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Chapter 11

One-Sided Communications

11.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes may not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer parameters.
This may require all processes to participate in a time consuming global computation, or
to periodically poll for potential communication requests to receive and act upon. The use
of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =

B(map), where map is a permutation vector, and A, B and map are distributed in the same
manner.

Message-passing communication achieves two effects: communication of data from
sender to receiver; and synchronization of sender with receiver. The RMA design separates
these two functions. [Three]Five communication calls are provided: MPI_PUT (remote
write), MPI_GET (remote read), [and] MPI_ACCUMULATE (remote update),
MPI_GET_ACCUMULATE (remote fetch and update), and MPI_COMPARE_AND_SWAP
(remote atomic swap operations).

MPI supports two fundamentally different memory models. The first model makes no
assumption about memory consistency and is highly portable. This model is similar to
that of weakly coherent memory systems: correct ordering of memory accesses has to be
imposed by the user, using synchronization calls; the implementation can delay communi-
cation operations until the synchronization calls occur, for efficiency. The second model
can exploit cache-coherent hardware and hardware-accelerated one-sided operations which
are commonly available in high-performance systems. In this model, communications can
be independent of synchronization calls. The two different models are discussed in detail
in Section 11.5. A large number of synchronization calls is provided for both models to
support different synchronization styles.
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2 CHAPTER 11. ONE-SIDED COMMUNICATIONS

The design of the RMA functions allows implementors to take advantage, in many cases,
of fast or asynchronous communication mechanisms provided by various platforms, such as
coherent or noncoherent shared memory, DMA engines, hardware-supported put/get oper-
ations, communication coprocessors, etc.. The most frequently used RMA communication
mechanisms can be layered on top of message-passing. However, support for asynchronous
communication agents in software (handlers, threads, etc.) [is]might be needed, for certain
RMA functions, in a distributed memory environment.

We shall denote by origin the process that performs the call, and by target the
process in which the memory is accessed. Thus, in a put operation, source=origin and
destination=target; in a get operation, source=target and destination=origin.

11.2 Initialization

[The initialization operation]MPI provides [two]three initialization functions,
MPI_WIN_CREATE[ and ], MPI_WIN_ALLOCATE, and MPI_WIN_CREATE_DYNAMIC.
MPI_WIN_CREATE allows each process in an intracommunicator group to specify, in a
collective operation, a “window” in its memory that is made accessible to accesses by
remote processes. The call returns an opaque object that represents the group of processes
that own and access the set of windows, and the attributes of each window, as specified by
the initialization call. MPI_WIN_ALLOCATE differs from MPI_WIN_CREATE in that the
user does not pass allocated memory; MPI_WIN_ALLOCATE allocates memory and returns
a pointer to it. MPI_WIN_CREATE_DYNAMIC creates a window that allows to attach
(register) and detach (deregister) process memory locally.

11.2.1 Window Creation

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR
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11.2. INITIALIZATION 3

{static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp_unit, const MPI::Info& info, const MPI::Intracomm& comm)

(binding deprecated, see Section 15.2) }

This is a collective call executed by all processes in the group of comm. It returns
a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.
A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp_unit specified by the target process, at window creation.

Rationale. The window size is specified using an address sized integer, so as to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)

Advice to users. Common choices for disp_unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The
later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info key is predefined:

no_locks — if set to true, then the implementation may assume that the local window is
never locked (by a call to MPI_WIN_LOCK). This implies that this window is not used
for 3-party communication, and RMA can be implemented with no (less) asynchronous
agent activity at this process.

unordered — if set to true, then the implementation may assume that the application will
explicitly handle ordering of RMA operations through explicit synchronization.

The various processes in the group of comm may specify completely different target
windows, in location, size, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular process fit their specific target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to [erroneous]undefined results.

Rationale. The reason for specifying the memory that may be accessed from another
process in an RMA operation is to permit the programmer to specify what memory
can be a target of RMA operations and for the implementation to enforce that spec-
ification. For example, with this definition, a server process can safely allow a client
process to use RMA operations, knowing that (under the assumption that the MPI
implementation does enforce the specified limits on the exposed memory) an error in
the client cannot affect any memory other than what was explicitly exposed. (End of
rationale.)
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4 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI_ALLOC_MEM (Section 8.2, page 296) will be better. Also, on some systems,
performance is improved when window boundaries are aligned at “natural” boundaries
(word, double-word, cache line, page frame, etc.). (End of advice to users.)

Advice to implementors. In cases where RMA operations use different mechanisms
in different memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI_WIN_CREATE call needs to figure out
which type of memory is used for the window. To do so, MPI maintains, internally, the
list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementa-
tion specific, mechanisms, together with information on the type of memory segment
allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

(WDG COMMENT: Note the above description of MPI_ALLOC_MEM. The behavior
of MPI_WIN_REGISTER should be similar (which is an argument for register with
size and free with just the pointer, and no registration handles).)

Vendors may provide additional, implementation-specific mechanisms to allocate or
to specify memory regions that are preferable for use in one-sided communication. In
particular, such mechanisms can be used to place static variables into such preferred
regions.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

11.2.2 Window That Allocates Memory

MPI_WIN_ALLOCATE(size, disp_unit, info, comm, baseptr, win)

IN size size of window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT baseptr initial address of window (choice)

OUT win window object returned by the call (handle)

int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void **base, MPI_Win *win)

MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
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11.2. INITIALIZATION 5

This is a collective call executed by all processes in the group of
comm. On each process, it allocates memory of at least size size bytes, returns a pointer to
it, and returns a window object that can be used by all processes in comm to perform RMA
operations. The returned memory consists of size bytes local to each process, starting at
address baseptr and is associated with the window as if the user called MPI_WIN_CREATE
on existing memory. The size argument may be different at each process and size = 0 is
valid, however, a library might allocate and expose more memory in order to create a fast,
globally symmetric allocation. The discussion of MPI_ALLOC_MEM in Section 8.2 also
applies to MPI_WIN_ALLOCATE.

Rationale. By allocating (potentially aligned) memory instead of allowing the user
to pass in an arbitrary buffer, this call can improve the performance for systems with
remote direct memory access significantly. This also permits the collective allocation
of memory and supports what is sometimes called the “symmetric allocation” model
that can be more scalable (for example, the implementation can arrange to return
an address for the allocated memory that is the same on all processes). (End of
rationale.)

The info argument can be used to specify hints similar to the info argument for
MPI_WIN_CREATE and MPI_ALLOC_MEM.

11.2.3 Window of Dynamically Allocated Memory

The MPI-2 RMA model requires the user to identify the local memory that may be a target of
RMA calls at the time the window is created. This has advantages for both the programmer
(only this memory can be updated by one-sided operations and provides greater safety) and
the implementors (special steps may be taken to make one-sided access to such memory
more efficient). However, it makes other uses of RMA more difficult. For example, consider
accessing, using RMA operations, a linked list that is modified. As new items are added
to that list, memory must be allocated. In a C or C++ program, this memory is typically
allocated using malloc or new respectively. In MPI-2 RMA, the programmer must create
an MPI_Win object with a predefined amount of memory and then implement routines for
allocating memory from within that memory. In addition, there is no easy way to handle the
situation where the predefined amount of memory turns out to be inadequate. To support
this model, the routine MPI_WIN_CREATE_DYNAMIC creates an MPI_Win that makes it
possible to expose memory without remote synchronization. This is combined with local
routines to add/remove memory from this window.

MPI_WIN_CREATE_DYNAMIC(info, comm, win)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE_DYNAMIC(INFO, COMM, WIN, IERROR)

INTEGER INFO, COMM, WIN, IERROR
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6 CHAPTER 11. ONE-SIDED COMMUNICATIONS

This is a collective call executed by all processes in the group of
comm. It returns a window win without memory attached. Existing process memory can
be attached (registered) as described below. This routine returns a window object that can
be used by these processes to perform RMA operations on registered memory.

Because this window has special properties, it will sometimes be referred to as a dy-
namic window.

The info argument can be used to specify hints similar to the info argument for
MPI_WIN_CREATE.

no_localexclusive — if set to true, then the implementation may assume that the local window
is never locked (by a call to MPI_WIN_LOCK) with lock mode MPI_LOCK_EXCLUSIVE

by the local process.

(WDG COMMENT: We should remove this info key if no implementor speaks up for it.)
(COMMENT: we should make Info more useful in general, i.e., add attach and query

functions for communicator and window (at least) so that it works with libraries. However,
this issue is orthogonal to this proposal because MPI-2 has the same problem with no_locks,
I shall go ahead and propose a generic attach/query interface which would also be useful
for other assertion-like infos.)

Memory in this window may not be used as the target of one-sided accesses in this
window until it is registered using the function MPI_WIN_REGISTER. That is, in addition
to using MPI_WIN_CREATE_DYNAMIC to create an MPI window, the user must use
MPI_WIN_REGISTER before any local memory may be the target of an MPI RMA operation.
Only memory that is currently accessible may be registered. For simplicity in use, memory
may be registered multiple times (though this is not encouraged).

MPI_WIN_REGISTER(win, base, size)

IN win window object (handle)

IN base initial address of memory to be registered

IN size size of memory to be registered in bytes

int MPI_Win_register(MPI_Win win, void *base, MPI_Aint size)

MPI_WIN_REGISTER(WIN, BASE, SIZE, IERROR)

INTEGER WIN, IERROR

<type> base

INTEGER (KIND=MPI_ADDRESS_SIZE) size

Registers a local memory region of size size beginning at base for remote access within
the given window.

Rationale. Requiring that memory be explicitly registered before it is exposed to
one-sided access by other processes can significantly help implementations, including
ensuring high performance. The ability to make memory available for RMA operations
without requiring a collective MPI_WIN_CREATE call is needed for some one-sided
programming models. (End of rationale.)
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11.2. INITIALIZATION 7

Advice to users. Memory registration may require the use of scarce resources; thus,
registering large regions of memory is not recommended in portable programs. Mem-
ory registration may fail if sufficient resources are not available; this is similar to the
behavior of MPI_ALLOC_MEM.

The user is also responsible for ensuring that memory registration at the target has
completed before a process attempts to target that memory with an MPI RMA call.

Performing an RMA operation to unregistered memory from a window created with
MPI_WIN_CREATE_DYNAMIC is erroneous. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to make as
much memory available for registration as possible. Any limitations should be docu-
mented by the vendor. (End of advice to implementors.)

Memory registration is a local operation as defined by MPI; that means that the call
is not collective and completes without requiring any MPI routine to be called on any
other process. Memory may be deregistered with the routine MPI_WIN_DEREGISTER. If
memory was registered n times, then it is only deregistered after it was passed to
MPI_WIN_DEREGISTER n times. After memory has been deregistered, it may not be the
target of an MPI RMA operation in that window (unless that memory is re-registered with
MPI_WIN_REGISTER).

