
Chapter 11

One-Sided Communications

11.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes may not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer parameters.
This may require all processes to participate in a time consuming global computation, or
to periodically poll for potential communication requests to receive and act upon. The use
of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =

B(map), where map is a permutation vector, and A, B and map are distributed in the same
manner.

Message-passing communication achieves two effects: communication of data from
sender to receiver; and synchronization of sender with receiver. The RMA design sepa-
rates these two functions. Three communication calls are provided: MPI_PUT (remote
write), MPI_GET (remote read) and MPI_ACCUMULATE (remote update). A larger num-
ber of synchronization calls are provided that support different synchronization styles. The
design is similar to that of weakly coherent memory systems: correct ordering of memory
accesses has to be imposed by the user, using synchronization calls; the implementation can
delay communication operations until the synchronization calls occur, for efficiency.

The design of the RMA functions allows implementors to take advantage, in many
cases, of fast communication mechanisms provided by various platforms, such as coherent or
noncoherent shared memory, DMA engines, hardware-supported put/get operations, com-
munication coprocessors, etc. The most frequently used RMA communication mechanisms
can be layered on top of message-passing. However, support for asynchronous communica-
tion agents (handlers, threads, etc.) is needed, for certain RMA functions, in a distributed
memory environment.

We shall denote by origin the process that performs the call, and by target the
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362 CHAPTER 11. ONE-SIDED COMMUNICATIONS

process in which the memory is accessed. Thus, in a put operation, source=origin and
destination=target; in a get operation, source=target and destination=origin.

11.2 Initialization

11.2.1 Window Creation

The initialization operation allows each process in an intracommunicator group to specify,
in a collective operation, a “window” in its memory that is made accessible to accesses by
remote processes. The call returns an opaque object that represents the group of processes
that own and access the set of windows, and the attributes of each window, as specified by
the initialization call.

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

{ static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp_unit, const MPI::Info& info, const MPI::Intracomm& comm)

(binding deprecated, see Section 15.2) }
This is a collective call executed by all processes in the group of comm. It returns

a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.
A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp_unit specified by the target process, at window creation.

Rationale. The window size is specified using an address sized integer, so as to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)
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11.2. INITIALIZATION 363

Advice to users. Common choices for disp_unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The
later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info key is predefined:

no_locks — if set to true, then the implementation may assume that the local window is
never locked (by a call to MPI_WIN_LOCK). This implies that this window is not used
for 3-party communication, and RMA can be implemented with no (less) asynchronous
agent activity at this process.

The various processes in the group of comm may specify completely different target
windows, in location, size, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular process fit their specific target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to erroneous results.

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI_ALLOC_MEM (Section 8.2, page 298) will be better. Also, on some systems,
performance is improved when window boundaries are aligned at “natural” boundaries
(word, double-word, cache line, page frame, etc.). (End of advice to users.)

Advice to implementors. In cases where RMA operations use different mechanisms
in different memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI_WIN_CREATE call needs to figure out
which type of memory is used for the window. To do so, MPI maintains, internally, the
list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementa-
tion specific, mechanisms, together with information on the type of memory segment
allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

Vendors may provide additional, implementation-specific mechanisms to allocate or
to specify memory regions that are preferable for use in one-sided communication. In
particular, such mechanisms can be used to place static variables into such preferred
regions.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

MPI_WIN_FREE(win)

INOUT win window object (handle)
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364 CHAPTER 11. ONE-SIDED COMMUNICATIONS

int MPI_Win_free(MPI_Win *win)

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

{ void MPI::Win::Free() (binding deprecated, see Section 15.2) }
Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This

is a collective call executed by all processes in the group associated with
win. MPI_WIN_FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: i.e., the process has called
MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST
or called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START or called
MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. When the call returns,
the window memory can be freed.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. (End of advice to implementors.)

11.2.2 Window Attributes

The following three attributes are cached with a window, when the window is created.

MPI_WIN_BASE window base address.
MPI_WIN_SIZE window size, in bytes.
MPI_WIN_DISP_UNIT displacement unit associated with the window.

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag) and
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag) will return in
base a pointer to the start of the window win, and will return in size and disp_unit pointers
to the size and displacement unit of the window, respectively. And similarly, in C++.

