
Flexible RMA Synchronization for MPI-3

Hubert Ritzdorf

NEC Laboratories Europe
IT Research Division
ritzdorf@it.neclab.eu

15. April 2008
Version 1.0

1.1 Introduction

Aim of the proposal is to give a single process or a set of processes of application
programs the possibility to signal a target process (i.e. aMPI process from which
data was read or to which data was written by RMA communication calls) that
the writing of data or reading of data is completed and that the target process is
able to proceed. In many native shared memory programs, sucha completion is
signaled by shared memory “flags” which are set to 0 or 1. In order to improve the
scalability and shared memory usage of this proposal, shared memory “counters”
are used instead of “flags”. These “counters” count the number of processes which
have signaled the completion of RMA communications calls toa target process.

In the actual proposal, the RMA communication calls could beused unchanged
together with the newly proposed synchronization calls.
Note: Multi-threaded application programs and possibly the error checking in
standard application programs would probably benefit if future RMA calls would
have the possibility to specify the corresponding synchronization counters/objects
in the RMA communication call.

The actual proposal can be implemented on cache-coherent and on non-cache-
coherent systems.

1



1.2 Synchronizing RMA Requests

As already mentioned in the beginning of this proposal, new synchronizations
objects “counters”, which could be realized by (atomic) counters, are defined.
These synchronization counters have to be probably allocated in special memory
regions (shared memory, special registers ...) so that special MPI allocation and
free routines have to be provided for these synchronizationcounters.

A new MPI type MPI Sync is defined in order to manage the specific data on
synchronization counters. However, the special data on thenewMPI type has to
be managed not only on the local process which contains the “counter” but also
on the remote process which has to remotely manipulate (increment/decrement)
this synchronization counter. Therefore, this newMPI typeMPI Sync acts in 2
ways depending on the location of the synchronization counter:

[local] Within the actual process, theMPI Sync variables contain the data on
the local synchronization counter which have to be allocated by function
MPI WIN ALLOC SYNC OBJECTS (see Section 1.2.1).

[remote] Within the remote process, theMPI Sync variables contain the data
how to access and manipulate the synchronization counters which are
located on a target process. The correspondingMPI Sync variables
can be allocated in standard way (statically or dynamicallyby standard
malloc function). The data required to access and manipulate the syn-
chronization counters on the remote process can be transferred with the
newly introduced datatypeMPI HANDLE SYNC (cf. Section 1.2.2).

Note: These two different ways of allocation ofMPI Sync variables are not re-
ally optimal and might cause problems when implementing thesynchronization
counters into application programs. But I didn’t want to define 2 different kinds
of MPI types.

1.2.1 Allocation of Synchronization Objects

This section describes the functions to allocate and free the synchronization ob-
jects which contain the data on the local synchronization counter.

2



MPI WIN ALLOC SYNC OBJECTS(n sync, sync counters, win, info)

IN n sync number of sync objects to be allocated
(integer)

OUT sync counters sync objects (handles)

IN info info argument (handle)

IN win window object (handle)

int MPI Win alloc sync objects(int n sync,
MPI Sync *sync counters, MPI Win win,
MPI Info info)

MPI WIN ALLOC SYNC OBJECTS (N SYNC, SYNC COUNTERS, WIN,
INFO, IERROR)

INTEGER N SYNC, SYNC COUNTERS(*), WIN, INFO, IERROR

void MPI::WIN::Alloc sync objects(int n sync,
MPI Sync *sync counters, MPI Info info)
const

A call to MPI WIN ALLOC SYNC OBJECTS allocatesn sync synchroniza-
tion counters and returns the handles to these counters insync counters.

MPI WIN FREE SYNC OBJECTS(n sync, *sync counters, win)

IN n sync number of sync objects to be freed (in-
teger)

INOUT sync counters sync objects (handles)

IN win window object (handle)

int MPI Win free sync objects(int n sync,
MPI Sync *sync counters, MPI Win win)

3



MPI WIN FREE SYNC OBJECTS (N SYNC, SYNC COUNTERS, WIN,
IERROR)

INTEGER N SYNC, SYNC COUNTERS(*), WIN, IERROR

void MPI::WIN::Free sync objects(int n sync,
MPI Sync *sync counters) const

A call toMPI WIN FREE SYNC OBJECTS freesn sync synchronization coun-
ters. The entries ofsync counters[] are set toMPI SYNC NULL.

