE calls by process A ensure visibility in
the public window copy.

Process A:
¡¡indow location X

window location Y

store Y

51

Process B:
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MPl-lrlin-post(A,B) /* Y visibl-e in public window */
MPl-llin-start (A) MPI-lJin-start (A)

store ¡( /x update to private window */

MPI-trlin- conplete MPï -hlin-conplete
MPI-hlin-wait
/+ update on X may not yet visible in public r.rindow +/

MPI-Barrier MPI-Barrier

MPI-lJin-lock (EXCLUSIVE, A)
MPI-Get(X) /x may return a¡ obsolete value */
MPI_Get (Y)

MPI-l,Jin-unlock (A)

To allow B to read the value of X stored by A the local store must be replaced by a local
MPI-PUT that updates the public window copy. Note that by this replacement X may
become visible in the private copy in process memory of A only after the MPI-WIN-WAIT
call in process A. The update on Y made before the MPI-WIN-POST call is visible in
the public window after the MPI-WIN-POST call and therefore prcoess B will read the
proper value of Y. The MPI-GET(Y) call could be moved to the epoch started by the
MPI-WIN-START operation, and process B would still get the value stored by A.

Example LI.I7 Finally, the following example demonstrates the interation of general ac-

tive target synchronization with local read operations with the RMA separate memory
model. Rules 5 and 6 do not guarantee that the private copy of X at B has been updated
before the load takes place

Process A: Process B:
window location X

MPI-!lin-1ock (EXCLUSIVE, B)
MPI-Put(X) /* update to public window +/
MPI-l.Iin-unlock (B)

MPï-Barrier MPI-Barrier

MPI-Win-post (B)

MPI-tJin-start (B)

load X /* access to private window */
/x may return an obsolete value x/

MPI-Vlin- coroplete
MPI_Win_wait

To ensure that the value put by process A is read, the local load must be replaced with a

local MPI-GET operation, or must be placed after the call to MPI-WlN-WAIT.
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In the next several examples, for conciseness, the expression 1

2

z = MPl-Get-accumulate(...) 
3

means to perform an MPI-GET-ACCUMULATE with the result buffer (given by result-addr 4

in the description of MPI-GET-ACCUMULATE) on the left side of the assignment; in this 5

case, z. This format is also used with MPI-COMPARE-AND-SWAP 6

7

Example 11.18 The following example implements a naive, non-scalable counting semaphore. 8

The example demonstrates the use of MPI-WIN-SYNC to manipulate the public copy of s

X, as well as MPI-WIN-FLUSH to complete operations without ending the access epoch 10

opened with MPI-WIN-LOCK-ALL. 11

t2

Process A: Process B: Ì3

MPI-lJin-lock-a1IO MPI-VJin-1ock-a11O 14

window location X ,,
x=2 16

MPI I'Jin svncJt7

MPl_Barrier MPI_Barrier 1a

19

MPI-Accumulate(X, MPI-SIJM, -1) MPI-Accumulate(X, MPI-SIJM, -1) 20

2t

stack variable z stack variable z 22

while(z!=O) do while(z!=O) do 28

z =MPÏ-Get-accumulate(X, z =MPl-Get-accumulate(X, 24

MPI_No_oP, o) MPr_No_oP, o) 25

MPI-Win-flush(A) MPI-tJin-flush(A) 26

done done 27

28

MPI_Win_unlock_a11o MPl_t'Jin_unlock_a11O .zs

30

Example 11.19 Implementing a critical region between two processes (Peterson's algo- 31

rithm [?]). 
32

33

Process A: Process B: 34

window location X window location Y 35

windor¿ location T 36

37

MPl-tJin-lock-a11O MPI-lJin-lock-a11O 38

X=1 Y=1 3e

MPI-VJin-sync MPl-lJin-sync 40

MPï-Barrier MPI-Barrier 4r

MPI-AccumuLate(T, MPI-REPLACE, 1) MPl-Accumulate(T, MPI-REPLACE, 0) 42

stack variables t,y stack variable t,x 43

t=1 t=0 44

y=MPI-Get-accunulate(Y, MPI-NO-OP, 0) x=MPI-Get-accumulate(X, MPI-N0-OP, 0)¿s

while(y==1 && t==1) do while(x==1 && t==0) do 46

v=MPI-Get-accumulate (Y, x=MPI-Get-ac cr¡nulate (X, 47

MPI-NO_OP, O) MPI-NO-OP, O) 48
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Example LL.2O Implementing a critical region between multiple processes with compare
and swap.