In Fortran, calls to MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_SIZE, size, flag, ierror) and
MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror) will return in
base, size and disp_unit the (integer representation of) the base address, the size and the
displacement unit of the window win, respectively. (The window attribute access functions
are defined in Section 6.7.3, page 254.)

The other “window attribute,” namely the group of processes attached to the window,
can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window

(handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)
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11.3. COMMUNICATION CALLS 365

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

{ MPI::Group MPI::Win::Get_group() const (binding deprecated, see Section 15.2) }
MPI_WIN_GET_GROUP returns a duplicate of the group of the communicator used to

create the window. associated with win. The group is returned in group.

11.3 Communication Calls

MPI supports three RMA communication calls: MPI_PUT transfers data from the caller
memory (origin) to the target memory; MPI_GET transfers data from the target memory
to the caller memory; and MPI_ACCUMULATE updates locations in the target memory,
e.g. by adding to these locations values sent from the caller memory. These operations
are nonblocking: the call initiates the transfer, but the transfer may continue after the
call returns. The transfer is completed, both at the origin and at the target, when a
subsequent synchronization call is issued by the caller on the involved window object. These
synchronization calls are described in Section 11.4, page 373.

The local communication buffer of an RMA call should not be updated, and the local
communication buffer of a get call should not be accessed after the RMA call, until the
subsequent synchronization call completes.

It is erroneous to have concurrent conflicting accesses to the same memory location in a
window; if a location is updated by a put or accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation has completed
at the target. There is one exception to this rule; namely, the same location can be updated
by several concurrent accumulate calls, the outcome being as if these updates occurred in
some order. In addition, a window cannot concurrently be updated by a put or accumulate
operation and by a local store operation. This, even if these two updates access different
locations in the window. The last restriction enables more efficient implementations of RMA
operations on many systems. These restrictions are described in more detail in Section 11.7,
page 390.

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

For all three calls, the target process may be identical with the origin process; i.e., a
process may use an RMA operation to move data in its memory.

Rationale. The choice of supporting “self-communication” is the same as for message-
passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. After any RMA operation with rank MPI_PROC_NULL, it is still
necessary to finish the RMA epoch with the synchronization method that started the epoch.
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366 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call — the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to target buffer

(non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

{ void MPI::Win::Put(const void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype) const (binding deprecated, see Section 15.2) }
Transfers origin_count successive entries of the type specified by the origin_datatype,

starting at address origin_addr on the origin node to the target node specified by the
win, target_rank pair. The data are written in the target buffer at address target_addr =
window_base + target_disp×disp_unit, where window_base and disp_unit are the base address
and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.
The data transfer is the same as that which would occur if the origin process executed

a send operation with arguments origin_addr, origin_count, origin_datatype, target_rank, tag,
comm, and the target process executed a receive operation with arguments target_addr,
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11.3. COMMUNICATION CALLS 367

target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar message-passing
communication. The target_datatype may not specify overlapping entries in the target
buffer. The message sent must fit, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if the
target datatype object was defined at the target process, by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment, if only portable datatypes are used (portable datatypes
are defined in Section 2.4, page 11).

The performance of a put transfer can be significantly affected, on some systems, from
the choice of window location and the shape and location of the origin and target
buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM may
be much faster on shared memory systems; transfers from contiguous buffers will be
faster on most, if not all, systems; the alignment of the communication buffers may
also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)
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368 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

{ void MPI::Win::Get(void *origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype) const (binding deprecated, see Section 15.2) }
Similar to MPI_PUT, except that the direction of data transfer is reversed. Data

are copied from the target memory to the origin. The origin_datatype may not specify
overlapping entries in the origin buffer. The target buffer must be contained within the
target window, and the copied data must fit, without truncation, in the origin buffer.

11.3.3 Examples

Example 11.1:
We show how to implement the generic indirect assignment A = B(map), where A, B

and map have the same distribution, and map is a permutation. To simplify, we assume a
block distribution with equal size blocks.
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11.3. COMMUNICATION CALLS 369

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes

ttype(p), tindex(m), & ! used to construct target datatypes

count(p), total(p), &

win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

! This part does the work that depends on the locations of B.

! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and

! the locations of the arrays.

! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p

count(i) = 0

END DO

DO i=1,m

j = map(i)/m+1

count(j) = count(j)+1

END DO

total(1) = 0

DO i=2,p

total(i) = total(i-1) + count(i-1)

END DO

DO i=1,p

count(i) = 0

END DO

! compute origin and target indices of entries.

! entry i at current process is received from location

! k at process (j-1), where map(i) = (j-1)*m + (k-1),

! j = 1..p and k = 1..m

DO i=1,m

j = map(i)/m+1
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370 CHAPTER 11. ONE-SIDED COMMUNICATIONS

k = MOD(map(i),m)+1

count(j) = count(j)+1

oindex(total(j) + count(j)) = i

tindex(total(j) + count(j)) = k

END DO

! create origin and target datatypes for each get operation

DO i=1,p

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &

MPI_REAL, otype(i), ierr)

CALL MPI_TYPE_COMMIT(otype(i), ierr)

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &

MPI_REAL, ttype(i), ierr)

CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,p

CALL MPI_GET(A, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

DO i=1,p

CALL MPI_TYPE_FREE(otype(i), ierr)

CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO

RETURN

END

Example 11.2:
A simpler version can be written that does not require that a datatype be built for the

target buffer. But, one then needs a separate get call for each entry, as illustrated below.
This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)
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11.3. COMMUNICATION CALLS 371

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/m

k = MOD(map(i),m)

CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

11.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contribution
to the sum variable in the memory of one process.

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp, tar-
get_count, target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (non-negative integer)

IN origin_datatype datatype of each buffer entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

{ void MPI::Win::Accumulate(const void* origin_addr, int origin_count,

const MPI::Datatype& origin_datatype, int target_rank,
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372 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI::Aint target_disp, int target_count, const MPI::Datatype&

target_datatype, const MPI::Op& op) const (binding deprecated, see
Section 15.2) }

Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at
offset target_disp, in the target window specified by target_rank and win, using the operation
op. This is like MPI_PUT except that data is combined into the target area instead of
overwriting it.

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added
to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype, where
all basic components are of the same predefined datatype. Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. target_datatype must not specify overlapping entries, and the target
buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, is defined. It corresponds to the associative
function f(a, b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin.

MPI_REPLACE can be used only in MPI_ACCUMULATE, not in collective reduction
operations, such as MPI_REDUCE and others.

Advice to users. MPI_PUT is a special case of MPI_ACCUMULATE, with the op-
eration MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

Example 11.3:
We want to compute B(j) =

∑
map(i)=j A(i). The arrays A, B and map are distributed

in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p, win, ierr

REAL A(m), B(m)

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/m

k = MOD(map(i),m)

CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &

MPI_SUM, win, ierr)

END DO
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CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

This code is identical to the code in Example 11.2, page 370, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B = A(map−1), which is the reverse assignment to the one computed in
that previous example.) In a similar manner, we can replace in Example 11.1, page 368,
the call to get by a call to accumulate, thus performing the computation with only one
communication between any two processes.

11.4 Synchronization Calls

RMA communications fall in two categories:

• active target communication, where data is moved from the memory of one process
to the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

• passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

RMA communication calls with argument win must occur at a process only within
an access epoch for win. Such an epoch starts with an RMA synchronization call on
win; it proceeds with zero or more RMA communication calls (MPI_PUT,
MPI_GET or MPI_ACCUMULATE) on win; it completes with another synchronization call
on win. This allows users to amortize one synchronization with multiple data transfers and
provide implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to different win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.
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374 CHAPTER 11. ONE-SIDED COMMUNICATIONS

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.

MPI provides three synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI_WIN_FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST and
MPI_WIN_WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more efficient when each process
communicates with few (logical) neighbors, and the communication graph is fixed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI_WIN_START and is terminated by a call to
MPI_WIN_COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

3. Finally, shared and exclusive locks are provided by the two functionsMPI_WIN_LOCK
and MPI_WIN_UNLOCK. Lock synchronization is useful for MPI applications that
emulate a shared memory model via MPI calls; e.g., in a “billboard” model, where
processes can, at random times, access or update different parts of the billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI_WIN_LOCK and terminated by a call to MPI_WIN_UNLOCK. Only one
target window can be accessed during that epoch with win.

Figure 11.1 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait
returned.

