Flexible RMA Synchronization for MPI-3

Hubert Ritzdorf

NEC Laboratories Europe
IT Research Division
ritzdorf@it.neclab.eu

15. April 2008
Version 1.0

1.1 Introduction

Aim of the proposal is to give a single process or a set of mees of application
programs the possibility to signal a target process (iMP4 process from which
data was read or to which data was written by RMA communicatialls) that
the writing of data or reading of data is completed and thatténget process is
able to proceed. In many native shared memory programs, aedmpletion is
signaled by shared memory “flags” which are setto O or 1. leotdimprove the
scalability and shared memory usage of this proposal, diramory “counters”
are used instead of “flags”. These “counters” count the numiqgocesses which
have signaled the completion of RMA communications calls target process.

In the actual proposal, the RMA communication calls couldubed unchanged
together with the newly proposed synchronization calls.

Note: Multi-threaded application programs and possiblg #rror checking in
standard application programs would probably benefit itifetRMA calls would
have the possibility to specify the corresponding synaedion counters/objects
in the RMA communication call.

The actual proposal can be implemented on cache-coherdnbramon-cache-
coherent systems.

1.2 Synchronizing RMA Regquests

As already mentioned in the beginning of this proposal, ngackronizations
objects “counters”, which could be realized by (atomic) mieus, are defined.
These synchronization counters have to be probably adddatspecial memory
regions (shared memory, special registers ...) so thaiapd®I allocation and
free routines have to be provided for these synchronizatamters.

A new MPI type MPI_Sync is defined in order to manage the specific data on
synchronization counters. However, the special data omé¢eViPI type has to

be managed not only on the local process which contains thenter” but also

on the remote process which has to remotely manipulateginent/decrement)
this synchronization counter. Therefore, this nglR| type MPI_Sync acts in 2
ways depending on the location of the synchronization caunt

[local] Within the actual process, thMdP1_Sync variables contain the data on
the local synchronization counter which have to be allatatefunction
MPI_WIN_ALLOC_SYNC_OBJECTS (see Section 1.2.1).

[remote] Within the remote process, thdP1_Sync variables contain the data
how to access and manipulate the synchronization counteichvare
located on a target process. The corresponditig)_Sync variables
can be allocated in standard way (statically or dynamidayitandard
malloc function). The data required to access and manipulet syn-
chronization counters on the remote process can be traegferith the
newly introduced datatypPI_HANDLE_SYNC (cf. Section 1.2.2).

Note: These two different ways of allocationMP1_Sync variables are not re-
ally optimal and might cause problems when implementingstimehronization
counters into application programs. But | didn’t want to defi2 different kinds
of MPI types.

1.2.1 Allocation of Synchronization Objects

This section describes the functions to allocate and freesyimchronization ob-
jects which contain the data on the local synchronizatiamoer.

MPI_WIN_ALLOC_SYNC_OBJECTS(n_sync, sync_counters, win, info)

IN n_sync number of sync objects to be allocated
(integer)

ouT sync_counters sync objects (handles)

IN info info argument (handle)

IN win window object (handle)

int MPI Wn_alloc_sync_objects(int n.sync,
MPI _Sync *sync_counters, MPI Wn w n,
MPI _I nfo i nfo)

MPI "W NLALLOC_SYNC OBJECTS (N.SYNC, SYNC_COUNTERS, W N,
I NFO, | ERROR)
I NTEGER NLSYNC, SYNC.COUNTERS(=*), WN, INFQ, |ERROR

void MPI::WN: : Al locsync.objects(int nsync,
MPI _Sync *sync_counters, Ml _Info info)
const

A call to MPI_WIN_ALLOC_SYNC_OBJECTS allocatesn_sync synchroniza-
tion counters and returns the handles to these countsggim counters.

MPI_-WIN_FREE_SYNC_OBJECTS(n_sync, *sync_counters, win)

IN n_sync number of sync objects to be freed (in-
teger)

INOUT sync_counters sync objects (handles)

IN win window object (handle)

int MPl Wn_freessync.objects(int n.sync,
MPI _Sync *sync_counters, MPI Wn w n)

MPl W N_.FREE_SYNC.OBJECTS (N.SYNC, SYNC.COUNTERS, W N,
| ERROR)
| NTEGER NLSYNC, SYNC.COUNTERS(*), WN, |ERROR

void MPI::WN: : Freesync_objects(int n.sync,
MPl _Sync *sync_counters) const

A callto MPI_WIN_FREE_SYNC_OBJECTS freesn_sync synchronization coun-
ters. The entries adync_counters|] are set taVIPI_SYNC_NULL.