t=MPI-Get-accumulate (T,
MPT-NO-OP, O)

MPI-t¡Jin-f lush-aI1 ( )
done

/ / critical region
MPI-Accunulate(X, MPI-REPLACE, 0)
MPI-lJin-unto ck-aI1 ( )

Process A:
MPI-l'lin-1ock-a]1 o
atonic location A

A=0

MPI l{in sr¡nc
MPI_Barrier
stack variable r=1
while(r l= 0) do

r = MPI-Compare-and-swap(4, 0, 1)
MPI-!Jin-f lush(A)

done

/ / critical region

CHAPTER 11, ONE-SIDED COMMUNICATIONS

t=MPI-Get-accumulate (T,
MPI-NO-OP, O)

MPI-Win-f1ush (A)

done

/ / critical region
MPI-Accr:mulate (Y, MPI-REPLACE, 0)
MPI-tJin-u¡rlock-aI1 ( )

Process B...:
MPI-h¡in-Iock-aI1 ()

MPï-Barrier
stack variable r=1
while(r != 0) do

r = MPT-Conpare-ar.d-swap(4, 0, 1)
MPI-!lin-f lush(A)

done

/ / critical region
r = MPl-Compare-ard-swap(4, 1, 0) r = MPI-Compare-a-nd-swap(4, 1, 0)

[,a

operation and pledeflned datatype, is as if the accumulates where done at that location in
some serial order. On the other hand, if two locations are both updated by two accumulate

fcalls]operations, then the updates rnay occur in reverse order at the two locations. Thus,
there is no guarantee that the entire call to IMPl-ACCUMULATE]an accumulate operation is

executed atomically. The effect of this lack of atomicity is limited: The previous correctness
conditions imply that a location updated by a call to [MPI-ACCUMULATE,]an accumulate
operation cannot be accessed by load or an RMA call other than accumulate until the

[MPI-ACCUMULATE call]accumulate operation has compìeted (at the target). Different
interleavings can lead to clifferent results only to the extent that computer arithrnetics
are not truly associative or commutatìve. The outcome of accumulate operations with
overlapping types of different sizes or target displacements is undeflned.

71.8.2 Ordering

Accumulate calls enable element-wise atomic read and write to remote memory locations.
MPI specifies ordering between accumulate operations from one process to the same (or
overlapping) memory locations at another process on a per-datatype granularity. The de-

fault ordering is strict ordering which guarantees that overlapping updates from the same
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source to a remote location are committed in program order and that reads (e.g., with
MPI-GET-ACCUMULATE) and writes (e.g., with MPI-ACCUMULATE) are executed and

committed in program order. Ordering only applies to operations originating at the same

origin that access overlapping target mem.ory regions. MPI does not provide any guarantees

for accesses or updates from different origins to overlapping target memory regions.

The default stlict ordering may incur a significant performance penalty, MPI specifies

the info key accumulate-ordering to allow relaxation of the ordering semantics when specified

to any window creation function. The values for this key are as follows. If set to none, then

no ordering will be guaranteed for accumulate calls. This was the behavior for RMA in MPI-

2 but is not lhe default in MPI-3. The key can be set to a comma-separated list of required

access orderings at the target. Allowed values in the comma-separated list are rar, war'

raw, and waw for read-after-read, write-after-read, read-after-write, and write-after-write
ordering, respectively. These indicate whether operations of the specified type complete in
the order they were issued. For example, raw means that any writes must complete at the

target before any reads. These ordering requirements apply only to operations issued by

the same origin process and targeting the same target process. Note that rar, read-after-

read, is included for completeness, as ordering is only important if an update (write) may

be made. The default value for accumulate-ordering is rar,raw,war,waw, which implies that
writes complete at the target in the order in which they were issued, reads complete at the

target before any writes that are issued after the reads, and writes complete at the target
before any reads that are issued after the writes. Any subset of these four orderings can

be specified. For example, if only read-after-read and write-after-write ordering is required,

then the value of the accumulate-ordering key could be set to rar,waw. The order of values is

not significant.
Note that the above ordering semantics apply only to accumulate operations, not puts

and gets. Puts and gets within an epoch are unordered.

11.8.3 Progress

One-sided communication has the same progless requirements as point-to-point comrnuni-

cation: once a cornrnunication is enabled it is guaranteed to complete. RMA calls must have

local sernantics, except when lequirecl fol synchronization with other RMA calls.