MPI_WIN_DEREGISTER(win, base, size)

IN win window object (handle)

IN base initial address of memory to be deregistered

IN size size of memory to be deregistered in bytes

int MPI_Win_deregister(MPI_Win win, void *base, MPI_Aint size)

MPI_WIN_DEREGISTER(WIN, BASE, SIZE, IERROR)

INTEGER WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_SIZE) size

<type> base

Deregisters a previously registered memory region of size size beginning at base. The
arguments base and size must match the arguments passed to a previous call to
MPI_WIN_REGISTER. (COMMENT: if we allow something like MPI_ANY for size, then
we force the MPI implementation to store base and size for all registrations. This would
not be necessary if page-based registration (with refcounts) are used as e.g., OpenMX does.
However, if we do pure range-based registration and deregistration then we’re hosed too
with ref-counting and base-addresses. Another question is if base has be a registration
base, i.e., would it be possible to register(1,4), deregister(2,4), deregister(1,3) or such. This
becomes really complex in the genral case – I am tending towards returning handles to the
user. This allows highest flexibility for implementation and user. Let’s talk ... handles can
be used to identify registered memory easily and can just be NULL if registration is not
needed, however, users would then still need to save them :-()

Advice to users. Deregistering memory may permit the implementation to make
more efficient use of special memory or provide memory that may be needed by a
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8 CHAPTER 11. ONE-SIDED COMMUNICATIONS

subsequent MPI_WIN_REGISTER. Users are encouraged to deregister memory that is
no longer needed. (End of advice to users.)

(WDG COMMENT: WIN_REGISTER and ALLOC_MEM (and WIN_DEREGISTER
and FREE_MEM) should have similar interfaces if at all possible.)

(COMMENT: begin) An alternative version of register and deregister could have handle
arguments to identify registrations:

MPI_WIN_REGISTER(win, base, size, reg)

IN win window object (handle)

IN base initial address of memory to be registered

IN size size of memory to be registered in bytes

OUT reg registration (handle)

int MPI_Win_register(MPI_Win win, void *base, MPI_Aint size, MPI_Reg *reg)

MPI_WIN_REGISTER(WIN, BASE, SIZE, REG, IERROR)

INTEGER WIN, REG, IERROR

<type> base

INTEGER (KIND=MPI_ADDRESS_SIZE) size

MPI_WIN_DEREGISTER(win, reg)

IN win window object (handle)

INOUT reg registration (handle)

int MPI_Win_deregister(MPI_Win win, MPI_Reg *reg)

MPI_WIN_DEREGISTER(WIN, REG, IERROR)

INTEGER REG, IERROR

(COMMENT: end)
If the window was created with MPI_WIN_CREATE_DYNAMIC, any memory registered

with MPI_WIN_REGISTER may become unregistered when the window is freed.

Advice to users. It is recommended that users deregister all memory before freeing
a dynamic window. (End of advice to users.)

(COMMENT: I think we should make deregistration mandatory because after the
window is freed, memory cannot be deregistered (needs valid win) and this is essentially a
resource leak.)

In the case of a window created with MPI_WIN_CREATE_DYNAMIC, the target_disp
for all RMA functions is the address at the target. I.e., the effective window_base is
MPI_BOTTOM and the disp_unit is one. Users should use MPI_GET_ADDRESS at the target
process to determine the address of a target memory location and communicate this address
to the origin process.
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11.2. INITIALIZATION 9

Advice to implementors. In environments with heterogeneous data representations,
care must be exercised in communicating addresses between processes. For example,
it is possible that an address valid at the target process (for example, a 64-bit pointer)
cannot be expressed as an address at the origin (for example, the origin uses 32-bit
pointers). For this reason, a portable MPI implementation should ensure that the
type MPI_AINT (cf. Table 3.3 on Page 29) is able to store addresses from any process.
(End of advice to implementors.)

11.2.4 Window Destruction

MPI_WIN_FREE(win)

INOUT win window object (handle)

int MPI_Win_free(MPI_Win *win)

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

{void MPI::Win::Free() (binding deprecated, see Section 15.2) }

Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This
is a collective call executed by all processes in the group associated with
win. MPI_WIN_FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: i.e., the process has called
MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST
or called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START or called
MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. [When the call returns,
the window memory can be freed.]The memory associated with windows created by a call
to MPI_WIN_CREATE may be freed after the call returns. If the window was created with
MPI_WIN_ALLOCATE, MPI_WIN_FREE will free the window memory that was allocated in
MPI_WIN_ALLOCATE.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. (WDG COMMENT: This statement is not if nolocks was true (no
passive-target access).) (End of advice to implementors.)

11.2.5 Window Attributes

The following [three] attributes are cached with a window[,] when the window is created.

MPI_WIN_BASE window base address.
MPI_WIN_SIZE [ ]window size, in bytes.
MPI_WIN_DISP_UNIT displacement unit associated with the window.
MPI_WIN_CREATE_FLAVOR how window was created.
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10 CHAPTER 11. ONE-SIDED COMMUNICATIONS

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag)[ and]
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag)[] and
MPI_Win_get_attr(win, MPI_WIN_CREATE_FLAVOR, &create_kind, &flag) will return in
base a pointer to the start of the window win, and will return in size[ and], disp_unit, and
in create_kind pointers to the size[ and], displacement unit of the window, and the kind of
routine used to create the window, respectively. [And similarly, in C++.]And similarly, in
C++ (binding deprecated, see Section 15.2).

In Fortran, calls to MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_SIZE, size, flag, ierror)[ and],
MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror)[] and
MPI_WIN_GET_ATTR(win, MPI_WIN_CREATE_FLAVOR, create_kind, flag, ierror) will re-
turn in base, size[ and], disp_unit and create_kind the (integer representation of) the base
address, the size[ and], the displacement unit of the window win, and the kind of routine
used to create the window, respectively.

The values of create_kind are

MPI_WIN_FLAVOR_CREATE Window was created with MPI_WIN_CREATE.
MPI_WIN_FLAVOR_ALLOCATE Window was created with MPI_WIN_ALLOCATE.
MPI_WIN_FLAVOR_DYNAMIC Window was created with

MPI_WIN_CREATE_DYNAMIC.

In the case of windows created with MPI_WIN_CREATE_DYNAMIC, the base address
is MPI_BOTTOM and the size is 0. In C, pointers to integers (of size MPI_Aint) are returned
and in Fortran, the values are returned, for the respective attributes. (The window attribute
access functions are defined in Section 6.7.3, page 252.)

The other “window attribute,” namely the group of processes attached to the window,
can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window

(handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

{MPI::Group MPI::Win::Get_group() const (binding deprecated, see Section 15.2) }

MPI_WIN_GET_GROUP returns a duplicate of the group of the communicator used to
create the window. associated with win. The group is returned in group.

11.3 Communication Calls

MPI supports [three]five RMA communication calls: MPI_PUT transfers data from the caller
memory (origin) to the target memory; MPI_GET transfers data from the target memory
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11.3. COMMUNICATION CALLS 11

to the caller memory; [and] MPI_ACCUMULATE updates locations in the target memory,
e.g., by adding to these locations values sent from the caller memory[.];
MPI_GET_ACCUMULATE atomically returns the data before the accumulate operation;
and MPI_COMPARE_AND_SWAP performs a remote compare and swap operation. These
operations are nonblocking: the call initiates the transfer, but the transfer may continue
after the call returns. The transfer is completed, both at the origin and at the target, when
a subsequent synchronization call is issued by the caller on the involved window object.
These synchronization calls are described in Section 11.4, page 369. Transfers can also be
completed with calls to flush routines, see Section 11.6.5 for details. When a reference is
made to “accumulate” operations in the following, it refers to all three operations:
MPI_ACCUMULATE, MPI_GET_ACCUMULATE, and MPI_COMPARE_AND_SWAP.

The local communication buffer of an RMA call should not be updated, and the local
communication buffer of a get call should not be accessed after the RMA call, until the
[subsequent synchronization call completes.]operation completes at the origin.

[ It is erroneous to have concurrent conflicting accesses to the same memory location in a
window ]The outcome of conflicting accesses to the same memory locations is undefined; if a
location is updated by a put or accumulate operation, then [ this location cannot be accessed
by a load or another RMA operation ]the outcome of local loads or other RMA operations is
undefined until the updating operation has completed at the target. There is one exception
to this rule; namely, the same location can be updated by several concurrent accumulate
calls, the outcome being as if these updates occurred in somea sequential order from the
same origin to the same destination window and memory location. The user
can relax the ordering of such updates by using the info argument of unordered
while creating the window. In addition, [ [if] a window cannot concurrently be updated
by a put or accumulate operation and by a local store operation. This, even if these two
updates access different locations in the window. The last restriction enables more efficient
implementations of RMA operations on many systems. ]the outcome of concurrent local and
RMA updates to the same memory location is undefined. These restrictions are described
in more detail in Section 11.7, page 385.

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

For all [three]five calls, the target process may be identical with the origin process; i.e.,
a process may use an RMA operation to move data in its memory.

Rationale. The choice of supporting “self-communication” is the same as for message-
passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in [the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT]all MPI RMA communication calls. The effect is the same as
for MPI_PROC_NULL in MPI point-to-point communication. After any RMA operation with
rank MPI_PROC_NULL, it is still necessary to finish the RMA epoch with the synchronization
method that started the epoch.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



12 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call — the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to target buffer

(non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Put(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win)

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

{void MPI::Win::Put(const void* origin_addr, int origin_count,

const MPI::Datatype& origin_datatype, int target_rank,

MPI::Aint target_disp, int target_count,

const MPI::Datatype& target_datatype) const (binding deprecated,
see Section 15.2) }

Transfers origin_count successive entries of the type specified by the origin_datatype,
starting at address origin_addr on the origin node to the target node specified by the
win, target_rank pair. The data are written in the target buffer at address target_addr =
window_base + target_disp×disp_unit, where window_base and disp_unit are the base address
and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.
The data transfer is the same as that which would occur if the origin process executed

a send operation with arguments origin_addr, origin_count, origin_datatype, target_rank, tag,
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11.3. COMMUNICATION CALLS 13

comm, and the target process executed a receive operation with arguments target_addr,
target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, and comm is a communicator for the group of win.

(WDG COMMENT: Above is a bit strange as there is no tag in the rma calls.)
The communication must satisfy the same constraints as for a similar message-passing

communication. The target_datatype may not specify overlapping entries in the target
buffer. The message sent must fit, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if
the target datatype object was defined at the target process by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment if only portable datatypes are used (portable datatypes
are defined in Section 2.4, page 11).