Figure 11.1 shows operations occurring in the natural temporal order implied by the
synchronizations: the post occurs before the matching start, and complete occurs before
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Figure 11.1: Active target communication. Dashed arrows represent synchronizations (or-
dering of events).
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Figure 11.2: Active target communication, with weak synchronization. Dashed arrows
represent synchronizations (ordering of events)

the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
illustrated in Figure 11.2. The access to the target window is delayed until the window is ex-
posed, after the post. However the start may complete earlier; the put and complete may
also terminate earlier, if put data is buffered by the implementation. The synchronization
calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more efficient implementations.

Figure 11.3 illustrates the general synchronization pattern for passive target commu-
nication. The first origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.
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Figure 11.3: Passive target communication. Dashed arrows represent synchronizations
(ordering of events).
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11.4.1 Fence

MPI_WIN_FENCE(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_fence(int assert, MPI_Win win)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

{ void MPI::Win::Fence(int assert) const (binding deprecated, see Section 15.2) }
The MPI call MPI_WIN_FENCE(assert, win) synchronizes RMA calls on win. The call

is collective on the group of win. All RMA operations on win originating at a given process
and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI_WIN_FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
completes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI_WIN_FENCE only after all other processes in the group entered their matching call.
However, a call to MPI_WIN_FENCE that is known not to end any epoch (in particular, a
call with assert = MPI_MODE_NOPRECEDE) does not necessarily act as a barrier.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of advice to
users.)
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11.4.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

{ void MPI::Win::Start(const MPI::Group& group, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

MPI_WIN_COMPLETE(win)

IN win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

{ void MPI::Win::Complete() const (binding deprecated, see Section 15.2) }
Completes an RMA access epoch on win started by a call to MPI_WIN_START. All

RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 11.4:

MPI_Win_start(group, flag, win);

MPI_Put(...,win);

MPI_Win_complete(win);
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380 CHAPTER 11. ONE-SIDED COMMUNICATIONS

The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START is nonblocking, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurred; or implementations
where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process called MPI_WIN_POST — the data put must be
buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies.

MPI_WIN_POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

{ void MPI::Win::Post(const MPI::Group& group, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

{ void MPI::Win::Wait() const (binding deprecated, see Section 15.2) }
Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This

call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call toMPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.
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Figure 11.4: Active target communication. Dashed arrows represent synchronizations and
solid arrows represent data transfer.

Figure 11.4 illustrates the use of these four functions. Process 0 puts data in the
windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each
start call lists the ranks of the processes whose windows will be accessed; each post call lists
the ranks of the processes that access the local window. The figure illustrates a possible
timing for the events, assuming strong synchronization; in a weak synchronization, the start,
put or complete calls may occur ahead of the matching post calls.

MPI_WIN_TEST(win, flag)

IN win window object (handle)

OUT flag success flag (logical)

int MPI_Win_test(MPI_Win win, int *flag)

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

{ bool MPI::Win::Test() const (binding deprecated, see Section 15.2) }
This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if all accesses

to the local window by the group to which it was exposed by the corresponding
MPI_WIN_POST call have been completed as signalled by matching MPI_WIN_COMPLETE
calls, and flag = false otherwise. In the former case MPI_WIN_WAIT would have returned
immediately. The effect of return of MPI_WIN_TEST with flag = true is the same as the
effect of a return of MPI_WIN_WAIT. If flag = false is returned, then the call has no visible
effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked. Once
the call has returned flag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a “hidden” communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



382 CHAPTER 11. ONE-SIDED COMMUNICATIONS

and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI_WIN_POST(group,0,win) initiate a nonblocking send with tag tag0 to each process
in group, using wincomm. No need to wait for the completion of these sends.

MPI_WIN_START(group,0,win) initiate a nonblocking receive with tag tag0 from each
process in group, using wincomm. An RMA access to a window in target process i is
delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win) initiate a nonblocking send with tag tag1 to each process
in the group of the preceding start call. No need to wait for the completion of these
sends.