There is sorne fuzziness in the definition of the time when a RMA communication

becornes enabled. This fuzziness provides to the implementor more flexibility than with
point-to-point cornmunication. Access to a target window becomes enabled once the col're-

sponding synchronization (such as MPI-WlN-FENCE or MPI-WlN-POST) has executed. On

the origin process, an RMA cornmunication may become enabled as soon as the correspond-

ing put, get or accumulate call has executed, or as late as when the ensuing synchronization

call is issued. Once the cornrnunication is enabled both at the origin and at the target, the

cornmunication must complete.
Consider the code fragment in Example 11.4, on page 33. Some of the calls may block

if the target window is not posted. However, if the target window is posted, then the code

fragrnent must complete. The data transfer may start as soon as the put call occurs, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5, on page 38. Sorne of the calls may block

if another process holds a conflicting lock. However, if no conflicting lock is held, then the
code fi'agment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of
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complete- \ r _ -_------complete: >.=

waif --' - - -r- *¿¡1

load load

Figure 11.6: Symmetric communication

put(1)

PROCESS O

start

put

recv

complete - - -

put(0)

PROCESS 1

post

- -Z wait
>--'

- send

Figure 11.7: Deadlock situation

the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this cornmunication
should not deadlock, irrespective of the amount of data transferred.

Assume, in the last exarnple, that the order of the post and start calls is reversed, at
each process. Then, the code rnay deadlock, as each process rnay block on the start call,
waiting for the matching post to occur. Similarly, the prograrn will deadlock, if the order
of the complete and wait calls is reversed, at each process.

The following two exarnples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice[-] versa. Consider the code illustrated in Figure 11.7. This code will deadlock: the wait
of process 1 blocks until process 0 calls complete, and the receive of pr-ocess 0 blocks until
process l calls send. Consider, on the other hand, the code illustrated in Figure 11,8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the
receive call of process 1 to complete.

Rati,onale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on arì MPI call. This is true
for send-receive communication and applies to RMA cornmunication as well. Thus, in
the example in Figure 11.8, the put and complete calls of pr-ocess 0 should complete
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PROCESS O

start

put

complete * * _

send

Source of Process 1

bbbb = 777
call- MPI_I,IIN_FENCE

call MPI-PUT(bbbb
into buff of process 2)

Source of Process 2

buff = 999
cal-l MPI-I,IIN-FENCE

Executed in Process 2

reg-A: =999

stop appl. thread
buff: =777 in PUT ha¡dler
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- - \wait

Figure 11.8: No deadlock

while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.9., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress rnust occur while a process is busy comput-
ing, or blocked in a non-MPl call. Suppose that in the last example the send-receive
pair is replaced by awrite-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long cornpute loop. Then, according to one interpretation of the
MPI standard, process 0 must return frorn the complete call after a bounded delay,

even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the cornplete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the sarne) under- both
interpretations, unless a process is caught in an infinite compute loop, in which case

the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, it does not seem to affect many real codes. The MPI [f]Forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rati,onale.)

11.8.4 Registers and Compiler Optimizations

Adui,ce to users. All the material in this section is an advice to users. (End of adu'ice

to users.)

A coherence problern exists between variables kept in registers and the memory value
of these variables. An RMA call may access a variable in mernory (or cache), while the
up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory. Note that
these issues are unrelated to the RMA memory model; that is, these issues apply even if the
memory model is MPI-WIN-UNlFlED.

The problem is illustrated by the following code:
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call- MPI-I¡IIN-FENCE call MPï-!,IIN-FENCE
ccc = buff

continue appl.thread

ccc I =reg-A

In this exarnple, variable buff is allocated in the register reg-A and therefore ccc will
have the old value of buff and not the new vahte 777.

This problem, which also affiicts in some cases send/receive communication, is discussed
more at length in Section 16.2.2.

[MPlimplementations will avoid this problem for standard conforming C programs.]Programs
written in C can avoid this problem by declaring the variable buff to be volatile (as the
fence call will force any writes to memory to complete. Many Fortran compilers will avoid
this problem, without disabling cornpiler optirnizations. However, in order to avoid register
coherence problems in a completely portable manner, users should restrict their use of RMA
windows to variables stored in COMMON blocks, or to variables that were declared V0LATILE[
(while V0LATILE is not a standard Fortran declaration, it is supported by many Fortran
compilers)]. Details and an additional solution are discussed in Section 16.2.2, "4 Problem
with Register Optimization," on page 507. See also "Problems Due to Data Copying and
Sequence Association," on page 504, for additional Fortran [problems]issues.
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