The performance of a put transfer can be significantly affected, on some systems,
[from]by the choice of window location and the shape and location of the origin and
target buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM
may be much faster on shared memory systems; transfers from contiguous buffers will
be faster on most, if not all, systems; the alignment of the communication buffers may
also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)
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14 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_RMA_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win, rma_req)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to target buffer

(non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

OUT rma_req RMA request (handle)

int MPI_RMA_put(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win,

MPI_RMA_req rma_req)

MPI_RMA_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, RMA_REQ, IERROR

Similar to MPI_PUT, except that it returns a request handle that can be waited or
tested on. The user can pass the value MPI_RMA_REQUEST_IGNORE, which causes
MPI_RMA_PUT to behave in the same way as MPI_PUT.
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11.3. COMMUNICATION CALLS 15

11.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win)

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

{void MPI::Win::Get(void *origin_addr, int origin_count,

const MPI::Datatype& origin_datatype, int target_rank,

MPI::Aint target_disp, int target_count,

const MPI::Datatype& target_datatype) const (binding deprecated,
see Section 15.2) }

Similar to MPI_PUT, except that the direction of data transfer is reversed. Data
are copied from the target memory to the origin. The origin_datatype may not specify
overlapping entries in the origin buffer. The target buffer must be contained within the
target window, and the copied data must fit, without truncation, in the origin buffer.
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16 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_RMA_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win, rma_req)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

OUT rma_req RMA request (handle)

int MPI_RMA_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win,

MPI_RMA_req rma_req)

MPI_RMA_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, RMA_REQ, IERROR

Similar to MPI_GET, except that it returns a request handle that can be waited or
tested on. The user can pass the value MPI_RMA_REQUEST_IGNORE, which causes
MPI_RMA_GET to behave in the same way as MPI_GET.

11.3.3 Examples

Example 11.1 We show how to implement the generic indirect assignment A = B(map),
where A, B and map have the same distribution, and map is a permutation. To simplify, we
assume a block distribution with equal size blocks.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes

ttype(p), tindex(m), & ! used to construct target datatypes

count(p), total(p), &
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11.3. COMMUNICATION CALLS 17

win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

! This part does the work that depends on the locations of B.

! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and

! the locations of the arrays.

! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p

count(i) = 0

END DO

DO i=1,m

j = map(i)/m+1

count(j) = count(j)+1

END DO

total(1) = 0

DO i=2,p

total(i) = total(i-1) + count(i-1)

END DO

DO i=1,p

count(i) = 0

END DO

! compute origin and target indices of entries.

! entry i at current process is received from location

! k at process (j-1), where map(i) = (j-1)*m + (k-1),

! j = 1..p and k = 1..m

DO i=1,m

j = map(i)/m+1

k = MOD(map(i),m)+1

count(j) = count(j)+1

oindex(total(j) + count(j)) = i

tindex(total(j) + count(j)) = k

END DO

! create origin and target datatypes for each get operation

DO i=1,p

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



18 CHAPTER 11. ONE-SIDED COMMUNICATIONS

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &

MPI_REAL, otype(i), ierr)

CALL MPI_TYPE_COMMIT(otype(i), ierr)

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &

MPI_REAL, ttype(i), ierr)

CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,p

CALL MPI_GET(A, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

DO i=1,p

CALL MPI_TYPE_FREE(otype(i), ierr)

CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO

RETURN

END

Example 11.2 A simpler version can be written that does not require that a datatype
be built for the target buffer. But, one then needs a separate get call for each entry, as
illustrated below. This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/m

k = MOD(map(i),m)

CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END
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11.3. COMMUNICATION CALLS 19

11.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contribution
to the sum variable in the memory of one process. The accumulate functions have slightly
different semantics than the put and get functions; see Section 11.7 for details.

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp, tar-
get_count, target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (non-negative integer)

IN origin_datatype datatype of each buffer entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

{void MPI::Win::Accumulate(const void* origin_addr, int origin_count,

const MPI::Datatype& origin_datatype, int target_rank,

MPI::Aint target_disp, int target_count,

const MPI::Datatype& target_datatype, const MPI::Op& op) const

(binding deprecated, see Section 15.2) }

Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at
offset target_disp, in the target window specified by target_rank and win, using the operation
op. This is like MPI_PUT except that data is combined into the target area instead of
overwriting it.
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20 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added
to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype, where
all basic components are of the same predefined datatype. Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. target_datatype must not specify overlapping entries, and the target
buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, is defined. It corresponds to the associative
function f(a, b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin.

MPI_REPLACE can be used only in MPI_ACCUMULATE[,] and
MPI_GET_ACCUMULATE , and not in collective reduction operations such as
MPI_REDUCE.

Advice to users. MPI_PUT is a special case of MPI_ACCUMULATE, with the op-
eration MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

MPI_RMA_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, op, win, rma_req)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (non-negative integer)

IN origin_datatype datatype of each buffer entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_RMA_accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,

MPI_RMA_req rma_req)

MPI_RMA_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
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11.3. COMMUNICATION CALLS 21

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, RMA_REQ, IERROR

Similar to MPI_ACCUMULATE, except that it returns a request handle that can be
waited or tested on. The user can pass the value MPI_RMA_REQUEST_IGNORE, which
causes MPI_RMA_ACCUMULATE to behave in the same way as MPI_ACCUMULATE.

Example 11.3 We want to compute B(j) =
∑

map(i)=j A(i). The arrays A, B and map are
distributed in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p, win, ierr

REAL A(m), B(m)

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/m

k = MOD(map(i),m)

CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &

MPI_SUM, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

This code is identical to the code in Example 11.2, page 366, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B = A(map−1), which is the reverse assignment to the one computed in
that previous example.) In a similar manner, we can replace in Example 11.1, page 364,
the call to get by a call to accumulate, thus performing the computation with only one
communication between any two processes.

11.3.5 Get Accumulate Function

It is often useful to have fetch-and-accumulate semantics such that the sent data is accu-
mulated into the remote data, and the remote data before the accumulate is returned to
the caller. The get and accumulate steps are executed atomically. MPI_REPLACE can be
used to emulate fetch-and-set behavior.

(WDG COMMENT: do we want to say provide instead of emulate?)
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22 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_GET_ACCUMULATE(origin_addr, result_addr, datatype, target_rank, target_disp, op,
win)

IN origin_addr initial address of buffer (choice)

OUT result_addr initial address of result buffer (choice)

IN datatype datatype of the buffer entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Get_accumulate(void *origin_addr, void *result_addr,

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,

MPI_Op op, MPI_Win win)

MPI_GET_ACCUMULATE(ORIGIN_ADDR, RESULT_ADDR, DATATYPE, TARGET_RANK,

TARGET_DISP, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

Accumulate one element of type datatype of the origin buffer (origin_addr) to the buffer
at offset target_disp, in the target window specified by target_rank and
win, using the operation op and return in the result buffer result_addr the content of the
target buffer before the accumulation.

The datatype argument must be a predefined datatype. The operation is executed
atomically.

A new predefined operation, MPI_NO_OP, is defined. It corresponds to the associative
function f(a, b) = a; i.e., the current value in the target memory is returned in the result
buffer at the origin. MPI_NO_OP can be used only in MPI_GET_ACCUMULATE, not in
MPI_ACCUMULATE or collective reduction operations, such as MPI_REDUCE and others.

Advice to users. MPI_GET is a special case of MPI_GET_ACCUMULATE, with the
operation MPI_NO_OP. Note, however, that MPI_GET and MPI_GET_ACCUMULATE
have different constraints on concurrent updates. (End of advice to users.)

11.3.6 Compare and Swap

Another useful [functionality]ooperation is an atomic compare and swap where the value at
the origin is compared bitwise to the value at the target, which is atomically replaced by a
third value only if origin and target are equal.
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MPI_COMPARE_AND_SWAP(origin_addr, compare_addr, result_addr, datatype, target_rank,
target_disp, win)

IN origin_addr initial address of buffer (choice)

IN compare_addr initial address of compare buffer (choice)

OUT result_addr initial address of result buffer (choice)

IN datatype datatype of buffer entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN win window object (handle)

int MPI_Compare_and_swap(void *origin_addr, void *compare_addr,

void *result_addr, MPI_Datatype datatype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_COMPARE_AND_SWAP(ORIGIN_ADDR, COMPARE_ADDR, RESULT_ADDR, DATATYPE,

TARGET_RANK, TARGET_DISP, WIN, IERROR)

<type> ORIGIN_ADDR(*), COMPARE_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER DATATYPE, TARGET_RANK, WIN, IERROR

This function compares one element of type datatype in the compare buffer
compare_addr with the buffer at offset target_disp, in the target window specified by
target_rank and win and replaces the value at the target with the value in the origin buffer
origin_addr if the compare buffer and the target compare buffer are bitwise identical. The
original value at the target is returned in the buffer result_addr. The parameter datatype
must be one of the following predefined datatypes: C integer, Fortran integer, Logical,
Complex, Byte as specified in Section 5.9.2 on page 164, or can be of type MPI_AINT or
MPI_OFFSET. Operations with overlapping types of different sizes or target displacements
are erroneous.

(COMMENT: add advice to users to check consistency model in order to see which
datatypes are supported fast (in hw)?) (WDG COMMENT: They should check the docu-
mentation (even though it may be wrong.))

11.4 RMA Test and Wait Functionality

MPI_RMA_WAIT(rma_req)

INOUT rma_req RMA request (handle)

int MPI_RMA_wait(MPI_RMA_req rma_req)

MPI_RMA_WAIT(RMA_REQ, IERROR)

INTEGER RMA_REQ, IERROR

Waits for an RMA request to complete locally (local buffer is free to be reused).
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MPI_RMA_WAITALL(count, array_of_rma_reqs)

IN count RMA request list length

INOUT array_of_rma_reqs Array of RMA requests (handles)

int MPI_RMA_waitall(int count, MPI_RMA_req *array_of_rma_reqs)

MPI_RMA_WAITALL(COUNT, ARRAY_OF_RMA_REQS, IERROR)

<type> ARRAY_OF_RMA_REQS(*)

INTEGER IERROR

Waits for an array of RMA requests to complete locally (local buffer is free to be
reused).

MPI_RMA_WAITANY(count, array_of_rma_reqs, index)

IN count RMA request list length

INOUT array_of_rma_reqs Array of RMA requests (handles)

OUT index index of handle for operation that completed

int MPI_RMA_waitany(int count, MPI_RMA_req *array_of_rma_reqs, int *index)

MPI_RMA_WAITANY(COUNT, ARRAY_OF_RMA_REQS, INDEX, IERROR)

<type> ARRAY_OF_RMA_REQS(*), INDEX(*)

INTEGER IERROR

Waits for any one RMA request in an array of RMA requests to complete locally (local
buffer is free to be reused).