MPI_WIN_WAIT(win) initiate a nonblocking receive with tag tag1 from each process in
the group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice-versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maximum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each “knows” the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more “anonymous” communication will be required to use the fence or lock
mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a di-
rected graph G = < V,E >, where V = {0, . . . , n − 1} and ij ∈ E if origin
process i accesses the window at target process j. Then each process i issues a
call to MPI_WIN_POST(ingroupi, . . . ), followed by a call to
MPI_WIN_START(outgroupi,. . . ), where outgroupi = {j : ij ∈ E} and ingroupi =
{j : ji ∈ E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of advice to users.)
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11.4. SYNCHRONIZATION CALLS 383

11.4.3 Lock

MPI_WIN_LOCK(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN rank rank of locked window (non-negative integer)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

{ void MPI::Win::Lock(int lock_type, int rank, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA access epoch. Only the window at the process with rank rank can be
accessed by RMA operations on win during that epoch.

MPI_WIN_UNLOCK(rank, win)

IN rank rank of window (non-negative integer)

IN win window object (handle)

int MPI_Win_unlock(int rank, MPI_Win win)

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

{ void MPI::Win::Unlock(int rank) const (binding deprecated, see Section 15.2) }
Completes an RMA access epoch started by a call to MPI_WIN_LOCK(...,win). RMA

operations issued during this period will have completed both at the origin and at the target
when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls
issued between the lock and unlock call, and to protect local load/store accesses to a locked
local window executed between the lock and unlock call. Accesses that are protected by
an exclusive lock will not be concurrent at the window site with other accesses to the same
window that are lock protected. Accesses that are protected by a shared lock will not be
concurrent at the window site with accesses protected by an exclusive lock to the same
window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. I.e., a process may not call MPI_WIN_LOCK to lock a target window if the target
process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it is erroneous
to call MPI_WIN_POST while the local window is locked.
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384 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by lock
calls to windows in memory allocated by MPI_ALLOC_MEM (Section 8.2, page 298). Locks
can be used portably only in such memory.

Rationale. The implementation of passive target communication when memory is
not shared requires an asynchronous agent. Such an agent can be implemented more
easily, and can achieve better performance, if restricted to specially allocated memory.
It can be avoided altogether if shared memory is used. It seems natural to impose
restrictions that allows one to use shared memory for 3-rd party communication in
shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability
of C-like pointers; these are not supported by some Fortran compilers (g77 and Win-
dows/NT compilers, at the time of writing). Also, passive target communication
cannot be portably targeted to COMMON blocks, or other statically declared Fortran
arrays. (End of rationale.)

Consider the sequence of calls in the example below.

Example 11.5:

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)

MPI_Put(..., rank, ..., win)

MPI_Win_unlock(rank, win)

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the call
MPI_WIN_LOCK may not block, while the call to MPI_PUT blocks until a lock is acquired;
or, the first two calls may not block, whileMPI_WIN_UNLOCK blocks until a lock is acquired
— the update of the target window is then postponed until the call to MPI_WIN_UNLOCK
occurs. However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call
must block until the lock is acquired, since the lock may protect local load/store accesses
to the window issued after the lock call returns.
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11.4. SYNCHRONIZATION CALLS 385

11.4.4 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE
and MPI_WIN_LOCK is used to provide assertions on the context of the call that may be
used to optimize performance. The assert argument does not change program semantics
if it provides correct information on the program — it is erroneous to provides incorrect
information. Users may always provide assert = 0 to indicate a general case, where no
guarantees are made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent, shared memory ma-
chines. Users should consult their implementation manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion specific
optimizations, whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on their implementation. (End of advice to implementors.)

assert is the bit-vector OR of zero or more of the following integer constants:
MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED. The significant options are listed
below, for each call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

MPI_WIN_START:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_POST have already com-
pleted on all target processes when the call to MPI_WIN_START is made. The
nocheck option can be specified in a start call if and only if it is specified in
each matching post call. This is similar to the optimization of “ready-send” that
may save a handshake when the handshake is implicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI_WIN_POST:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_START have not yet oc-
curred on any origin processes when the call to MPI_WIN_POST is made. The
nocheck option can be specified by a post call if and only if it is specified by each
matching start call.

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.
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386 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI_WIN_FENCE:

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI_MODE_NOPRECEDE— the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_NOSUCCEED — the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_WIN_LOCK:

MPI_MODE_NOCHECK — no other process holds, or will attempt to acquire a con-
flicting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other means, but the coherence operations that may be
attached to the lock and unlock calls are still required.

Advice to users. Note that the nostore and noprecede flags provide information on
what happened before the call; the noput and nosucceed flags provide information on
what will happen after the call. (End of advice to users.)