1.2.2 MPI Datatype MPI_HANDLE_SYNC

The MPI processes which perform RMA function calls, and which haveall
the synchronization functioklPI_WIN_SYNC_OPS_INIT, need the information
of the synchronization counter on the target process. Imerotd transfer this
information MPI provides theMPI predefined datatyp®PI_ HANDLE_SYNC,
which can be used to transfer data on MPI_Sync synchronization counters
allocated by functioMPI_WIN_ALLOC_SYNC_OBJECTS to other processes.

The predefined datatyddPI_HANDLE_SYNC is allowed to be used only with
MPI pt2pt communication functions arMPI collectives without the reduce and
scan functions. It's not allowed to use datatyypel HANDLE_SYNC in genera-
tion of derived datatypes.

Note: One sided communication of datatylgé’| HANDLE_SYNC is not al-
lowed since the receiving process must be able to trandiatenformation re-
ceived.

When using datatypeIPI_ HANDLE_SYNC in communication functions, the in-
put values should be handles returnedvtiyl_ WIN_ALLOC_SYNC_OBJECTS

and the output ar®IPI_SYNC handles which contain to the corresponding remote
synchronization information.

1.2.3 Synchronization Calls

Many interconnects have hardware coprocessors which easfar the data in-
dependently on the actual processors which perform the atatipns of the ap-
plication program. Therefore, the synchronization calésdesigned as persistent
function calls (persistent for performance reasons) whethirn MPI requests.

4

This means that RMA synchronization requests can be sthstddP|_Start or
MPI_Startall, the status of the synchronizations requests can be egdlbgtthe
MPI test functions and it can be waited for the synchronizatipthie MPI wait
functions.

Notes: It doesn’t make me happy to allow canceling of sucklspnization re-
guests since the performance of this synchronization tbgwuld not be dis-
turbed by additional communication in order to enable cdimgesuch request.

What does cancel of a synchronization object mean ?

The functionMPI_WIN_SYNC_OPS_INIT is designed to wait for the completion
of locally issued RMA function calls to a target process amdignal the target
process that these RMA function calls are completed. Foncti
MPI_WIN_SYNC_OPS_INIT uses the remote data on the synchronization coun-
ters ((cf. Section 1.2)).

The functionMPI_WIN_SYNC_OBJECT_INIT is designed to inform the actual
process that (remotely) issued RMA function calls are catgol and the actual
process can access the data. Funditbi_WIN_SYNC_OBJECT_INIT uses the
local data on the synchronization counters (cf. Sectiopdn@ the synchroniza-
tion counters must be allocated by functidiPl_ WIN_ALLOC_SYNC_OBJECTS.

MPI_WIN_SYNC_OPS_INIT (target_rank, sync_mode, sync_counter, win, info,
req)

IN target_rank rank of target (nonnegative integer)
IN sync_mode synchronization mode (integer)
INOUT sync_counter sync object (handle)

IN win window object (handle)

IN info info argument (handle)

ouT req request (handle)

int MPI _ Wn_sync_ops_.nit(int target_rank,
i nt sync_node, MPI _Sync sync_counter,
MPI Wn win, Ml _lnfo info,
MPI _Request =*req)

MPI W NLSYNC OPS.I NI T (TARGET_RANK, SYNC_MCDE, W N,
I NFO, REQ | ERROR)
| NTEGER TARGET_RANK, SYNC.MODE, SYNC_COUNTER, W N,
I NFO, REQ | ERROR

MPI _Prequest MPI::WN::Syncops.init(int target_rank,
i nt sync_node, MPI _Sync sync_counter,
MPI I nfo info) const

A call to MPI_'WIN_SYNC_OPS_INIT creates and initializes a persistent request
handle for the synchronization of RMA communication redsiés/from (remote)
procesgarget_rank.

There are currently 3 RMA communication cald®l_Get, MPI_Put and
MPI_.ACCUMULATE). The application program can specify synchronization esod
to the synchronization functions where the synchroniratnmde corresponds the
currently available RMA communication calls. The followisynchronization
modes are supported (specifiedsync_mode, a bit vector OR of the following
integer constants) for target proceasget_rank:

e MPI_MODE_WIN_PUT - synchronizeMiPI_PUT’s to the target process
e MPI_MODE_WIN_GET - synchronizeViPI_GET'’s from the target process

¢ MPI_MODE_WIN_ACCUMULATE - synchronizéMPI_ACCUMULATE’s
to the target process

Future “Test and Set” or other communication calls may begrdted by other
synchronization modes.