1.2.2 MPI Datatype MPI HANDLE SYNC

The MPI processes which perform RMA function calls, and which have to call
the synchronization functionMPI WIN SYNC OPS INIT, need the information
of the synchronization counter on the target process. In order to transfer this
informationMPI provides theMPI predefined datatypeMPI HANDLE SYNC,
which can be used to transfer data on theMPI Sync synchronization counters
allocated by functionMPI WIN ALLOC SYNC OBJECTS to other processes.

The predefined datatypeMPI HANDLE SYNC is allowed to be used only with
MPI pt2pt communication functions andMPI collectives without the reduce and
scan functions. It’s not allowed to use datatypeMPI HANDLE SYNC in genera-
tion of derived datatypes.
Note: One sided communication of datatypeMPI HANDLE SYNC is not al-
lowed since the receiving process must be able to translate the information re-
ceived.

When using datatypeMPI HANDLE SYNC in communication functions, the in-
put values should be handles returned byMPI WIN ALLOC SYNC OBJECTS
and the output areMPI SYNC handles which contain to the corresponding remote
synchronization information.

1.2.3 Synchronization Calls

Many interconnects have hardware coprocessors which can transfer the data in-
dependently on the actual processors which perform the computations of the ap-
plication program. Therefore, the synchronization calls are designed as persistent
function calls (persistent for performance reasons) whichreturn MPI requests.

4



This means that RMA synchronization requests can be startedby MPI Start or
MPI Startall, the status of the synchronizations requests can be evaluated by the
MPI test functions and it can be waited for the synchronization by theMPI wait
functions.

Notes: It doesn’t make me happy to allow canceling of such synchronization re-
quests since the performance of this synchronization objects should not be dis-
turbed by additional communication in order to enable canceling such request.

What does cancel of a synchronization object mean ?

The functionMPI WIN SYNC OPS INIT is designed to wait for the completion
of locally issued RMA function calls to a target process and to signal the target
process that these RMA function calls are completed. Function
MPI WIN SYNC OPS INIT uses the remote data on the synchronization coun-
ters ((cf. Section 1.2)).

The functionMPI WIN SYNC OBJECT INIT is designed to inform the actual
process that (remotely) issued RMA function calls are completed and the actual
process can access the data. FunctionMPI WIN SYNC OBJECT INIT uses the
local data on the synchronization counters (cf. Section 1.2) and the synchroniza-
tion counters must be allocated by functionMPI WIN ALLOC SYNC OBJECTS.

MPI WIN SYNC OPS INIT(target rank, sync mode, sync counter, win, info,
req)

IN target rank rank of target (nonnegative integer)

IN sync mode synchronization mode (integer)

INOUT sync counter sync object (handle)

IN win window object (handle)

IN info info argument (handle)

OUT req request (handle)

int MPI Win sync ops init(int target rank,
int sync mode, MPI Sync sync counter,
MPI Win win, MPI Info info,
MPI Request *req)

5



MPI WIN SYNC OPS INIT (TARGET RANK, SYNC MODE, WIN,
INFO, REQ, IERROR)

INTEGER TARGET RANK, SYNC MODE, SYNC COUNTER, WIN,
INFO, REQ, IERROR

MPI Prequest MPI::WIN::Sync ops init(int target rank,
int sync mode, MPI Sync sync counter,
MPI Info info) const

A call to MPI WIN SYNC OPS INIT creates and initializes a persistent request
handle for the synchronization of RMA communication requests to/from (remote)
processtarget rank.

There are currently 3 RMA communication calls (MPI Get, MPI Put and
MPI ACCUMULATE). The application program can specify synchronization modes
to the synchronization functions where the synchronization mode corresponds the
currently available RMA communication calls. The following synchronization
modes are supported (specified insync mode, a bit vector OR of the following
integer constants) for target processtarget rank:

• MPI MODE WIN PUT – synchronizeMPI PUT’s to the target process

• MPI MODE WIN GET – synchronizeMPI GET’s from the target process

• MPI MODE WIN ACCUMULATE – synchronizeMPI ACCUMULATE’s
to the target process

Future “Test and Set” or other communication calls may be integrated by other
synchronization modes.

