
MPI3-RMA: A flexible, high-performance RMA interface for MPI

September 4, 2008

1 Introduction

.
MPI-2 standard defined RMA interfaces; the standard states:

The design of the RMA functions allows implementors to take advantage, in many cases,
of fast communication mechanisms provided by various platforms, such as coherent or
noncoherent shared memory, DMA engines, hardware-supported put/get operations,
communication coprocessors, etc.

In practice this portion of the standard has not been embraced by the user community because
of the lack of high-performance implementation of this interface. In addition, this interface exposes
in detail memory coherency issues, rendering the use of these interfaces more complex than users
are willing to deal with.

The notion of RMA communications has the promise of providing high-performance communica-
tions, mapping well onto modern network stacks, and ease of use for non predictable communication
patterns. Therefore, there is good reason to reconsider the RMA interface supported by the MPI
standard, with an eye to making this interface attractive to many application developers. The
intent to provide a portable interface that works correctly on the full range of computer platforms,
minimizing the effort required by application developers to manage memory coherency. Specifically,
the goal is to allow the interface users to specify a set of attributes the one-sided communications
should satisfy, and leave it to the implementation to manage these communications in the way
suitable for the given platforms, with out exposing to these users abstractions such as memory
windows. These attributes include item such as cache coherency management and RMA ordering
semantics.

2 Related RMA models

Several libraries support RMA interfaces that are internally used by many GAS languages and
libraries. We have evaluated the semantics of SHMEM [1] ARMCI [2] GASNet [3] RMA interfaces
in coming up with our design of MPI3-RMA interfaces.

3 A different approach

Our approach is based on the both our analysis of different RMA models and our understanding
of how users use RMA. Many users perceive RMA models as extensions of load/store type access
to a distributed environment; RMA naturally enables a partitioned global address space model.

1

However, the RMA communication in itself has certain attributes that are effected by both the
underlying network and the machine/memory model. Hiding characteristics of a network or the
machine model from the programmers in the RMA interfaces they use has two significant disad-
vantages

1. Users do not think of which of the attributes their particular usage of the RMA model warrants

2. Users go into misguided perception about cost of supporting attributes that are not inherent
in some architectures but are supported on others (eg. Ordering or messages is something
the one-sided model I use guarantees, hence it should ubiquitously not bear any additional
overhead)

Our approach is different in that the RMA interfaces, by default, offer no additional guaran-
tees other than what the underlying machine and the network already support; any additional
requirements are met by explicitly configuring attributes and there by being aware and preparing
for potential impact on performance.

Our approach enables the user to program for performance.

4 Terminology

Through this document, we discuss the following different scenarios:

1. Two different MPI tasks communicating to the same destination to overlapping memory
regions with any combination of the supported Put, Get and Accumulate operations

2. One MPI task doing simultaneous RMA operations to the same destination MPI task

There are several terms used within this document. Our usage of these terms is with the
following definitions in mind:

1. RMA: Remote Memory Access

2. LMA: Local Memory Access, either directly through a pointer like mechanism or through a
system call

3. Origin, Target: MPI tasks that are involved in RMA. Similar to their definition in MPI2 for a
put operation, source=origin and destination=target; in a get operation, source=target and
destination=origin.

4. Origin addr: The initial address of buffer at the origin of the data transfer

5. Target addr: The initial address of buffer at the target of the data transfer.

6. Local Completion: An RMA operation is complete at the Origin for Put/Accumulate and at
the Target for Get.

7. Remote Completion: Applies to Put and Accumulate, the RMA operation is complete at the
Target and the Target addr reflects the result of the operation

8. Consistency: All references to Consistency are at the granularity of an RMA operation

9. Atomicity Guarantee: A single Atomic RMA operation will execute with a guarantee that
no other Atomic RMA operation will update the contents at either its Origin addr or on its
Target addr between its start and finish

2

5 Flexible, high-performance RMA interfaces

5.1 Interfaces for communication

In order to allow for flexibility and to achieve performance, we propose the following communication
calls: MPI RMA xfer, MPI RMA rmw, and MPI RMA rmw2.