A persistent active request createdMi?I_WIN_SYNC_OPS_INIT is completed
if

all the corresponding RMA communications calls (sgac_mode)
which were issued since the last completed synchronizagquest
to/from that target procegarget_rank are completed.

If a MPI test or wait functions detects that the request is complétedremote
countersync_counter, which is located in windowvin in procesgarget_rank, is
atomically decremented (see functibiirl_ WIN_SYNC_OBJECT_INIT below).

6

The countesync_counter should not be allocated by function
MPI_WIN_ALLOC_SYNC_OBJECTS and the data on the counter should be re-
ceived by some communication call.

Note: There is the special case, thalRl process synchronizes with itself. In
this case, it’s allowed to pass the MBY/nc counter returned by
MPI_WIN_ALLOC_SYNC_OBJECTS to this function.

MPI_WIN_SYNC_OBJECT_INIT(sync_counter, counter, win, info, req)

INOUT sync_counter sync object (handle)

IN count count (integer)

IN win window object (handle)
IN info info argument (handle)
ouT req request (handle)

int MPI _Wn_ync_object_init(MI _Sync sync_counter,
int count, MPI Wn win, M Info info,
MPI _Request *req)

MPI "W NLSYNC OBJECT_I NI T (SYNC.COUNTER, COUNT, W N,
I NFO, REQ | ERROR)
| NTEGER SYNC_.COUNTER, COUNT, WN, INFO REQ | ERROR

MPI _Prequest MPI::WN:: Sync_obj ect_init(
MPI _Sync sync_counter, int count,
MPI I nfo info) const

A call to MPI_'WIN_SYNC_OBJECT_INIT sets the value of the local synchro-
nization countesync_counter to count (future MPLCount type ?. and creates
and initializes a persistent request handle for this cauitee countesync_counter
must be allocated by functiddPl_ WIN_ALLOC_SYNC_OBJECTS.

This synchronization countsiync_counter is atomically decremented when per-
sistent requests issued by functidi?l_ WIN_SYNC_OPS_INIT are completed in
a MPI test or wait routine. If the countesync_counter was decremented 10,

the request issued BYPI_WIN_SYNC_OBJECT_INIT is completed. A follow-
ing function call ofMPI_Start or MPI_Startall resets the value afync_counter
is reset to the initial valueount.

The memory locations read in by the correspondifigl_GET requests can be
accessed and the memory locations transferred by the pordsi\gMPI_PUT
requests can be changed after the request is completed.

Advice to implementers: A negative value gfync_counter should result in an
error code of error classIPI_ ERR_WIN_COUNTER.

The contents of the status object after completion of sughests is undefined.

1.2.4 Examples

Example A: The following examples show MPI processes which performesom
relaxation and which perform the overlap exchange by pgitive data into the
halo region of neighbouring processes. This is a generiatitee code which cor-
responds to Chapter 6.5 in the MPI-2 document. The syncraiion counter
“my _halosupdated” counts the number of neighbour processes whicé bpv
dated the overlap (halo) regions of the actual processr feepersistent request
“my_halosupdatedreq” is completed the overlap regions can be used for the it-
erative application. The synchronization objects hmlosupdated” are used to
signal the neighboured processes that the overlap regiens wpdated and can
be accessed.

The window of each process consists of arfgywhich contains the origin and
target buffers of the put calls. The ranks of the neighboacesses are contained
in “toneighbor(]".

In the first example, the synchronization counters are osgduo signal the up-
date of the overlap regions yPI_PUT. In order to synchronize, that the halo
regions are free for update a simple barrier is used.