A persistent active request created byMPI WIN SYNC OPS INIT is completed
if

all the corresponding RMA communications calls (seesync mode)
which were issued since the last completed synchronizationrequest
to/from that target processtarget rank are completed.

If a MPI test or wait functions detects that the request is completed, the remote
countersync counter, which is located in windowwin in processtarget rank, is
atomically decremented (see functionMPI WIN SYNC OBJECT INIT below).

6



The countersync counter should not be allocated by function
MPI WIN ALLOC SYNC OBJECTS and the data on the counter should be re-
ceived by some communication call.
Note: There is the special case, that aMPI process synchronizes with itself. In
this case, it’s allowed to pass the MPISync counter returned by
MPI WIN ALLOC SYNC OBJECTS to this function.

MPI WIN SYNC OBJECT INIT(sync counter, counter, win, info, req)

INOUT sync counter sync object (handle)

IN count count (integer)

IN win window object (handle)

IN info info argument (handle)

OUT req request (handle)

int MPI Win sync object init(MPI Sync sync counter,
int count, MPI Win win, MPI Info info,
MPI Request *req)

MPI WIN SYNC OBJECT INIT (SYNC COUNTER, COUNT, WIN,
INFO, REQ, IERROR)

INTEGER SYNC COUNTER, COUNT, WIN, INFO, REQ, IERROR

MPI Prequest MPI::WIN::Sync object init(
MPI Sync sync counter, int count,
MPI Info info) const

A call to MPI WIN SYNC OBJECT INIT sets the value of the local synchro-
nization countersync counter to count (future MPI Count type ?). and creates
and initializes a persistent request handle for this counter. The countersync counter
must be allocated by functionMPI WIN ALLOC SYNC OBJECTS.

This synchronization countersync counter is atomically decremented when per-
sistent requests issued by functionMPI WIN SYNC OPS INIT are completed in
a MPI test or wait routine. If the countersync counter was decremented to0,

7



the request issued byMPI WIN SYNC OBJECT INIT is completed. A follow-
ing function call ofMPI Start or MPI Startall resets the value ofsync counter
is reset to the initial valuecount.

The memory locations read in by the correspondingMPI GET requests can be
accessed and the memory locations transferred by the correspondingMPI PUT
requests can be changed after the request is completed.

Advice to implementers: A negative value ofsync counter should result in an
error code of error classMPI ERR WIN COUNTER.

The contents of the status object after completion of such requests is undefined.

1.2.4 Examples

Example A: The following examples show MPI processes which perform some
relaxation and which perform the overlap exchange by putting the data into the
halo region of neighbouring processes. This is a generic iterative code which cor-
responds to Chapter 6.5 in the MPI-2 document. The synchronization counter
“my halosupdated” counts the number of neighbour processes which have up-
dated the overlap (halo) regions of the actual process. After the persistent request
“my halosupdatedreq” is completed the overlap regions can be used for the it-
erative application. The synchronization objects ”tohalosupdated” are used to
signal the neighboured processes that the overlap regions were updated and can
be accessed.
The window of each process consists of arrayA, which contains the origin and
target buffers of the put calls. The ranks of the neighbour processes are contained
in “toneighbor[]”.

In the first example, the synchronization counters are only used to signal the up-
date of the overlap regions byMPI PUT. In order to synchronize, that the halo
regions are free for update a simple barrier is used.