MPI RMA xfer has the following Operation Types: GET, PUT, ACCUMULATE. Similar to
the definitions in the MPI2 standard for RMA interfaces, GET transfers from the caller memory
(origin) to the target memory; PUT transfers data from the target memory to the caller memory;
and ACCUMULATE updates locations in the target memory. These RMA operations are non-
blocking by default and allow for some configurable attributes.

MPI RMA rmw has the following Operations Types:
MPI RMW INC increment

MPI RMW PROD product

MPI RMW SUM sum

MPI RMW LAND logical and

MPI RMW LOR logical or

MPI RMW LXOR logical xor

MPI RMW BAND binary and

MPI RMW BOR binary or

MPI RMW BXOR binary xor

MPI RMW SWAP swap value
The target address is updated according to the specified operation using the value at operand addr

as the operand to the operation. result addr is updated with the value at the target address prior
to the update. Concurrent RMW operations specifying the same (or overlapping) target address
are allowed and the updates occur as if the operations occurred in some order. By default the
operation is non-blocking with the same completion semantics as other RMA operations. Note
that operand addr and target must be the same datatype and count

MPI RMA rmw2 has the following Operations Types:
MPI RMW2 MASK SWAP swap masked bits

MPI RMW2 COMP SWAP LT compare and swap (<)

MPI RMW2 COMP SWAP LE compare and swap (<=)

MPI RMW2 COMP SWAP E compare and swap (==)

MPI RMW2 COMP SWAP GE compare and swap (>=)

MPI RMW2 COMP SWAP GT compare and swap (>)

MPI RMW2 COMP SWAP NE compare and swap (! =)

MPI RMW2 COMP SWAP: Compares the comperand (operand addr) with the target value
if comperand is (<,<=, >,>=,==, ! =) then the target value is updated with the swaperand
(operand2 addr) value. Result address is updated with the target value prior to the compare/swap.

MPI RMW2 MASK SWAP: Updates the values of target specified in the maskerand (operand addr)
with the corresponding values in the swaperand (operand2 addr). Result address is updated with
the target value prior to the mask/swap.

5.1.1 Attributes of an RMA operation

MPI RMA xfer communication can have the following configurable attributes: Atomicity, Ordering,
blocking and remote completion. When none of these attributes are set, which is the default

case, the RMA operation has no atomicity guarantee, ordering is not ensured, calls

3

are non-blocking and completion of a call only satisfies local completion requirements.
In the future other attributes like Fault Tolerance guarantee may be easily added to this list. The
attributes are specifically designed to provide the programmers with a choice of guarantees they
can expect from a subset of their RMA operation. These attributes may be set per call or

per communicator. An attribute is applied to a call as long as it is set either at the call level or
at the communicator level.

Atomicity attribute Any RMA operation with Atomicity attribute will complete execution
without overlapping update to Target or Origin by any other RMA operation with the same at-
tribute. Two operations with Atomicity attribute are not guaranteed to execute in order.

Ordering attribute By default, no particular ordering of RMA operations is guaranteed. Any
two RMA operations with Ordering attribute and the same Target and overlapping Target addr
are assured to execute in order with respect to each other. A GET operation with the same Origin
as the Target of a previous Put and overlapping Origin addr and Target addr with this attribute
will execute in order with respect to the PUT operation. The objective of Ordering is oblivious to
sequential consistency; it is to guarantee write consistency.

Blocking attribute All RMA operations are non-blocking in nature. They can be completed
with explicit completion calls. By setting the Blocking attribute, the RMA operation blocks on
completion.

Remote Completion attribute By default, completion only applies to the local side of the data
transfer. This means, completion of a PUT or an ACCUMULATE operation is the assurance to the
programmer that the Origin addr buffer may be safely reused. By setting the remote completion
attribute, a completion of an RMA operation will now indicate remote completion. This applies to
PUT and ACCUMULATE operations. When the Remote Completion attribute is set for PUT or
ACCUMULATE, completion guarantees that the operation has been completed on the Target and
the data has been committed to memory.