MPI_RMA_WAITSOME(incount, array_of_rma_reqs, outcount, array_of_indices)

IN incount RMA request list length

INOUT array_of_rma_reqs Array of RMA requests (handles)

OUT outcount RMA completion list length

OUT array_of_indices array of indices of operations that completed

int MPI_RMA_waitsome(int incount, MPI_RMA_req *array_of_rma_reqs,

int *outcount, int array_of_indices[])

MPI_RMA_WAITSOME(INCOUNT, ARRAY_OF_RMA_REQS, OUTCOUNT, ARRAY_OF_INDICES,

IERROR)

<type> ARRAY_OF_RMA_REQS(*), INDEX(*)

INTEGER IERROR

Waits for at least one RMA request in an array of RMA requests to complete locally
(local buffer is free to be reused).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
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MPI_RMA_TEST(rma_req)

INOUT rma_req RMA request (handle)

int MPI_RMA_test(MPI_RMA_req rma_req)

MPI_RMA_TEST(RMA_REQ, IERROR)

INTEGER RMA_REQ, IERROR

Tests whether an RMA request has completed locally (local buffer is free to be reused).

MPI_RMA_TESTALL(count, array_of_rma_reqs)

IN count RMA request list length

INOUT array_of_rma_reqs Array of RMA requests (handles)

int MPI_RMA_testall(int count, MPI_RMA_req *array_of_rma_reqs)

MPI_RMA_TESTALL(COUNT, ARRAY_OF_RMA_REQS, IERROR)

<type> ARRAY_OF_RMA_REQS(*)

INTEGER IERROR

Tests whether an array of RMA requests have completed locally (local buffer is free to
be reused).

MPI_RMA_TESTANY(count, array_of_rma_reqs, index)

IN count RMA request list length

INOUT array_of_rma_reqs Array of RMA requests (handles)

OUT index index of handle for operation that completed

int MPI_RMA_testany(int count, MPI_RMA_req *array_of_rma_reqs, int *index)

MPI_RMA_TESTANY(COUNT, ARRAY_OF_RMA_REQS, INDEX, IERROR)

<type> ARRAY_OF_RMA_REQS(*), INDEX(*)

INTEGER IERROR

Tests whether any one RMA request in an array of RMA requests have completed
locally (local buffer is free to be reused).
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MPI_RMA_TESTSOME(incount, array_of_rma_reqs, outcount, array_of_indices)

IN incount RMA request list length

INOUT array_of_rma_reqs Array of RMA requests (handles)

OUT outcount RMA completion list length

OUT array_of_indices array of indices of operations that completed

int MPI_RMA_testsome(int incount, MPI_RMA_req *array_of_rma_reqs,

int *outcount, int array_of_indices[])

MPI_RMA_TESTSOME(INCOUNT, ARRAY_OF_RMA_REQS, OUTCOUNT, ARRAY_OF_INDICES,

IERROR)

<type> ARRAY_OF_RMA_REQS(*), INDEX(*)

INTEGER IERROR

Tests whether at least one RMA request in an array of RMA requests have completed
locally (local buffer is free to be reused).

11.5 Memory Model

The memory semantics of RMA is best understood by using the concept of public and
private window copies. We assume that systems have a public memory region which is
addressable by all processes (e.g., the shared memory in shared memory machines or the
exposed main memory in distributed memory machines). In addition to this, most machines
have fast private buffers (e.g., transparent caches or explicit communication buffers) local to
each process where copies of data elements from the main memory can be stored for faster
access. Such buffers are either coherent, i.e., all updates to main memory are reflected in all
private copies consistently, or non-coherent, i.e., conflicting accesses to main memory need to
be synchronized and updated in all private copies explicitly. Coherent systems allow direct
updates to remote memory without any participation of the remote side. Non-coherent
systems, however, need to call RMA functions in order to reflect updates to the public
window in their private memory. Thus, in coherent memory, the public and the private
window are identical while they remain logically separate in the non-coherent case. MPI
thus differentiates between two memory models called RMA unified, if public and private
window are logically identical, and RMA separate, [if they remain separate]otherwise.

In the RMA separate model, there is only one instance of each variable in process
memory, but a distinct public copy of the variable for each window that contains it. A load
accesses the instance in process memory (this includes MPI sends). A store accesses and
updates the instance in process memory (this includes MPI receives), but the update may
affect other public copies of the same locations. A get on a window accesses the public copy
of that window. A put or accumulate on a window accesses and updates the public copy of
that window, but the update may affect the private copy of the same locations in process
memory, and public copies of other overlapping windows. This is illustrated in Figure 11.5.

In the RMA unified model, public and private copy are identical and updates via put
or accumulate calls are observed by load operations without additional RMA calls. A store
access to a window is immediately visible to remote get or accumulate calls. Those stronger
semantics allow a programming model that is similar to shared memory.
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?   ?   ?   ?   ?

?   ?   ?   ?   ?

?   ?   ?   ?   ?

?   ?   ?   ?   ?

public window copy

STORE LOAD

process memory

PUTPUT GET

Window RMA Update Local Update

STORE

public window copy

Figure 11.1: Schematic description of window (COMMENT: Rolf said this figure doesn’t
print well – the content is also now well described in the text and somewhat confusing)

(WDG COMMENT: What does immediately mean? Isn’t a memory flush implicit
here?)

Advice to users. If accesses in the RMA unified model are not synchronized (with
locks or flushes), load and store operations might observe changes to the memory
while they are in progress. The order in which data is written is not specified unless
further synchronization is used. This might lead to inconsistent views on memory
and programs that assume that a transfer is complete by only checking parts of the
message are erroneous. (End of advice to users.)

11.5.1 Memory Model Query

RMA provides an interface to query the memory model of the underlying hardware. The
RMA unified model strengthens some of the semantic guarantees of the RMA separate model
and enables more flexible programming. An application can then adapt to and optimize for
the underlying hardware model. This query functionality is a similar approach as used in
MPI-2 for thread-safety — define several possibilities and then allow the user to both request
and determine, at runtime, what level is available. This provides a way to compromise
between a minimum (but universally implementable) functionality and a more powerful set
of capabilities that may require additional hardware and software support from the MPI
environment.
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MPI_RMA_QUERY(optype, datatype, win, model)

IN optype operation type (integer)

IN datatype datatype (handle)

IN win window object (handle)

OUT model memory model (integer)

int MPI_RMA_query(int optype, MPI_Datatype datatype, MPI_Win win,

int *model)

MPI_RMA_QUERY(OPTYPE, DATATYPE, WIN, MODEL, IERROR)

INTEGER OPTYPE, DATATYPE, WIN, MODEL, IERROR

This call queries the memory model for a particular RMA operation and datatype.
Possible returned memory models are MPI_RMA_SEPARATE and
MPI_RMA_UNIFIED. MPI_RMA_SEPARATE is the weakest model and is returned if
MPI_RMA_UNIFIED cannot be supported. Operation types can be either
MPI_RMA_PUT, MPI_RMA_GET, MPI_RMA_ACCUMULATE, MPI_RMA_GET_ACCUMULATE, or
MPI_RMA_COMPARE_AND_SWAP to query the model for each operation type separately, or
MPI_RMA_EVERYTHING which returns MPI_RMA_UNIFIED only if all operation types support
the RMA unified model. The datatype argument can be any MPI datatype that is allowed
for the queried operation or MPI_TYPE_NULL. The call returns MPI_RMA_UNIFIED only if the
datatype at either origin or target and the specified operation supports MPI_RMA_UNIFIED.
If MPI_TYPE_NULL is passed as datatype, then MPI_RMA_UNIFIED is only returned if all
valid datatypes for the selected operation support the RMA unified model.

The memory model indicates the relation between the public and the private view of
local memory windows, see Section 11.5. The memory model is specific to an operation
type.

Rationale. Different memory models can be returned for different operations types
and datatypes. Some remote direct memory access hardware might offer coherent
hardware-assisted MPI_PUT and MPI_GET while not supporting MPI_ACCUMULATE.
Some complex datatypes might require additional (software) functionality for packing
at the origin and/or unpacking at the target process. (End of rationale.)

(COMMENT: Brian said something about progress (in Bill’s notes) and I forgot :-()

11.6 Synchronization Calls

RMA communications fall in two categories:

• active target communication, where data is moved from the memory of one process
to the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

• passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
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11.6. SYNCHRONIZATION CALLS 29

transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

RMA communication calls with argument win must occur at a process only within
an access epoch for win. Such an epoch starts with an RMA synchronization call on
win; it proceeds with zero or more RMA communication calls (e.g., MPI_PUT, MPI_GET
or MPI_ACCUMULATE) on win; it completes with another synchronization call on win.
This allows users to amortize one synchronization with multiple data transfers and provide
implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to different win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch. Passive target communication
and the RMA unified memory model allows a synchronization mode where neither access
nor exposure epochs are used and all synchronization is performed by the user.

MPI provides [three]four synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI_WIN_FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST and
MPI_WIN_WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more efficient when each process
communicates with few (logical) neighbors, and the communication graph is fixed or
changes infrequently.
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30 CHAPTER 11. ONE-SIDED COMMUNICATIONS

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI_WIN_START and is terminated by a call to
MPI_WIN_COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

3. [Finally, s]Shared and exclusive locks are provided by the two functions
MPI_WIN_LOCK and MPI_WIN_UNLOCK. Lock synchronization is useful for MPI
applications that emulate a shared memory model via MPI calls; e.g., in a “billboard”
model, where processes can, at random times, access or update different parts of the
billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI_WIN_LOCK and terminated by a call to MPI_WIN_UNLOCK. [ Only
one target window can be accessed during that epoch with win. ]

4. Finally, a lock-free passive-target synchronization mode can be started with a call
to MPI_WIN_LOCKFREE and stopped with the activation of another synchronization
mode. In this mode, all synchronization is performed by remote accumulates, loads
and stores, and flushes.

(COMMENT: the lock-free mode seems somewhat similar to lock/unlock with a shared
lock. However, it seems that the lock-free mode is a cleaner solution because shared locks
don’t allow concurrent conflicting accesses (which is consistent with the literature/common
sense). However, the lock-free mode needs such conflicting accesses. We also need to
determine of lock-free can be implemented efficiently on non-cache coherent machines and
what the granularity of access is. The second rational in Section 11.8 (“The last constraint
...”) provides some points for discussion.)

Figure 11.1 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait

returned.
Figure 11.1 shows operations occurring in the natural temporal order implied by the

synchronizations: the post occurs before the matching start, and complete occurs before
the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
illustrated in Figure 11.2. The access to the target window is delayed until the window is ex-
posed, after the post. However the start may complete earlier; the put and complete may
also terminate earlier, if put data is buffered by the implementation. The synchronization
calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more efficient implementations.