#define NUMBER_OF_NEIGHBOURS 4
int i;

MPI_Sync my_counters[1]; /* local counters */
MPI_Sync my_halos_updated;
MPI_Sync to_halos_updated[NUMBER_OF_NEIGHBOURS]; /* remote counters */

MPI_Request send_req[NUMBER_OF_NEIGHBOURS], recv_req[NUMBER_OF_NEIGHBOURS];
MPI_Request put_req [NUMBER_OF_NEIGHBOURS];
MPI_Request my_halos_updated_req;

8



/* Allocate local sync objects:
my_halos_updated = Local counter for my updated halo regions

*/

MPI_Win_alloc_sync_objects (1, my_counters, win, MPI_INFO_NULL);

my_halos_updated = my_counters[0];

/* Exchange synchronization counters with neighbours:
to_halos_updated = Remote counters for updated halo regions of neighbours

*/

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Irecv (&to_halos_updated[i], 1, MPI_HANDLE_SYNC, toneighbor[i], 1,

MPI_COMM_WORLD, &recv_req[i]);

MPI_Isend (&my_halos_updated, 1, MPI_HANDLE_SYNC, toneighbor[i], 1,
MPI_COMM_WORLD, &send_req[i]);

}

MPI_Waitall (NUMBER_OF_NEIGHBOURS, recv_req, MPI_STATUSES_IGNORE);
MPI_Waitall (NUMBER_OF_NEIGHBOURS, send_req, MPI_STATUSES_IGNORE);

/* Initialize persistent requests and synchronization counters
my_halos_updated_req: Wait for NUMBER_OF_NEIGHBOURS syncs
put_req[i] : Wait for completion of MPI_Put’s

to process "toneighbor[i]"

*/

MPI_Win_sync_object_init (my_halos_updated, NUMBER_OF_NEIGHBOURS,
win, MPI_INFO_NULL, &my_halos_updated_req);

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Win_sync_ops_init (toneighbor[i], MPI_MODE_WIN_PUT, to_halos_updated[i],

win, MPI_INFO_NULL, &put_req[i]);
}

...

while (! converged(A)) {
MPI_Startall (NUMBER_OF_NEIGHBOURS, put_req);
MPI_Start (&my_halos_updated_req);

update (A);

/* Signal that my halo regions are free to be updated by a
simple barrier.

*/

MPI_Barrier (MPI_COMM_WORLD);

/* Update halo regions */

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Put (&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

9



...
}

MPI_Waitall (NUMBER_OF_NEIGHBOURS, put_req, MPI_STATUSES_IGNORE);

/* Wait that my halo regions are updated */

MPI_Wait (&my_halos_updated_req, MPI_STATUS_IGNORE);
}
MPI_Win_free_sync_objects (1, my_counters, win);

In the second example, the synchronization counters are only used to signal the
update of the halo (overlap) regions byMPI PUT. In order to signal that the halo
regions are free for update, theMPI process sends a message to the neighbour
process that the halo regions are free for update a simple barrier is used.

#define NUMBER_OF_NEIGHBOURS 4
int i, index;
int dummy_buf[1];

MPI_Sync my_counters[1]; /* local counters */
MPI_Sync my_halos_updated;
MPI_Sync to_halos_updated[NUMBER_OF_NEIGHBOURS]; /* remote counters */

MPI_Request send_req[NUMBER_OF_NEIGHBOURS], recv_req[NUMBER_OF_NEIGHBOURS];
MPI_Request put_req [NUMBER_OF_NEIGHBOURS];
MPI_Request my_halos_updated_req;

/* Allocate local sync objects:
my_halos_updated = Local counter for my updated halo regions

*/

MPI_Win_alloc_sync_objects (1, my_counters, win, MPI_INFO_NULL);

my_halos_updated = my_counters[0];

/* Exchange synchronization counters with neighbours:
to_halos_updated = Remote counters for updated halo regions of neighbours

*/

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Irecv (&to_halos_updated[i], 1, MPI_HANDLE_SYNC, toneighbor[i], 1,

MPI_COMM_WORLD, &recv_req[i]);

MPI_Isend (&my_halos_updated, 1, MPI_HANDLE_SYNC, toneighbor[i], 1,
MPI_COMM_WORLD, &send_req[i]);

}

MPI_Waitall (NUMBER_OF_NEIGHBOURS, recv_req, MPI_STATUSES_IGNORE);
MPI_Waitall (NUMBER_OF_NEIGHBOURS, send_req, MPI_STATUSES_IGNORE);

/* Initialize persistent requests and synchronization counters
my_halos_updated_req: Wait for NUMBER_OF_NEIGHBOURS syncs
put_req[i] : Wait for completion of MPI_Put’s