#defi ne NUMBER_OF_NEI GHBOURS 4
int i;

MPl _Sync ny_counters[1]; /* local counters */
MPI _Sync ny_hal os_updat ed;
MPI _Sync to_hal os_updat ed] NUMBER_OF_NEI GHBOURS] ; /* renpte counters */

MPI _Request send_r eq[NUMBER_OF_NEI GHBOURS], recv_req[NUMBER OF_ NEI GHBOURS] ;
MPI _Request put _req [NUMBER_OF_NEI GHBOURS] ;
MPI _Request ny_hal os_updat ed_r eq;

/+ Allocate | ocal sync objects:
nmy_hal os_updat ed = Local counter for ny updated hal o regions

*/
MPI _W n_al | oc_sync_objects (1, my_counters, win, Ml _INFO NULL);
ny_hal os_updat ed = my_counters[0];

[+ Exchange synchronization counters w th nei ghbours:
to_hal os_updated = Renpte counters for updated hal o regi ons of neighbours

*/

for (i = 0; i < NUMBER_OF_NEI GHBOURS; i ++) {
MPl _Irecv (& o_hal os_updated[i], 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPI _COVM WORLD, &recv_req[i]);

MPI _I send (&my_hal os_updat ed, 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPI _COVWM WORLD, &send_req[i]);
}

MPI _Wai tall (NUMBER_OF_NEI GHBOURS, recv_req, MPlI_STATUSES | GNORE);
MPl _Waitall (NUMBER _OF NEI GHBOURS, send_req, MPI_STATUSES | GNORE);

I+ Initialize persistent requests and synchronization counters
ny_hal os_updated_req: Wit for NUVMBER OF_NEI GHBOURS syncs
put _req[i] : Wit for conpletion of MPI_Put’s

to process "toneighbor[i]"
*/

MPI _W n_sync_obj ect _init (my_hal os_updated, NUMBER_OF_NEI GHBOURS,
win, MPI_I NFO NULL, &nmy_hal os_updated_req);

for (i = 0; i < NUMBER_OF_NEI GHBOURS; i ++) {
MPl _W n_sync_ops_init (toneighbor[i], MPI_MODE W N_PUT, to_hal os_updated[i],
win, MPI_INFO NULL, &put_req[il);

while (! converged(A)) {
MPI _Startal | (NUMBER_OF_NEI GHBOURS, put_req);
MPl _Start (&my_hal os_updated_req);

update (A);
/+ Signal that ny halo regions are free to be updated by a
sinple barrier.
*/
MPI _Barrier (MI_COVW WORLD) ;
/+ Update hal o regions */
for (i = 0; i < NUMBER_OF_NElI GHBOURS; i ++) {

MPI _Put (& ronbuf[i], 1, frontype[i], toneighbor[i],
todisp[i], 1, totype[i], win);

}
MPI _Wai tall (NUMBER_OF_NEI GHBOURS, put_req, MPI_STATUSES_| GNORE);
/+ Wit that my halo regions are updated =/

MPl _Wait (&my_hal os_updated_req, MPI_STATUS_ | GNORE);
}

MPl _W n_free_sync_objects (1, ny_counters, win);

In the second example, the synchronization counters aseusdd to signal the
update of the halo (overlap) regions BAPI_PUT. In order to signal that the halo
regions are free for update, tiMdPI process sends a message to the neighbour
process that the halo regions are free for update a simpteeberused.

#def i ne NUMBER_OF_NEI GHBOURS 4
int i, index;
int dummy_buf[1];

MPl _Sync ny_counters[1]; /* local counters */
MPI _Sync ny_hal os_updat ed;
MPI _Sync to_hal os_updat ed] NUMBER_OF_NEI GHBOURS] ; /* renpte counters */

MPl _Request send_r eq] NUMBER_OF_NEI GHBOURS], recv_req[NUVBER_OF_NEI GHBOURS] ;
MPI _Request put_req [NUMBER_OF_NEI GHBOURS] ;
MPI _Request ny_hal os_updat ed_req;

/+ Allocate | ocal sync objects:
ny_hal os_updated = Local counter for ny updated hal o regions
*/

MPI _W n_al | oc_sync_objects (1, my_counters, win, Ml _INFO NULL);
ny_hal os_updat ed = my_counters[0];

[+ Exchange synchronization counters w th nei ghbours:
to_hal os_updated = Renote counters for updated hal o regi ons of nei ghbours
*/

for (i = 0; i < NUMBER_OF_NEI GHBOURS; i ++) {
MPl _Irecv (& o_hal os_updated[i], 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPl _COVWM WORLD, &recv_req[i]);

MPI _I send (&my_hal os_updat ed, 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPI _COVM WORLD, &send_req[i]);
}

MPlI _Wai tall (NUMBER_OF_NEI GHBOURS, recv_req, MPl_STATUSES | GNORE);
MPl _Waitall (NUMBER _OF NEI GHBOURS, send_req, MPI_STATUSES | GNORE);