Figure 11.3 illustrates the general synchronization pattern for passive target commu-
nication. The first origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
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Figure 11.2: Active target communication. Dashed arrows represent synchronizations (or-
dering of events).

concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.

(COMMENT: Some example (Figure?) for the new lockfree synch mode)

Rationale. RMA does not define fine-grained mutexes in memory (only logical coarse-
grained process locks). If such semantics are needed then one can emulate mutexes
or semaphores with compare and swap and accumulates. (End of rationale.)

11.6.1 Fence

MPI_WIN_FENCE(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_fence(int assert, MPI_Win win)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



32 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Local

accesses

exposed
to RMA

Window is

accessesin target

memory

executed

put

.

.

.

.

.

.

.

.

.

complete

memory

executed

put

in origin

Local

window
put

window
accesses

PROCESSPROCESS
ORIGIN

.

.

start

TARGET

load

load

wait

wait

post

post

store

store

.

.

.

.

.

.

.

.

.

Figure 11.3: Active target communication, with weak synchronization. Dashed arrows
represent synchronizations (ordering of events)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

{void MPI::Win::Fence(int assert) const (binding deprecated, see Section 15.2) }

The MPI call MPI_WIN_FENCE(assert, win) synchronizes RMA calls on win. The call
is collective on the group of win. All RMA operations on win originating at a given process
and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI_WIN_FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
completes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI_WIN_FENCE only after all other processes in the group entered their matching call.
However, a call to MPI_WIN_FENCE that is known not to end any epoch (in particular, a
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Figure 11.4: Passive target communication. Dashed arrows represent synchronizations
(ordering of events).

call with assert = MPI_MODE_NOPRECEDE) does not necessarily act as a barrier.
The assert argument is used to provide assertions on the context of the call that may

be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of advice to
users.)
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34 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.6.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

{void MPI::Win::Start(const MPI::Group& group, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

MPI_WIN_COMPLETE(win)

IN win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

{void MPI::Win::Complete() const (binding deprecated, see Section 15.2) }

Completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 11.4 MPI_Win_start(group, flag, win);

MPI_Put(...,win);

MPI_Win_complete(win);
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11.6. SYNCHRONIZATION CALLS 35

The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START is nonblocking, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurred; or implementations
where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process called MPI_WIN_POST — the data put must be
buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies.

MPI_WIN_POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

{void MPI::Win::Post(const MPI::Group& group, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

{void MPI::Win::Wait() const (binding deprecated, see Section 15.2) }

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This
call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



36 CHAPTER 11. ONE-SIDED COMMUNICATIONS
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Figure 11.5: Active target communication. Dashed arrows represent synchronizations and
solid arrows represent data transfer.

Figure 11.4 illustrates the use of these four functions. Process 0 puts data in the
windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each
start call lists the ranks of the processes whose windows will be accessed; each post call lists
the ranks of the processes that access the local window. The figure illustrates a possible
timing for the events, assuming strong synchronization; in a weak synchronization, the start,
put or complete calls may occur ahead of the matching post calls.

MPI_WIN_TEST(win, flag)

IN win window object (handle)

OUT flag success flag (logical)

int MPI_Win_test(MPI_Win win, int *flag)

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

{bool MPI::Win::Test() const (binding deprecated, see Section 15.2) }

This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if all accesses
to the local window by the group to which it was exposed by the corresponding
MPI_WIN_POST call have been completed as signalled by matching MPI_WIN_COMPLETE
calls, and flag = false otherwise. In the former case MPI_WIN_WAIT would have returned
immediately. The effect of return of MPI_WIN_TEST with flag = true is the same as the
effect of a return of MPI_WIN_WAIT. If flag = false is returned, then the call has no visible
effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked. Once
the call has returned flag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a “hidden” communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls
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11.6. SYNCHRONIZATION CALLS 37

and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI_WIN_POST(group,0,win) initiate a nonblocking send with tag tag0 to each process
in group, using wincomm. No need to wait for the completion of these sends.

MPI_WIN_START(group,0,win) initiate a nonblocking receive with tag tag0 from each
process in group, using wincomm. An RMA access to a window in target process i is
delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win) initiate a nonblocking send with tag tag1 to each process
in the group of the preceding start call. No need to wait for the completion of these
sends.

MPI_WIN_WAIT(win) initiate a nonblocking receive with tag tag1 from each process in
the group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice[-] versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maximum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each “knows” the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more “anonymous” communication will be required to use the fence or lock
mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a di-
rected graph G = < V,E >, where V = {0, . . . , n − 1} and ij ∈ E if origin
process i accesses the window at target process j. Then each process i issues a
call to MPI_WIN_POST(ingroupi, . . . ), followed by a call to
MPI_WIN_START(outgroupi,. . . ), where outgroupi = {j : ij ∈ E} and ingroupi =
{j : ji ∈ E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of advice to users.)
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38 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.6.3 Lock

MPI_WIN_LOCK(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN rank rank of locked window (non-negative integer)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

{void MPI::Win::Lock(int lock_type, int rank, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA access epoch. Only theThe window at the process with rank rank can
be accessed by RMA operations on win during that epoch.

MPI_WIN_LOCK_WAIT(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN rank rank of locked window (non-negative integer)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock_wait(int lock_type, int rank, int assert, MPI_Win win)

MPI_WIN_LOCK_WAIT(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

{void MPI::Win::Lock_wait(int lock_type, int rank, int assert) const

(binding deprecated, see Section 15.2) }

Starts an RMA access epoch and waits for the epoch to be available for RMA and
load/store operations.

Rationale. The MPI_WIN_LOCK_WAIT function can be used on platforms where
load/store operations can be performed on remote windows, such as those exposed
using shared memory. (End of rationale.)
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11.6. SYNCHRONIZATION CALLS 39

MPI_WIN_LOCK_ALL(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock_all(int assert, MPI_Win win)

MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

Starts a shared RMA access epoch to all processes in win. The memory on all processes
in the window win can be accessed by RMA operations on win during that epoch by the
calling process. A window locked with MPI_WIN_LOCK_ALL must be unlocked with
MPI_WIN_UNLOCK_ALL. This routine is not collective — the ALL refers to all members of
the group of the window.

MPI_WIN_UNLOCK(rank, win)

IN rank rank of window (non-negative integer)

IN win window object (handle)

int MPI_Win_unlock(int rank, MPI_Win win)

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

{void MPI::Win::Unlock(int rank) const (binding deprecated, see Section 15.2) }

Completes an RMA access epoch started by a call to MPI_WIN_LOCK(...,win) or
MPI_WIN_LOCK_WAIT(...,win). RMA operations issued during this period will have
completed both at the origin and at the target when the call returns.

MPI_WIN_UNLOCK_ALL(win)

IN win window object (handle)

int MPI_Win_unlock_all(MPI_Win win)

MPI_WIN_UNLOCK_ALL(WIN, IERROR)

INTEGER WIN, IERROR

Completes a shared RMA access epoch started by a call to MPI_WIN_LOCK_ALL(assert,
win). RMA operations issued during this period will have completed both at the origin and
at the target when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls
issued between the lock and unlock call, and to protect local load/store accesses to a locked
local window executed between the lock and unlock call. Accesses that are protected by
an exclusive lock will not be concurrent at the window site with other accesses to the same
window that are lock protected. Accesses that are protected by a shared lock will not be
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40 CHAPTER 11. ONE-SIDED COMMUNICATIONS

concurrent at the window site with accesses protected by an exclusive lock to the same
window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. [I.e.]E.g.,, a process may not call MPI_WIN_LOCK to lock a target window if the
target process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it is
erroneous to call MPI_WIN_POST while the local window is locked.

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by
lock calls to windows in memory allocated by MPI_ALLOC_MEM (Section 8.2, page 296)
MPI_WIN_ALLOCATE (Section 11.2.2, page 4), or registered with MPI_WIN_REGISTER
(Section 11.2.3, page 5). Locks can be used portably only in such memory.

Rationale. The implementation of passive target communication when memory is not
shared [requires][might]may require an asynchronous software agent. Such an agent
can be implemented more easily, and can achieve better performance, if restricted to
specially allocated memory. It can be avoided altogether if shared memory is used.
It seems natural to impose restrictions that allows one to use shared memory for
[3-rd]third party communication in shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability
of C-like pointers; these are not supported by some Fortran compilers[(g77 and Win-
dows/NT compilers, at the time of writing)]. Also, passive target communication
cannot be portably targeted to COMMON blocks or other statically declared Fortran
arrays. (End of rationale.)

Consider the sequence of calls in the example below.

Example 11.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)

MPI_Put(..., rank, ..., win)

MPI_Win_unlock(rank, win)

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the call
MPI_WIN_LOCK may not block, while the call to MPI_PUT blocks until a lock is acquired;
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11.6. SYNCHRONIZATION CALLS 41

or, the first two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired
— the update of the target window is then postponed until the call to MPI_WIN_UNLOCK
occurs. However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call
must block until the lock is acquired, since the lock may protect local load/store accesses
to the window issued after the lock call returns.

11.6.4 Flush and Membar

(WDG COMMENT: Should all of these apply only to the passive target (including lockfree)
sync models?)

MPI_WIN_FLUSH(rank, win)

IN rank rank of target window (non-negative integer)

IN win window object (handle)

int MPI_Win_flush(int rank, MPI_Win win)

MPI_WIN_FLUSH(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_FLUSH completes all outstanding RMA operations initiated by the calling
process at the specified target rank on the selected window. RMA operations issued prior
to this call with rank as the target will have completed both at the origin and at the target
when this call returns. This function can be called only within lock-unlock, lockall-unlockall,
or lock-free epochs.

MPI_WIN_FLUSH_ALL(win)

IN win window object (handle)

int MPI_Win_flush_all(MPI_Win win)

MPI_WIN_FLUSH_ALL(WIN, IERROR)

INTEGER WIN, IERROR

All RMA operations issued by the calling process to any target prior to this call and
in the specified window will have completed both at the origin and at the target when this
call returns.

MPI_WIN_FLUSH_LOCAL(rank, win)

IN rank rank of target window (non-negative integer)

IN win window object (handle)

int MPI_Win_flush_local(int rank, MPI_Win win)

MPI_WIN_FLUSH_LOCAL(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR
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42 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Completes all outstanding RMA operations initiated by the calling process to the target
process specified by rank on the selected window locally at the origin.

MPI_WIN_FLUSH_LOCAL_ALL(win)

IN win window object (handle)

int MPI_Win_flush_local_all(MPI_Win win)

MPI_WIN_FLUSH_LOCAL_ALL(WIN, IERROR)

INTEGER WIN, IERROR

All RMA operations issued to any target prior to this call and in this window will have
completed at the origin when this call returns.