11.4.5 Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as argument
to that routine. For example, the datatype argument of a MPI_PUT call can be freed as
soon as the call returns, even though the communication may not be complete.

As in message-passing, datatypes must be committed before they can be used in RMA
communication.

11.5 Examples

Example 11.6:
The following example shows a generic loosely synchronous, iterative code, using fence

synchronization. The window at each process consists of array A, which contains the origin
and target buffers of the put calls.
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...

while(!converged(A)){

update(A);

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);

}

The same code could be written with get, rather than put. Note that, during the commu-
nication phase, each window is concurrently read (as origin buffer of puts) and written (as
target buffer of puts). This is OK, provided that there is no overlap between the target
buffer of a put and another communication buffer.

Example 11.7:
Same generic example, with more computation/communication overlap. We assume

that the update phase is broken in two subphases: the first, where the “boundary,” which
is involved in communication, is updated, and the second, where the “core,” which neither
use nor provide communicated data, is updated.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin buffer by the get call can be concurrent
with the local update of the core by the update_core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 11.8:
Same code as in Example 11.6, rewritten using post-start-complete-wait.

...

while(!converged(A)){

update(A);

MPI_Win_post(fromgroup, 0, win);

MPI_Win_start(togroup, 0, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);
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388 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.9:
Same example, with split phases, as in Example 11.7.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_post(togroup, MPI_MODE_NOPUT, win);

MPI_Win_start(fromgroup, 0, win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.10:
A checkerboard, or double buffer communication pattern, that allows more computa-

tion/communication overlap. Array A0 is updated using values of array A1, and vice versa.
We assume that communication is symmetric: if process A gets data from process B, then
process B gets data from process A. Window wini consists of array Ai.

...

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);

/* the barrier is needed because the start call inside the

loop uses the nocheck option */

while(!converged(A0, A1)){

/* communication on A0 and computation on A1 */

update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],

fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is

concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);

MPI_Win_complete(win0);

MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */

update2(A0, A1); /* local update of A0 that depends on A1 (and A0)*/

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);
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for(i=0; i < neighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],

fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,

concurrent with communication that updates A1 */

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);

MPI_Win_wait(win1);

}

A process posts the local window associated with win0 before it completes RMA accesses
to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modified by the
RMA communication. On some systems, a put call may be more efficient than a get call,
as it requires information exchange only in one direction.

11.6 Error Handling

11.6.1 Error Handlers

Errors occurring during calls to MPI_WIN_CREATE(...,comm,...) cause the error handler
currently associated with comm to be invoked. All other RMA calls have an input win
argument. When an error occurs during such a call, the error handler currently associated
with win is invoked.

The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3,
page 300).

11.6.2 Error Classes

The following error classes for one-sided communication are defined

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC wrong synchronization of RMA calls

Table 11.1: Error classes in one-sided communication routines
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public window copy

STORE LOAD

process memory

PUTPUT GET

Window RMA Update Local Update

STORE

public window copy

Figure 11.5: Schematic description of window

11.7 Semantics and Correctness

The semantics of RMA operations is best understood by assuming that the system maintains
a separate public copy of each window, in addition to the original location in process memory
(the private window copy). There is only one instance of each variable in process memory,
but a distinct public copy of the variable for each window that contains it. A load accesses
the instance in process memory (this includes MPI sends). A store accesses and updates
the instance in process memory (this includes MPI receives), but the update may affect
other public copies of the same locations. A get on a window accesses the public copy of
that window. A put or accumulate on a window accesses and updates the public copy of
that window, but the update may affect the private copy of the same locations in process
memory, and public copies of other overlapping windows. This is illustrated in Figure 11.5.

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI_WIN_COMPLETE, MPI_WIN_FENCE or MPI_WIN_UNLOCK that synchronizes
this access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then
the operation is completed at the target by the matching call to MPI_WIN_FENCE by
the target process.

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE
then the operation is completed at the target by the matching call to MPI_WIN_WAIT
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11.7. SEMANTICS AND CORRECTNESS 391

by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK then
the operation is completed at the target by that same call to MPI_WIN_UNLOCK.

5. An update of a location in a private window copy in process memory becomes visible
in the public window copy at latest when an ensuing call to MPI_WIN_POST,
MPI_WIN_FENCE, or MPI_WIN_UNLOCK is executed on that window by the window
owner.