/+ Initialize persistent requests and synchroni zati on counters

ny_hal os_updated_req: Wait for NUVBER OF_NElI GHBOURS syncs
put_req[i] : Wait for conpletion of MPI_Put’s

10

to process "toneighbor[i]"
*/

MPI _W n_sync_obj ect _init (my_hal os_updated, NUVBER OF_NEI GHBOURS,
win, MPI_INFO NULL, &nmy_hal os_updated_req);

for (i = 0; i < NUMBER_OF_NEI GHBOURS; i ++) {
MPl _W n_sync_ops_init (toneighbor[i], MPI_MODE W N_PUT, to_hal os_updated[i],
win, MPI_I NFO NULL, &put_req[i]);

while (! converged(A)) {
MPI _Startal | (NUMBER_OF_NEI GHBOURS, put_req);
MPl _Start (&my_hal os_updated_req);

update (A);

/+ Signal that ny halo regions are free to be updated by
a dummy nessage with tag SYNCTAG */

for (i = 0; i < NUMBER_OF_NElI GHBOURS; i ++) {
MPI _Irecv (dummy_buf, O, MPI_INT, toneighbor[i], SYNCTAG
MPI _COVM WORLD, &recv_req[i]);

MPl _Isend (dummy_buf, 0, MPI_INT, toneighbor[i], SYNCTAG
MPl _COVWM WORLD, &send_req[il]);
}

/+ Wit that hal o regi ons of neighbours becone free to be updated by
actual process and update hal o regions */

for (i = 0; i < NUMBER_OF_NEI GHBOURS; i++) {
MPI _Wai t any (NUMBER_OF_NEI GHBOURS, recv_req, & ndex, Ml _STATUS | GNORE);

MPI _Put (& ronmbuf[index], 1, frontype[index], toneighbor[index],
todi sp[index], 1, totype[index], win);

}

MPl _Waital | (NUMBER OF NEI GHBOURS, put_req, MPl_STATUSES | GNORE);
MPl _Waitall (NUVBER OF NEI GHBOURS, send_req, MPI_STATUSES | GNORE) ;

/+ Wit that my halo regions are updated =/
MPl _Wait (&my_hal os_updated_req, MPI_STATUS_ | GNORE);
}

MPl _W n_free_sync_objects (1, ny_counters, win);

In the third example, the synchronization counters are tsesignal the update
of the halo (overlap) regions BWPI_PUT and to signal that the halo regions are
free for update.

#defi ne NUVBER_OF NEI GHBOURS 4

11

int i;

MPI _Sync mny_counters|[2];

MPI _Sync ny_hal os_updat ed, dest_hal os_free;
MPI _Sync to_hal os_free[NUMBER_OF_NEI GHBOURS] ;
MPI _Sync to_hal os_free[NUMBER _OF_NEI GHBOURS] ;

MPI _Request send_r eq[2x NUMBER_OF_NEI GHBOURS], recv_req[2* NUMBER_OF_NEI GHBOURS] ;
MPI _Request put _req [NUMBER_OF_NEI GHBOURS], free_req[NUMBER OF_ NEI GHBOURS] ;
MPI _Request ny_hal os_updat ed_req, dest_hal os_free_req;

/+ Allocate | ocal sync objects:

ny_hal os_updated = Counter for ny updated hal o regions

dest _halos_free = Counter for free destination hal o regions
*/

MPI _W n_al | oc_sync_objects (2, my_counters, win, Ml _INFO NULL);

ny_hal os_updat ed = my_counters[0];
dest _hal os_free = ny_counters[1];

/+ Exchange synchronization counters w th nei ghbours:
to_hal os_free = Counters for free hal o regi ons of nei ghbours
to_hal os_updated = Counters for updated hal o regi ons of nei ghbours
*/

for (i = 0; i < NUMBER_OF_NEI GHBOURS; i ++) {
MPI _Irecv (& o_hal os_updated[i], 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPl _COVWM WORLD, &recv_req[i]);

MPI _I send (&my_hal os_updat ed, 1, MPI_HANDLE _SYNC, toneighbor[i], 1,
MPI _COVM WORLD, &send_req[i]);

MPI _Irecv (& o_halos_free[i], 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPl _COVM WORLD, &recv_req[NUMBER_OF_NEI GHBOURS+i]) ;