MPI_WIN_MEMBAR(win)

IN win window object (handle)

int MPI_Win_membar(MPI_Win win)

MPI_WIN_MEMBAR(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_MEMBAR synchronizes the private and public window copy. This function
can be called only within lock-unlock, lockall-unlockall, or lock-free epochs.

11.6.5 Lockfree

MPI_WIN_LOCKFREE(ordering, assert, win)

IN ordering either MPI_ORDERED or MPI_UNORDERED (state)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lockfree(int ordering, int assert, MPI_Win win)

MPI_WIN_LOCKFREE(ORDERING, ASSERT, WIN, IERROR)

INTEGER ORDERING, ASSERT, WIN, IERROR

{void MPI::Win::Lockfree(int ordering, int assert) const (binding deprecated,
see Section 15.2) }

The call MPI_WIN_LOCKFREE starts a lock-free access and exposure epoch. The
call is collective on the group associated with window win. The user-specified message
ordering defines the ordering between messages from one process to overlapping memory
regions at the same target process only. MPI_ORDERED guarantees that all process observe
memory updates for an origin to any target in the order they were issued at the origin. No
guarantees are made for updates from different origins to overlapping memory regions at
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11.6. SYNCHRONIZATION CALLS 43

the same target. MPI_UNORDERED guarantees no ordering between accesses as in all other
synchronization modes.

As opposed to other synchronization modes, the lock-free mode allows concurrent
load/store and remote put, get, or accumulate accesses to the local window. The outcome
of overlapping conflicting accesses without explicit synchronization (flushes) is undefined.
An exception are accumulate calls that allow concurrent conflicting accesses of the same
address using the same operation with the same predefined datatype on the same window.
See Section 11.7 for details.

(COMMENT: Think about adding ordering as Info argument (default is ordered,
strongly suggested optimization is unordered? Keep in mind that requiring an ordered
implementation might be very very slow or hard to implement in shared memory. I’m
not sure what the use-case for ordering would be in other synchronization modes. Maybe
something in lock/unlock, not sure.)

11.6.6 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE
and MPI_WIN_LOCK is used to provide assertions on the context of the call that may be
used to optimize performance. The assert argument does not change program semantics
if it provides correct information on the program — it is erroneous to provide[s] incorrect
information. Users may always provide assert = 0 to indicate a general case where no
guarantees are made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent shared memory ma-
chines. Users should consult their implementation manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion specific
optimizations whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on their implementation. (End of advice to implementors.)

assert is the bit-vector OR of zero or more of the following integer constants:
MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED. The significant options are listed
below for each call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

MPI_WIN_START:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_POST have already com-
pleted on all target processes when the call to MPI_WIN_START is made. The
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44 CHAPTER 11. ONE-SIDED COMMUNICATIONS

nocheck option can be specified in a start call if and only if it is specified in
each matching post call. This is similar to the optimization of “ready-send” that
may save a handshake when the handshake is implicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI_MODE_UNORDERED — communication calls from the same source to the same
destination memory location need not be ordered; the application will explicitly
handle ordering of RMA operations through explicit synchronization.

MPI_WIN_POST:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_START have not yet oc-
curred on any origin processes when the call to MPI_WIN_POST is made. The
nocheck option can be specified by a post call if and only if it is specified by each
matching start call.

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI_MODE_UNORDERED — communication calls from the same source to the same
destination memory location need not be ordered; the application will explicitly
handle ordering of RMA operations through explicit synchronization.

MPI_WIN_FENCE:

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI_MODE_NOPRECEDE — the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_NOSUCCEED — the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_UNORDERED — communication calls from the same source to the same
destination memory location need not be ordered; the application will explicitly
handle ordering of RMA operations through explicit synchronization.

MPI_WIN_LOCK, MPI_WIN_LOCK_ALL:

MPI_MODE_NOCHECK — no other process holds, or will attempt to acquire a con-
flicting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other means, but the coherence operations that may be
attached to the lock and unlock calls are still required.
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MPI_MODE_UNORDERED — communication calls from the same source to the same
destination memory location need not be ordered; the application will explicitly
handle ordering of RMA operations through explicit synchronization.

MPI_WIN_LOCKFREE:

MPI_MODE_RMA_UNIFIED — all operations that will be performed on this window
will have the RMA unified memory model. No asynchronous software agent is
required in this case.

MPI_MODE_UNORDERED — communication calls from the same source to the same
destination memory location need not be ordered; the application will explicitly
handle ordering of RMA operations through explicit synchronization.

Advice to users. Note that the nostore and noprecede flags provide information on
what happened before the call; the noput and nosucceed flags provide information on
what will happen after the call. (End of advice to users.)

11.6.7 Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as argument
to that routine. For example, the datatype argument of a MPI_PUT call can be freed as
soon as the call returns, even though the communication may not be complete.

As in message-passing, datatypes must be committed before they can be used in RMA
communication.

11.7 Examples

Example 11.6 The following example shows a generic loosely synchronous, iterative code,
using fence synchronization. The window at each process consists of array A, which contains
the origin and target buffers of the put calls.

...

while(!converged(A)){

update(A);

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);

}

The same code could be written with get[,] rather than put. Note that, during the com-
munication phase, each window is concurrently read (as origin buffer of puts) and written
(as target buffer of puts). This is OK, provided that there is no overlap between the target
buffer of a put and another communication buffer.

Example 11.7 Same generic example, with more computation/communication overlap.
We assume that the update phase is broken in two subphases: the first, where the “bound-
ary,” which is involved in communication, is updated, and the second, where the “core,”
which neither use nor provide communicated data, is updated.
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46 CHAPTER 11. ONE-SIDED COMMUNICATIONS

...

while(!converged(A)){

update_boundary(A);

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin buffer by the get call can be concurrent
with the local update of the core by the update_core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 11.8 Same code as in Example 11.6, rewritten using post-start-complete-wait.

...

while(!converged(A)){

update(A);

MPI_Win_post(fromgroup, 0, win);

MPI_Win_start(togroup, 0, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.9 Same example, with split phases, as in Example 11.7.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_post(togroup, MPI_MODE_NOPUT, win);

MPI_Win_start(fromgroup, 0, win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.10 A checkerboard, or double buffer communication pattern, that allows
more computation/communication overlap. Array A0 is updated using values of array A1,
and vice versa. We assume that communication is symmetric: if process A gets data from
process B, then process B gets data from process A. Window wini consists of array Ai.
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...

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);

/* the barrier is needed because the start call inside the

loop uses the nocheck option */

while(!converged(A0, A1)){

/* communication on A0 and computation on A1 */

update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],

fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is

concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);

MPI_Win_complete(win0);

MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */

update2(A0, A1); /* local update of A0 that depends on A1 (and A0)*/

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],

fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,

concurrent with communication that updates A1 */

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);

MPI_Win_wait(win1);

}

A process posts the local window associated with win0 before it completes RMA accesses
to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modified by the
RMA communication. On some systems, a put call may be more efficient than a get call,
as it requires information exchange only in one direction.
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48 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.8 Error Handling

11.8.1 Error Handlers

Errors occurring during calls to [MPI_WIN_CREATE(...,comm,...)]routines that create MPI
Windows (e.g., MPI_WIN_CREATE) cause the error handler currently associated with comm
to be invoked. All other RMA calls have an input win argument. When an error occurs
during such a call, the error handler currently associated with win is invoked.

The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3,
page 298).

11.8.2 Error Classes

The [following]error classes for one-sided communication are defined in Table 11.1.

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC wrong synchronization of RMA calls
MPI_ERR_RMA_RANGE target memory is not part of the window (in the case

of a window created with
MPI_WIN_CREATE_DYNAMIC, target memory is not
registered)

Table 11.1: Error classes in one-sided communication routines

RMA routines may (and almost certainly will) use other MPI error classes, such as
MPI_ERR_OP or MPI_ERR_RANK.

11.9 Semantics and Correctness

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI_WIN_COMPLETE, MPI_WIN_FENCE [or MPI_WIN_UNLOCK]
MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL, MPI_WIN_FLUSH_LOCAL,
MPI_WIN_FLUSH_LOCAL_ALL, MPI_WIN_UNLOCK, or MPI_WIN_UNLOCK_ALL that
synchronizes this access at the origin.
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11.9. SEMANTICS AND CORRECTNESS 49

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then
the operation is completed at the target by the matching call to MPI_WIN_FENCE by
the target process.

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE
then the operation is completed at the target by the matching call to MPI_WIN_WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK,
MPI_WIN_UNLOCK_ALL, MPI_WIN_FLUSH(rank=target), or
MPI_WIN_FLUSH_ALL, then the operation is completed at the target by that same
call[ to MPI_WIN_UNLOCK].

5. An update of a location in a private window copy in process memory becomes visi-
ble in the public window copy at latest when an ensuing call to MPI_WIN_POST,
MPI_WIN_FENCE, [or MPI_WIN_UNLOCK]MPI_WIN_UNLOCK,
MPI_WIN_UNLOCK_ALL, or MPI_WIN_MEMBAR is executed on that window by the
window owner. In the RMA unified memory model, an update of a location in a pri-
vate window in process memory becomes visible without additional RMA calls when
the RMA operation completes at the target.

6. An update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory at latest when an ensuing call to MPI_WIN_WAIT,
MPI_WIN_FENCE,[ or MPI_WIN_LOCK]MPI_WIN_LOCK, or MPI_WIN_LOCK_ALL is
executed on that window by the window owner. In the RMA unified memory model,
an update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory without additional RMA calls.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI_WIN_UNLOCK or MPI_WIN_UNLOCK_ALL. [On the other hand]In the RMA separate
memory model, the update of private copy in the process memory may be delayed until
the target process executes a synchronization call on that window (6). Thus, updates to
process memory can always be delayed in the RMA separate memory model until the process
executes a suitable synchronization call while they have to complete in the RMA unified
model without additional synchronization calls. Updates to a public window copy can [also]
be delayed in both memory models until the window owner executes a synchronization call, if
fences or post-start-complete-wait synchronization is used. [Only when lock synchronization
is used does it become[s] necessary to update the public window copy, even if the window
owner does not execute any related synchronization call.]If the window owner does not
execute any related synchronization call in the RMA separate memory model, it becomes
only necessary to update the public window copy when lock synchronization is used.

The rules above also define, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two
overlapping windows, win1 and win2. A call to MPI_WIN_FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates visible in
the public copy of win2.
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50 CHAPTER 11. ONE-SIDED COMMUNICATIONS

The behavior of some MPI RMA operations in some situations may be undefined. For
example, the results of performing several MPI_PUT operations to the same target location
from several different origin processes within the same exposure epoch is undefined. For
example, the result at the target may have all of the data from one of the MPI_PUT
operations (the “last” one, in some sense), or bytes from some of each of the operations,
or something else. In MPI-2, such operations were erroneous. That meant that an MPI
implementation was permitted to signal an MPI exception. Thus, user programs or tools
that used MPI RMA could not portably permit such operations, even if the application code
could function correctly with such an undefined result. In MPI-3, these operations are not
erroneous but do not have a defined behavior.