Another additional attribute is discussed in 5.4

5.1.2 Semantics and Correctness

For overlapping update Origin addr and Target addr via RMA or a combination of RMA and
LMA, the end result of the operation is not defined. Sequential consistency is not guaranteed (it
however can be ensured by following correct semantics and setting the appropriate attributes). The
RMA will use general datatype arguments to specify communication buffers at the origin and at
the target. For all three Operation Types of RMA xfer, the target process may be identical with
the origin process; i.e., a process may use an RMA operation to move data in its memory. Hence,
self-communication is supported.

Although nothing prevents it, a safe program should follow the following rules:

1. The Origin addr or Target addr in an RMA call should not be updated (via LMA or other
RMA) after the call begins and before completion.

2. While an RMA transfer with Atomicity attribute set is in progress, memory at Origin addr
and Target addr may not be accessed by other RMA operations that do not have the Atom-
icity attribute set

4

5.2 Interfaces for Remote Completion and Ordering

Both remote completion and ordering can be specified on a per request basis using the attributes de-
tailed above. In addition to per-request attributes remote completion and ordering can be achieved
by using the MPI RMA Complete and MPI RMA Fence. Both function calls are local to
the process requesting remote completion or ordering of requests (these are not collective calls).
MPI RMA Complete is used by a process to request remote completion of all outstanding RMA
requests to a specified rank or an entire communicator if MPI ALL RANKS is specified. When
MPI RMA Complete returns, all previously issued RMA operations are completed at the specified
targets. MPI RMA Fence is used by a process to request ordering of a subsequent RMA operations
with respect to all previously issued RMA operations to the specified targets. All RMA operations
issued before a call to MPI RMA Fence are guaranteed to be visible remotely before any RMA
operations issued after the call to MPI RMA Fence for the ranks/communicator specified in the
MPI RMA Fence call.

5.2.1 Semantics and Correctness

Data accessed by RMW operations may not be accessed by any form of LMA. This violates any
guarantees that the operation provides.

5.3 Example interfaces

The prototypes of the MPI RMA xfer functions are shown below. The first prototype takes in
attributes of an individual call as a parameter. The last two prototypes propose two new functions,
MPI Req set attr and MPI Req get attr to set and get attributes. If MPI Request is used as the
request data structure, these attributes will be per MPI Request. Alternatively a new request
structure MPI Rma request may also be used as shown in the third prototype.

// i f MPI Request i s used in MPI RMA xfer and a t t r i b u t e s are passed
// as a parameter
MPI RMA xfer (MPI Op RMA OP TYPE, void ∗ or ig in addr , int or ig in count ,

MPI Datatype or i g in datatype , int ta rge t r ank ,
void ∗ target addr , int ta rge t count ,
MPI Datatype targe t datatype , MPI Request ∗ request ,
MPI Comm ∗communicator , void ∗RMA ATTR VAL) ;

// i f MPI Request i s used in MPI RMA xfer
MPI RMA xfer (MPI Op RMA OP TYPE, void ∗ or ig in addr , int or ig in count ,

MPI Datatype or i g in datatype , int ta rge t r ank ,
void ∗ target addr , int ta rge t count ,
MPI Datatype targe t datatype , MPI Request ∗ request ,
MPI Comm ∗communicator) ;

MPI Req set attr (MPI Request ∗ req , int comm keyval ,
void ∗ a t t r i b u t e v a l) ;

MPI Req get attr (MPI Request ∗ req , int comm keyval ,
void ∗ a t t r i b u t e v a l , int ∗ f l a g) ;

// i f a new MPI RMA Request i s used in MPI RMA xfer

5

MPI RMA xfer (MPI Op RMA OP TYPE, void ∗ or ig in addr , int or ig in count ,
MPI Datatype or i g in datatype , int ta rge t r ank ,
void ∗ target addr , int ta rge t count ,
MPI Datatype targe t datatype , MPI Rma request ∗ request ,
MPI Comm ∗communicator) ;

MPI Req set attr (MPI Rma request ∗ req , int comm keyval ,
void ∗ a t t r i b u t e v a l) ;

MPI Req get attr (MPI Rma request ∗ req , int comm keyval ,
void ∗ a t t r i b u t e v a l , int ∗ f l a g) ;

Errors: MPI SUCCESS, MPI ERR COMM, MPI ERR COUNT,
MPI ERR TYPE, MPI ERR RANK

The prototypes of the MPI RMA rmw and MPI RMA rmw2 functions are shown below. The
first prototype takes in attributes of an individual call as a parameter. The last two prototypes
propose two new functions, MPI Req set attr and MPI Req get attr to set and get attributes. If
MPI Request is used as the request data structure, these attributes will be per MPI Request.
Alternatively a new request structure MPI Rmw request may also be used as shown in the third
prototype.