10



to process "toneighbor[i]"

*/

MPI_Win_sync_object_init (my_halos_updated, NUMBER_OF_NEIGHBOURS,
win, MPI_INFO_NULL, &my_halos_updated_req);

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Win_sync_ops_init (toneighbor[i], MPI_MODE_WIN_PUT, to_halos_updated[i],

win, MPI_INFO_NULL, &put_req[i]);
}

...

while (! converged(A)) {
MPI_Startall (NUMBER_OF_NEIGHBOURS, put_req);
MPI_Start (&my_halos_updated_req);

update (A);

/* Signal that my halo regions are free to be updated by
a dummy message with tag SYNCTAG. */

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Irecv (dummy_buf, 0, MPI_INT, toneighbor[i], SYNCTAG,

MPI_COMM_WORLD, &recv_req[i]);

MPI_Isend (dummy_buf, 0, MPI_INT, toneighbor[i], SYNCTAG,
MPI_COMM_WORLD, &send_req[i]);

}

/* Wait that halo regions of neighbours become free to be updated by
actual process and update halo regions */

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Waitany (NUMBER_OF_NEIGHBOURS, recv_req, &index, MPI_STATUS_IGNORE);

MPI_Put (&frombuf[index], 1, fromtype[index], toneighbor[index],
todisp[index], 1, totype[index], win);

...
}

MPI_Waitall (NUMBER_OF_NEIGHBOURS, put_req, MPI_STATUSES_IGNORE);
MPI_Waitall (NUMBER_OF_NEIGHBOURS, send_req, MPI_STATUSES_IGNORE);

/* Wait that my halo regions are updated */

MPI_Wait (&my_halos_updated_req, MPI_STATUS_IGNORE);
}
MPI_Win_free_sync_objects (1, my_counters, win);

In the third example, the synchronization counters are usedto signal the update
of the halo (overlap) regions byMPI PUT and to signal that the halo regions are
free for update.

#define NUMBER_OF_NEIGHBOURS 4

11



int i;

MPI_Sync my_counters[2];
MPI_Sync my_halos_updated, dest_halos_free;
MPI_Sync to_halos_free[NUMBER_OF_NEIGHBOURS];
MPI_Sync to_halos_free[NUMBER_OF_NEIGHBOURS];

MPI_Request send_req[2*NUMBER_OF_NEIGHBOURS], recv_req[2*NUMBER_OF_NEIGHBOURS];
MPI_Request put_req [NUMBER_OF_NEIGHBOURS], free_req[NUMBER_OF_NEIGHBOURS];
MPI_Request my_halos_updated_req, dest_halos_free_req;

/* Allocate local sync objects:
my_halos_updated = Counter for my updated halo regions
dest_halos_free = Counter for free destination halo regions

*/

MPI_Win_alloc_sync_objects (2, my_counters, win, MPI_INFO_NULL);

my_halos_updated = my_counters[0];
dest_halos_free = my_counters[1];

/* Exchange synchronization counters with neighbours:
to_halos_free = Counters for free halo regions of neighbours
to_halos_updated = Counters for updated halo regions of neighbours

*/

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Irecv (&to_halos_updated[i], 1, MPI_HANDLE_SYNC, toneighbor[i], 1,

MPI_COMM_WORLD, &recv_req[i]);

MPI_Isend (&my_halos_updated, 1, MPI_HANDLE_SYNC, toneighbor[i], 1,
MPI_COMM_WORLD, &send_req[i]);

MPI_Irecv (&to_halos_free[i], 1, MPI_HANDLE_SYNC, toneighbor[i], 1,
MPI_COMM_WORLD, &recv_req[NUMBER_OF_NEIGHBOURS+i]);

MPI_Isend (&dest_halos_free, 1, MPI_HANDLE_SYNC, toneighbor[i], 1,
MPI_COMM_WORLD, &send_req[NUMBER_OF_NEIGHBOURS+i]);

}

MPI_Waitall (2*NUMBER_OF_NEIGHBOURS, recv_req, MPI_STATUSES_IGNORE);
MPI_Waitall (2*NUMBER_OF_NEIGHBOURS, send_req, MPI_STATUSES_IGNORE);