Rationale. As discussed in [1], requiring operations such as overlapping puts to be
erroneous makes it very difficult to use MPI RMA to implement programming models,
such as UPC or SHMEM, that permit these operations. Further, while MPI-2 defined
these operations as erroneous, the MPI Forum is unaware of any implementation
that enforced this rule, as that would require significant overhead. Thus, relaxing
this condition does not impact existing implementations or applications. (End of
rationale.)

Advice to implementors. Because overlapping accesses (and other operations that
MPI-3 specifies) are undefined, implementations may wish to provide a mode in which
such operations are erroneous to aid in debugging code. Note, however, that in MPI-3,
such operations must not generate an MPI exception. (End of advice to implementors.)

A correct program must obey the following rules.

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process
memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. Such accesses are allowed only in the lock-free synchronization mode.
There is one exception to this rule, in the case where the same variable is updated by
two concurrent accumulates that use the same operation, with the same predefined
datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.

A program [is erroneous if it violates these rules]that violates these rules has undefined
behavior.
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11.9. SEMANTICS AND CORRECTNESS 51

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring
operations may be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accumulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls should not be updated while the window
is posted.

With the post-start synchronization, the target process can tell the origin process
that its window is now ready for RMA access; with the complete-wait synchro-
nization, the origin process can tell the target process that it has finished its
RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict.
Nonconflicting accesses (such as read-only accesses or accumulate accesses) are
protected by shared locks, both for local accesses and for RMA accesses.

lockfree: Updates to the window are either accumulates or compare and swap or
protected by the user (put and get). Flushes can be used in conjunction with
MPI two-sided operations for synchronization.

changing window or synchronization mode: One can change synchronization
mode, or change the window used to access a location that belongs to two over-
lapping windows, when the process memory and the window copy are guaranteed
to have the same values. This is true after a local call to MPI_WIN_FENCE, if
RMA accesses to the window are synchronized with fences; after a local call to
MPI_WIN_WAIT, if the accesses are synchronized with post-start-complete-wait;
after the call at the origin (local or remote) to MPI_WIN_UNLOCK if the accesses
are synchronized with locks.

In addition, a process should not access the local buffer of a get operation until the
operation is complete, and should not update the local buffer of a put or accumulate
operation until that operation is complete.

The RMA synchronization operations define when updates are guaranteed to become
visible in public and private windows. Updates may become visible earlier, but such
behavior is implementation dependent. (End of advice to users.)
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The semantics are illustrated by the following examples:

Example 11.11 Rule 5 in the RMA separate memory model and lock synchronization:

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

store X /* local update to private copy of B */

MPI_Win_unlock(B)

/* now visible in public window copy */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)

MPI_Get(X) /* ok, read from public window */

MPI_Win_unlock(B)

Example 11.12 Rule 5 in the RMA unified memory model and lockless synchronization
mode:

Process A: Process B:

window location X

store X /* update to private&public copy of B */

MPI_Win_membar

MPI_Barrier MPI_Barrier

MPI_Get(X) /* ok, read from window */

MPI_Win_flush_local(B)

/* read value */

The synchronization in this example is achieved through a combination of
MPI_WIN_FLUSH_LOCAL and MPI_BARRIER.

Example 11.13 Rule 6 in the RMA separate memory model and lock synchronization:

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

MPI_Put(X) /* update to public window */

MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)

/* now visible in private copy of B */

load X

MPI_Win_unlock(B)
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Note that the private copy of X has not necessarily been updated after the barrier, so
omitting the lock-unlock at process B may lead to the load returning an obsolete value.

Example 11.14 Rule 6 in the RMA unified memory model and lockless synchronization:

Process A: Process B:

window location X

MPI_Put(X) /* update to window */

MPI_Win_flush(B)

MPI_Barrier MPI_Barrier

MPI_Win_membar

load X

Note that the private copy of X has been updated after the barrier.

In the next several examples, for conciseness, the expression

z = MPI_Get_accumulate(...)

means to perform an MPI_Get_accumulate with the result buffer (given by result_addr in the
description of MPI_GET_ACCUMULATE) on the left side of the assignment; in this case, z.
This format is also used with MPI_Compare_and_swap

Example 11.15 Implementing a naive, non-scalable counting semaphore in lockless syn-
chronization mode.

Process A: Process B:

window location X

X=2

MPI_Win_flush(A)

MPI_Barrier MPI_Barrier

MPI_Accumulate(X, MPI_SUM, -1) MPI_Accumulate(X, MPI_SUM, -1)

stack variable z stack variable z

while(z!=0) do while(z!=0) do

z = MPI_Get_accumulate(X, MPI_NO_OP, 0) z = MPI_Get_accumulate(X, MPI_NO_OP, 0)

MPI_Win_flush(A) MPI_Win_flush(A)

done done

MPI_Barrier MPI_Barrier

Example 11.16 Implementing a critical region between two processes (Peterson’s algo-
rithm [?]) in lockless synchronization mode.

Process A: Process B:

window location X window location Y

window location T
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X=1 Y=1

MPI_Win_flush(A) MPI_Win_flush(B)

MPI_Barrier MPI_Barrier

MPI_Accumulate(T, MPI_REPLACE, 1) MPI_Accumulate(T, MPI_REPLACE, 0)

stack variables t,y stack variable t,x

t=1 t=0

y=MPI_Get_accumulate(Y, MPI_NO_OP, 0) x=MPI_Get_accumulate(X, MPI_NO_OP, 0)

while(y==1 && t==1) do while(x==1 && t==0) do

y=MPI_Get_accumulate(Y, MPI_NO_OP, 0) x=MPI_Get_accumulate(X, MPI_NO_OP, 0)

t=MPI_Get_accumulate(T, MPI_NO_OP, 0) t=MPI_Get_accumulate(T, MPI_NO_OP, 0)

MPI_Win_flush_all() MPI_Win_flush(A)

done done

// critical region // critical region

MPI_Accumulate(X, MPI_REPLACE, 0) MPI_Accumulate(Y, MPI_REPLACE, 0)

MPI_Win_flush(A) MPI_Win_flush(B)

Example 11.17 Implementing a critical region between n processes with compare and
swap in lockless synchronization mode.

Process A: Process B...:

atomic location A

A=0

MPI_Win_flush(A)

MPI_Barrier MPI_Barrier

stack variable r=1 stack variable r=1

while(r != 0) do while(r != 0) do

r = MPI_Compare_and_swap(A, 0, 1) r = MPI_Compare_and_swap(A, 0, 1)

MPI_Win_flush(A) MPI_Win_flush(A)

done done

// critical region // critical region

r = MPI_Compare_and_swap(A, 1, 0) r = MPI_Compare_and_swap(A, 1, 0)

MPI_Win_flush(A) MPI_Win_flush(A)

Example 11.18 The rules do not guarantee that process A in the following sequence will
see the value of X as updated by the local store by B before the lock.

Process A: Process B:

window location X

store X /* update to private copy of B */

MPI_Win_lock(SHARED,B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(SHARED,B)

MPI_Get(X) /* X may not be in public window copy */

MPI_Win_unlock(B)

MPI_Win_unlock(B)

/* update on X now visible in public window */
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Example 11.19 In the following sequence

Process A: Process B:

window location X

window location Y

store Y

MPI_Win_post(A,B) /* Y visible in public window */

MPI_Win_start(A) MPI_Win_start(A)

store X /* update to private window */

MPI_Win_complete MPI_Win_complete

MPI_Win_wait

/* update on X may not yet visible in public window */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,A)

MPI_Get(X) /* may return an obsolete value */

MPI_Get(Y)

MPI_Win_unlock(A)

it is not guaranteed that process B reads the value of X as per the local update by process
A, because neither MPI_WIN_WAIT nor MPI_WIN_COMPLETE calls by process A ensure
visibility in the public window copy. To allow B to read the value of X stored by A the
local store must be replaced by a local MPI_PUT that updates the public window copy.
Note that by this replacement X may become visible in the private copy in process memory
of A only after the MPI_WIN_WAIT call in process A. The update on Y made before the
MPI_WIN_POST call is visible in the public window after the MPI_WIN_POST call and
therefore correctly gotten by process B. The MPI_GET(Y) call could be moved to the epoch
started by the MPI_WIN_START operation, and process B would still get the value stored
by A.

Example 11.20 Finally, in the following sequence

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

MPI_Put(X) /* update to public window */

MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_post(B)

MPI_Win_start(B)

load X /* access to private window */
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/* may return an obsolete value */

MPI_Win_complete

MPI_Win_wait

rules (5,6) do not guarantee that the private copy of X at B has been updated before
the load takes place. To ensure that the value put by process A is read, the local load
must be replaced with a local MPI_GET operation, or must be placed after the call to
MPI_WIN_WAIT.

11.9.1 Atomicity

The outcome of concurrent accumulates to the same location, with the same operation and
predefined datatype, is as if the accumulates where done at that location in some serial
order. On the other hand, if two locations are both updated by two accumulate calls, then
the updates may occur in reverse order at the two locations. Thus, there is no guarantee
that the entire call to MPI_ACCUMULATE is executed atomically. The effect of this lack
of atomicity is limited: The previous correctness conditions imply that a location updated
by a call to MPI_ACCUMULATE cannot be accessed by load or an RMA call other than
accumulate until the MPI_ACCUMULATE call has completed (at the target). Different
interleavings can lead to different results only to the extent that computer arithmetics are
not truly associative or commutative.

11.9.2 Progress

One-sided communication has the same progress requirements as point-to-point communi-
cation: once a communication is enabled it is guaranteed to complete. RMA calls must have
local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when a RMA communication
becomes enabled. This fuzziness provides to the implementor more flexibility than with
point-to-point communication. Access to a target window becomes enabled once the corre-
sponding synchronization (such as MPI_WIN_FENCE or MPI_WIN_POST) has executed. On
the origin process, an RMA communication may become enabled as soon as the correspond-
ing put, get or accumulate call has executed, or as late as when the ensuing synchronization
call is issued. Once the communication is enabled both at the origin and at the target, the
communication must complete.