MPI RMA rmw(MPI RMW Op op , void ∗operand addr , int count ,
MPI Datatype datatype , void ∗ r e su l t addr ,
int ta rge t r ank , MPI Aint t a r g e t d i s p ,
MPI Rmw request ∗ request ,
MPI Comm ∗communicator , void ∗RMW ATTRVAL)

MPI RMA rmw2(MPI RMW 2 Op op , void ∗operand addr , int count ,
MPI Datatype datatype , void ∗operand2 addr ,
void ∗ r e su l t addr , int ta rge t r ank ,
MPI Aint t a r g e t d i s p , MPI Rmw request ∗ request ,
MPI Comm ∗communicator , void ∗RMW ATTRVAL)

MPI Req set attr (MPI Rmw request ∗ req , int comm keyval ,
void ∗ a t t r i b u t e v a l) ;

MPI Req get attr (MPI Rmw request ∗ req , int comm keyval ,
void ∗ a t t r i b u t e v a l , int ∗ f l a g) ;

Errors: MPI SUCCESS, MPI ERR COMM, MPI ERR COUNT,
MPI ERR TYPE, MPI ERR RANK

The prototypes of the MPI RMA Complete and MPI RMA Fence functions are shown below.

MPI RMA Complete(MPI Comm ∗communicator , int t a r g e t r ank) ;

MPI RMA Fence (MPI Comm ∗communicator , int t a r g e t r ank) ;

6

5.4 Interfaces for Memory allocation

Memory allocation interfaces are required for two reasons: a) allocation interface provides explicit
mechanism to get information about remote memory, either a particular region or some accessible
section of the memory b) allocation interfaces provide mechanisms to allocate communicatable
memory in situations where direct virtual memory communication requires additional steps like
registration.

Hence we would like to leave room for interfaces for memory allocation to be proposed. For
the sake of the proposed interfaces, we assume that communication from virtual memory bears no
additional cost. However, we realizes that several networks today do not allow for direct virtual
memory communication, they require additional steps such as memory registration.

We would like propose another attribute for discussion in this context

Communicatable memory attribute This attribute is used to indicate to the implementation
if the memory for either Origin addr or Target addr or both of them has been allocated with the
above mentioned interfaces for memory allocation. This will allow for additional optimizations
at the runtime implementation layer. The characteristics of this attribute are similar to those
described in 5.1.1

6 Prototype implementation and performance evaluation

We will implement a prototype of these operations within the OpenMPI framework and evaluate
performance for both microbenchmarks and application micro-kernels. We will survey the applica-
tion community on their opinions about usability of these interfaces. Our initial survey included
several DOE applications, we received several positive comments about the proposal. We plan to
continue these surveys with help from the application community.

7 Contributors

Edo Apra (ORNL), Ronald Brightwell (SNL), Richard Graham (ORNL), Robert Harrison (ORNL),
Jarek Nieplocha (PNNL), Howard Pritchard (Cray), Galen Shipman (ORNL), Vinod Tipparaju
(ORNL), Jeffery Vetter (ORNL)

References

[1] Ray Barriuso and Allan Knies, “Shmem user’s guide for c”, Tech. Rep., Cray Research, Inc,
1994.

[2] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda, “High Performance Remote Mem-
ory Access Communication: The Armci Approach”, International Journal of High Performance
Computing Applications, vol. 20, no. 2, pp. 233–253, 2006.

[3] Dan Bonachea, “Gasnet specification, v1.1”, Tech. Rep., Berkeley, CA, USA, 2002.

7