/* Initialize persistent requests of (local) synchronization counters
my_halos_updated_req: Wait for NUMBER_OF_NEIGHBOURS syncs
dest_halos_free_req : Wait for NUMBER_OF_NEIGHBOURS syncs

*/

MPI_Win_sync_object_init (my_halos_updated, NUMBER_OF_NEIGHBOURS, win,
MPI_INFO_NULL, &my_halos_updated_req);

MPI_Win_sync_object_init (dest_halos_free, NUMBER_OF_NEIGHBOURS, win,
MPI_INFO_NULL, &dest_halos_free_req);

/* Initialize persistent requests of (remote) RMA operations
free_req[i] : No wait, no RMA call (synchronization mode 0);

simply notify process "toneighbor[i]"

12



put_req[i] : Wait for completion of MPI_Put’s to process "toneighbor[i]"

*/

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Win_sync_ops_init (toneighbor[i], MPI_MODE_WIN_PUT, to_halos_updated[i],

win, MPI_INFO_NULL, &put_req[i]);
MPI_Win_sync_ops_init (to_neighbor[i], 0, to_halos_free[i],

win, MPI_INFO_NULL, &free_req[i]);
}

...

while (! converged(A)) {
MPI_Startall (NUMBER_OF_NEIGHBOURS, put_req);
MPI_Start (&my_halos_updated_req);
MPI_Start (dest_halos_free_req);

update (A);

/* Signal that my halo regions are free to be updated. */

MPI_Startall (NUMBER_OF_NEIGHBOURS, free_req);

/* Wait that halo regions of neighbours become free to be updated by
actual process and update halo regions */

MPI_Wait (dest_halos_free_req);

for (i = 0; i < NUMBER_OF_NEIGHBOURS; i++) {
MPI_Put (&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);
}

MPI_Waitall (NUMBER_OF_NEIGHBOURS, put_req, MPI_STATUSES_IGNORE);

/* Wait that my halo regions are updated */

MPI_Wait (&my_halos_updated_req, MPI_STATUS_IGNORE);
}
MPI_Win_free_sync_objects (2, my_counters, win);

1.2.5 Possible Info Key

A possibly predefined info key for the functionsMPI WIN SYNC OBJECT INIT
andMPI WIN SYNC OPS INIT could be’restart’ which would automatically
restart the persistent request inMPI wait and test functions without the neces-
sity that the application “restarts” the persistent request with MPI START or
MPI STARTALL again.

This would fit the designed usage of these synchronization counters that they are
re-used frequently. In addition, it might avoid some possible race conditions in

13



application programs and it would increase the performance. In this case, anMPI
implementation which doesn’t support this restart mode must return an error code.
Therefore, it would be better to include such a parameter into the argument list.

1.2.6 Extending the Window

The application should be able to change the processes whichuse the window.
This is for example necessary whenMPI processes are dynamically spawned and
want to participate on the RMA operations on an already existing window.

MPI WIN CHANGE COMM(new comm, peer rank, win)

IN new comm new intracommunicator of the window
(handle)

IN peer rank rank in the new communicatornew comm
which is also member of the actual com-
municator ofwin m(nonnegative inte-
ger)

INOUT win window object (handle)

int MPI Win change comm(MPI Communicator new comm,
int peer rank, MPI Win win)

MPI WIN CHANGE COMM (NEW COMM, PEER RANK, WIN, IERROR)
INTEGER NEW COMM, PEER RANK, WIN, IERROR

void MPI::WIN::Change comm(MPI Communicator new comm,
int peer rank) const

FunctionMPI Win change comm is collective on communicatornew comm
and the communicator ofwin. The new communicator ofwin will be new comm.

14



1.2.7 Misc

ConstantsMPI SYNC NULL, MPI MODE WIN PUT, MPI MODE WIN GET,
MPI MODE WIN ACCUMULATE

Conversion functionsMPI SYNC COUNTER F2C and
MPI SYNC COUNTER C2F.

Error classMPI ERR WIN COUNTER (or put it inMPI ERR RMA SYYNC).

15