6. An update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory at latest when an ensuing call to MPI_WIN_WAIT,
MPI_WIN_FENCE, or MPI_WIN_LOCK is executed on that window by the window
owner.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI_WIN_UNLOCK. On the other hand, the update of private copy in the process memory
may be delayed until the target process executes a synchronization call on that window
(6). Thus, updates to process memory can always be delayed until the process executes a
suitable synchronization call. Updates to a public window copy can also be delayed until
the window owner executes a synchronization call, if fences or post-start-complete-wait
synchronization is used. Only when lock synchronization is used does it becomes necessary
to update the public window copy, even if the window owner does not execute any related
synchronization call.

The rules above also define, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two
overlapping windows, win1 and win2. A call to MPI_WIN_FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates visible in
the public copy of win2.

A correct program must obey the following rules.

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process
memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates that use the same operation, with the same
predefined datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
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392 CHAPTER 11. ONE-SIDED COMMUNICATIONS

until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.

A program is erroneous if it violates these rules.

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring
operations may be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accumulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls should not be updated while the window
is posted.

With the post-start synchronization, the target process can tell the origin process
that its window is now ready for RMA access; with the complete-wait synchro-
nization, the origin process can tell the target process that it has finished its
RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict.
Nonconflicting accesses (such as read-only accesses or accumulate accesses) are
protected by shared locks, both for local accesses and for RMA accesses.

changing window or synchronization mode: One can change synchronization
mode, or change the window used to access a location that belongs to two over-
lapping windows, when the process memory and the window copy are guaranteed
to have the same values. This is true after a local call to MPI_WIN_FENCE, if
RMA accesses to the window are synchronized with fences; after a local call to
MPI_WIN_WAIT, if the accesses are synchronized with post-start-complete-wait;
after the call at the origin (local or remote) to MPI_WIN_UNLOCK if the accesses
are synchronized with locks.

In addition, a process should not access the local buffer of a get operation until the
operation is complete, and should not update the local buffer of a put or accumulate
operation until that operation is complete.
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11.7. SEMANTICS AND CORRECTNESS 393

The RMA synchronization operations define when updates are guaranteed to become
visible in public and private windows. Updates may become visible earlier, but such
behavior is implementation dependent. (End of advice to users.)

The semantics are illustrated by the following examples:

Example 11.11:
Rule 5:

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

store X /* local update to private copy of B */

MPI_Win_unlock(B)

/* now visible in public window copy */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)

MPI_Get(X) /* ok, read from public window */

MPI_Win_unlock(B)

Example 11.12:
Rule 6:

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

MPI_Put(X) /* update to public window */

MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)

/* now visible in private copy of B */

load X

MPI_Win_unlock(B)

Note that the private copy of X has not necessarily been updated after the barrier, so
omitting the lock-unlock at process B may lead to the load returning an obsolete value.

Example 11.13:
The rules do not guarantee that process A in the following sequence will see the value

of X as updated by the local store by B before the lock.
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Process A: Process B:

window location X

store X /* update to private copy of B */

MPI_Win_lock(SHARED,B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(SHARED,B)

MPI_Get(X) /* X may not be in public window copy */

MPI_Win_unlock(B)

MPI_Win_unlock(B)

/* update on X now visible in public window */

Example 11.14:
In the following sequence

Process A: Process B:

window location X

window location Y

store Y

MPI_Win_post(A,B) /* Y visible in public window */

MPI_Win_start(A) MPI_Win_start(A)

store X /* update to private window */

MPI_Win_complete MPI_Win_complete

MPI_Win_wait

/* update on X may not yet visible in public window */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,A)

MPI_Get(X) /* may return an obsolete value */

MPI_Get(Y)

MPI_Win_unlock(A)

it is not guaranteed that process B reads the value of X as per the local update by process
A, because neither MPI_WIN_WAIT nor MPI_WIN_COMPLETE calls by process A ensure
visibility in the public window copy. To allow B to read the value of X stored by A the
local store must be replaced by a local MPI_PUT that updates the public window copy.
Note that by this replacement X may become visible in the private copy in process memory
of A only after the MPI_WIN_WAIT call in process A. The update on Y made before the
MPI_WIN_POST call is visible in the public window after the MPI_WIN_POST call and
therefore correctly gotten by process B. The MPI_GET(Y) call could be moved to the epoch
started by the MPI_WIN_START operation, and process B would still get the value stored
by A.