Consider the code fragment in Example 11.4, on page 375. Some of the calls may block
if the target window is not posted. However, if the target window is posted, then the code
fragment must complete. The data transfer may start as soon as the put call occurs, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5, on page 380. Some of the calls may block
if another process holds a conflicting lock. However, if no conflicting lock is held, then the
code fragment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of
the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



11.9. SEMANTICS AND CORRECTNESS 57

PROCESS 0

post(1)

start(1)

put(1)

complete

wait

loadload

PROCESS 1

post(0)

start(0)

put(0)

complete

wait

Figure 11.6: Symmetric communication

start

put

recv

complete

PROCESS 1

post

send

wait

PROCESS 0

Figure 11.7: Deadlock situation

Assume, in the last example, that the order of the post and start calls is reversed, at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock, if the order
of the complete and wait calls is reversed, at each process.

The following two examples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice[-] versa. Consider the code illustrated in Figure 11.7. This code will deadlock: the wait
of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 11.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the

put

complete

send

start

PROCESS 1

post

recv

wait

PROCESS 0

Figure 11.8: No deadlock
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receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 11.8, the put and complete calls of process 0 should complete
while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an infinite compute loop, in which case
the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, it does not seem to affect many real codes. The MPI [f]Forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rationale.)

11.9.3 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice
to users.)

A coherence problem exists between variables kept in registers and the memory value
of these variables. An RMA call may access a variable in memory (or cache), while the
up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2

bbbb = 777 buff = 999 reg_A:=999

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_PUT(bbbb stop appl. thread

into buff of process 2) buff:=777 in PUT handler

continue appl. thread

call MPI_WIN_FENCE call MPI_WIN_FENCE

ccc = buff ccc:=reg_A

In this example, variable buff is allocated in the register reg_A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed
more at length in Section 16.2.2.
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MPI implementations will avoid this problem for standard conforming C programs.
Many Fortran compilers will avoid this problem, without disabling compiler optimizations.
However, in order to avoid register coherence problems in a completely portable manner,
users should restrict their use of RMA windows to variables stored in
COMMON blocks, or to variables that were declared VOLATILE[ (while VOLATILE is not a
standard Fortran declaration, it is supported by many Fortran compilers)]. Details and an
additional solution are discussed in Section 16.2.2, “A Problem with Register Optimization,”
on page 507. See also, “Problems Due to Data Copying and Sequence Association,” on
page 504, for additional Fortran problems.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



Bibliography

[1] Dan Bonachea and Jason Duell. Problems with using MPI 1.1 and 2.0 as compilation
targets for parallel language implementations. IJHPCN, 1(1/2/3):91–99, 2004. 11.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60



Index

CONST:MPI::Aint, 2, 4, 5, 12, 14–16, 19, 20,
22, 23

CONST:MPI::Group, 10, 34, 35
CONST:MPI::Op, 19, 20, 22
CONST:MPI::Win, 2, 4, 5, 9, 10, 12, 14–16,

19, 20, 22, 23, 31, 34–36, 38, 39, 41,
42

CONST:MPI_Aint, 2, 4, 5, 10, 12, 14–16, 19,
20, 22, 23

CONST:MPI_BOTTOM, 8, 10
CONST:MPI_ERR_ASSERT, 48
CONST:MPI_ERR_BASE, 48
CONST:MPI_ERR_DISP, 48
CONST:MPI_ERR_LOCKTYPE, 48
CONST:MPI_ERR_OP, 48
CONST:MPI_ERR_RANK, 48
CONST:MPI_ERR_RMA_CONFLICT, 48
CONST:MPI_ERR_RMA_RANGE, 48
CONST:MPI_ERR_RMA_SYNC, 48
CONST:MPI_ERR_SIZE, 48
CONST:MPI_ERR_WIN, 48
CONST:MPI_ERRORS_ARE_FATAL, 48
CONST:MPI_Group, 10, 34, 35
CONST:MPI_LOCK_EXCLUSIVE, 6, 38
CONST:MPI_LOCK_SHARED, 38
CONST:MPI_MODE_NOCHECK, 43, 44
CONST:MPI_MODE_NOPRECEDE, 43, 44
CONST:MPI_MODE_NOPUT, 43, 44
CONST:MPI_MODE_NOSTORE, 43, 44
CONST:MPI_MODE_NOSUCCEED, 43, 44
CONST:MPI_MODE_RMA_UNIFIED, 45
CONST:MPI_MODE_UNORDERED, 44, 45
CONST:MPI_NO_OP, 22
CONST:MPI_Op, 19, 20, 22
CONST:MPI_ORDERED, 42
CONST:MPI_PROC_NULL, 11
CONST:MPI_REPLACE, 20
CONST:MPI_RMA_ACCUMULATE, 28
CONST:MPI_RMA_COMPARE_AND_SWAP,

28

CONST:MPI_RMA_EVERYTHING, 28
CONST:MPI_RMA_GET, 28
CONST:MPI_RMA_GET_ACCUMULATE,

28
CONST:MPI_RMA_PUT, 28
CONST:MPI_RMA_SEPARATE, 28
CONST:MPI_RMA_UNIFIED, 28
CONST:MPI_TYPE_NULL, 28
CONST:MPI_UNORDERED, 42, 43
CONST:MPI_Win, 2, 4, 5, 5, 9, 10, 12, 14–

16, 19, 20, 22, 23, 31, 34–36, 38, 39,
41, 42

CONST:MPI_WIN_BASE, 9
CONST:MPI_WIN_DISP_UNIT, 9
CONST:MPI_WIN_FLAVOR_ALLOCATE,

10
CONST:MPI_WIN_FLAVOR_CREATE, 10
CONST:MPI_WIN_FLAVOR_DYNAMIC, 10
CONST:MPI_WIN_NULL, 9
CONST:MPI_WIN_SIZE, 9
CONST:no_localexclusive, 6
CONST:no_locks, 3
CONST:unordered, 3
CONST:MPI_WIN_CREATE_FLAVOR, 9

EXAMPLES:MPI_ACCUMULATE, 21
EXAMPLES:MPI_BARRIER, 46, 52–55
EXAMPLES:MPI_GET, 16, 18, 45, 46, 52,

54, 55
EXAMPLES:MPI_PUT, 34, 40, 45, 46, 52–

55
EXAMPLES:MPI_TYPE_COMMIT, 16
EXAMPLES:MPI_TYPE_CREATE_INDEXED_BLOCK,

16
EXAMPLES:MPI_TYPE_EXTENT, 16, 18,

21
EXAMPLES:MPI_TYPE_FREE, 16
EXAMPLES:MPI_WIN_COMPLETE, 34, 46,

55
EXAMPLES:MPI_WIN_CREATE, 16, 18, 21

61



62 INDEX

EXAMPLES:MPI_WIN_FENCE, 16, 18, 21,
45

EXAMPLES:MPI_WIN_LOCK, 40, 52, 54,
55

EXAMPLES:MPI_WIN_POST, 46, 55
EXAMPLES:MPI_WIN_START, 34, 46, 55
EXAMPLES:MPI_WIN_UNLOCK, 40, 52,

54, 55
EXAMPLES:MPI_WIN_WAIT, 46, 55

MPI_ACCUMULATE, 1, 11, 19, 20–22, 28,
29, 56

MPI_ALLOC_MEM, 4, 5, 7, 13, 40
MPI_BARRIER, 52
MPI_COMPARE_AND_SWAP, 1, 11, 23
MPI_Compare_and_swap, 53
MPI_GET, 1, 10, 11, 15, 16, 22, 28, 29, 55,

56
MPI_GET_ACCUMULATE, 1, 11, 20, 22,

22, 53
MPI_Get_accumulate, 53
MPI_GET_ADDRESS, 8
MPI_PUT, 1, 10, 11, 12, 14, 15, 19, 20, 28,

29, 35, 40, 45, 50, 55
MPI_REDUCE, 20, 22
MPI_REPLACE, 21
MPI_RMA_ACCUMULATE, 20, 21
MPI_RMA_GET, 16, 16
MPI_RMA_PUT, 14, 14
MPI_RMA_QUERY, 28
MPI_RMA_REQUEST_IGNORE, 14, 16, 21
MPI_RMA_TEST, 25
MPI_RMA_TESTALL, 25
MPI_RMA_TESTANY, 25
MPI_RMA_TESTSOME, 26
MPI_RMA_WAIT, 23
MPI_RMA_WAITALL, 24
MPI_RMA_WAITANY, 24
MPI_RMA_WAITSOME, 24
MPI_WIN_ALLOCATE, 2, 4, 5, 9, 10, 40
MPI_WIN_COMPLETE, 9, 29, 30, 34, 34,

35–37, 48, 49, 55
MPI_WIN_CREATE, 2, 2, 4–6, 9, 10, 48
MPI_WIN_CREATE_DYNAMIC, 2, 5, 5, 6–

8, 10, 48
MPI_WIN_DEREGISTER, 7, 7, 8
MPI_WIN_FENCE, 9, 29, 31, 32, 33, 43, 48,

49, 51, 56

MPI_WIN_FLUSH, 41, 41, 48, 49
MPI_WIN_FLUSH_ALL, 41, 48, 49
MPI_WIN_FLUSH_LOCAL, 41, 48, 52
MPI_WIN_FLUSH_LOCAL_ALL, 42, 48
MPI_WIN_FREE, 9, 9
MPI_WIN_GET_ATTR, 10
MPI_WIN_GET_GROUP, 10, 10
MPI_WIN_LOCK, 3, 6, 30, 38, 39–41, 43,

49
MPI_WIN_LOCK_ALL, 39, 39, 49
MPI_WIN_LOCK_WAIT, 38, 38, 39
MPI_WIN_LOCKFREE, 30, 42, 42
MPI_WIN_MEMBAR, 42, 42, 49
MPI_WIN_POST, 9, 29, 30, 34, 35, 35, 36,

37, 40, 43, 44, 49, 55, 56
MPI_WIN_REGISTER, 6, 6, 7, 8, 8, 40
MPI_WIN_START, 29, 30, 34, 34, 35, 37,

43, 44, 47, 55
MPI_WIN_TEST, 36, 36
MPI_WIN_UNLOCK, 30, 39, 40, 41, 48, 49,

51
MPI_WIN_UNLOCK_ALL, 39, 48, 49
MPI_WIN_WAIT, 9, 29, 30, 35, 35, 36, 37,

40, 49, 51, 55, 56

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


	One-Sided Communications
	Introduction
	Initialization
	Window Creation
	Window That Allocates Memory
	Window of Dynamically Allocated Memory
	Window Destruction
	Window Attributes

	Communication Calls
	Put
	Get
	Examples
	Accumulate Functions
	Get Accumulate Function
	Compare and Swap

	RMA Test and Wait Functionality
	Memory Model
	Memory Model Query

	Synchronization Calls
	Fence
	General Active Target Synchronization
	Lock
	Flush and Membar
	Lockfree
	Assertions
	Miscellaneous Clarifications

	Examples
	Error Handling
	Error Handlers
	Error Classes

	Semantics and Correctness
	Atomicity
	Progress
	Registers and Compiler Optimizations