Example 11.15:
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Finally, in the following sequence

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

MPI_Put(X) /* update to public window */

MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_post(B)

MPI_Win_start(B)

load X /* access to private window */

/* may return an obsolete value */

MPI_Win_complete

MPI_Win_wait

rules (5,6) do not guarantee that the private copy of X at B has been updated before
the load takes place. To ensure that the value put by process A is read, the local load
must be replaced with a local MPI_GET operation, or must be placed after the call to
MPI_WIN_WAIT.

11.7.1 Atomicity

The outcome of concurrent accumulates to the same location, with the same operation and
predefined datatype, is as if the accumulates where done at that location in some serial
order. On the other hand, if two locations are both updated by two accumulate calls, then
the updates may occur in reverse order at the two locations. Thus, there is no guarantee
that the entire call to MPI_ACCUMULATE is executed atomically. The effect of this lack
of atomicity is limited: The previous correctness conditions imply that a location updated
by a call to MPI_ACCUMULATE, cannot be accessed by load or an RMA call other than
accumulate, until the MPI_ACCUMULATE call has completed (at the target). Different
interleavings can lead to different results only to the extent that computer arithmetics are
not truly associative or commutative.

11.7.2 Progress

One-sided communication has the same progress requirements as point-to-point communi-
cation: once a communication is enabled, then it is guaranteed to complete. RMA calls
must have local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when a RMA communication
becomes enabled. This fuzziness provides to the implementor more flexibility than with
point-to-point communication. Access to a target window becomes enabled once the corre-
sponding synchronization (such asMPI_WIN_FENCE orMPI_WIN_POST) has executed. On
the origin process, an RMA communication may become enabled as soon as the correspond-
ing put, get or accumulate call has executed, or as late as when the ensuing synchronization
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PROCESS 0

post(1)

start(1)

put(1)

complete

wait

loadload

PROCESS 1

post(0)

start(0)

put(0)

complete

wait

Figure 11.6: Symmetric communication

start

put

recv

complete

PROCESS 1

post

send

wait

PROCESS 0

Figure 11.7: Deadlock situation

call is issued. Once the communication is enabled both at the origin and at the target, the
communication must complete.

Consider the code fragment in Example 11.4, on page 379. Some of the calls may block
if the target window is not posted. However, if the target window is posted, then the code
fragment must complete. The data transfer may start as soon as the put call occur, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5, on page 384. Some of the calls may block
if another process holds a conflicting lock. However, if no conflicting lock is held, then the
code fragment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of
the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed, at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock, if the order
of the complete and wait calls is reversed, at each process.

The following two examples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice-versa. Consider the code illustrated in Figure 11.7. This code will deadlock: the wait
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put

complete

send

start

PROCESS 1

post

recv

wait

PROCESS 0

Figure 11.8: No deadlock

of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 11.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the
receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 11.8, the put and complete calls of process 0 should complete
while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an infinite compute loop, in which case
the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, it does not seem to affect many real codes. The MPI forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rationale.)

11.7.3 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice
to users.)

A coherence problem exists between variables kept in registers and the memory value
of these variables. An RMA call may access a variable in memory (or cache), while the
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up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2

bbbb = 777 buff = 999 reg_A:=999

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_PUT(bbbb stop appl. thread

into buff of process 2) buff:=777 in PUT handler

continue appl. thread

call MPI_WIN_FENCE call MPI_WIN_FENCE

ccc = buff ccc:=reg_A

In this example, variable buff is allocated in the register reg_A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed
more at length in Section 16.2.2.

MPI implementations will avoid this problem for standard conforming C programs.
Many Fortran compilers will avoid this problem, without disabling compiler optimizations.
However, in order to avoid register coherence problems in a completely portable manner,
users should restrict their use of RMA windows to variables stored in COMMON blocks, or to
variables that were declared VOLATILE (while VOLATILE is not a standard Fortran declara-
tion, it is supported by many Fortran compilers). Details and an additional solution are
discussed in Section 16.2.2, “A Problem with Register Optimization,” on page 511. See also,
“Problems Due to Data Copying and Sequence Association,” on page 508, for additional
Fortran problems.
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