MPI _I send (&dest _hal os_free, 1, MPI_HANDLE SYNC, toneighbor[i], 1,
MPI _COMM WORLD, &send_req[NUVBER OF NEI GHBOURS+i |) ;

}

MPl _Wital |l (2+NUMBER OF NEI GHBOURS, recv_req, MPI_STATUSES | GNORE);
MPl _Waitall (2+xNUMBER OF NEI GHBOURS, send_req, MPl_STATUSES | GNORE)

/+ Initialize persistent requests of (local) synchronization counters
ny_hal os_updated_req: Wit for NUVBER OF_NEI GHBOURS syncs
dest _halos_free_req : Wait for NUMBER OF_NEI GHBOURS syncs
*/

MPl _W n_sync_obj ect _init (my_hal os_updat ed, NUMBER_OF_NEI GHBOURS, wi n,
MPl _I NFO_NULL, &ny_hal os_updat ed_req);

MPl _W n_sync_object _init (dest_hal os_free, NUMBER_OF_NEI GHBOURS, wi n,
MPI _I NFO_NULL, &dest_hal os_free_req);

/+ Initialize persistent requests of (renpte) RVA operations

free_req[i] : No wait, no RVA call (synchronization node 0);
sinply notify process "toneighbor[i]"

12

put_req[i] : Wait for conpletion of MPI_Put’s to process "toneighbor[i]"
*/

for (i = 0; i < NUVBER OF_NEI GHBOURS; i ++) {
MPI _W n_sync_ops_init (toneighbor[i], MPI_MODE_WN_PUT, to_hal os_updated[i],
win, MPI_INFO NULL, &put_req[il);
MPI _Wn_sync_ops_init (to_neighbor[i], 0, to_halos_free[i],
win, MPI_INFONULL, & ree_req[il);

while (! converged(A)) {
MPI _Startall (NUMBER_OF_NEI GHBOURS, put_req);
MPI _Start (&my_hal os_updated_req);
MPI _Start (dest_halos_free_req);

update (A);
/+ Signal that ny halo regions are free to be updated. =/
MPI _Startal | (NUVBER_OF_NEI GHBOURS, free_req);

/+ Wit that hal o regions of neighbours becone free to be updated by
actual process and update hal o regions */

MPl _Wait (dest_halos _free_req);
for (i = 0; i < NUMBER_OF_NEI GHBOURS; i++) {
MPI _Put (& rombuf[i], 1, fronmtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);
}

MPI _Waitall (NUMBER_OF_NEI GHBOURS, put_req, MPI_STATUSES_| GNORE);
/+ Wit that my halo regions are updated =/
MPl _Wait (&my_hal os_updated_req, MPI_STATUS_ | GNORE);

}

MPl _W n_free_sync_objects (2, ny_counters, win);

1.2.5 PossiblelnfoKey

A possibly predefined info key for the functioN8I_WIN_SYNC_OBJECT_INIT
and MPI_WIN_SYNC_OPS_INIT could be'restart’ which would automatically
restart the persistent requestMP| wait and test functions without the neces-
sity that the application “restarts” the persistent requesh MPI_START or
MPI_STARTALL again.

This would fit the designed usage of these synchronizationteos that they are
re-used frequently. In addition, it might avoid some polesitace conditions in

13

application programs and it would increase the performahcthis case, aMPI
implementation which doesn’t support this restart modetmaiarn an error code.
Therefore, it would be better to include such a parametertim argument list.

1.2.6 Extending the Window
The application should be able to change the processes wbkilhhe window.

This is for example necessary whitPl processes are dynamically spawned and
want to participate on the RMA operations on an already mxgstvindow.

MPI_WIN_CHANGE_COMM(new_comm, peer_rank, win)

IN new_comm new intracommunicator of the window
(handle)
IN peer_rank rank in the new communicatoew_comm

which is also member of the actual com-
municator ofwin m(nonnegative inte-

ger)
INOUT win window object (handle)

int MPI W n_change_com(MPI _Conmruni cat or new.conm
i nt peer _rank, MPI _Wn w n)

MPI W N.CHANGE_.COWM (NEWCOW PEERRANK, WN, | ERROR)
| NTEGER NEWCOW PEER RANK, WN, | ERROR

void MPI::WN: : Change_comm MPI _Communi cat or new.conm
i nt peer rank) const

FunctionMPI_Win_change_comm is collective on communicatarew_comm
and the communicator efin. The new communicator @fin will be new_comm.

14

1.2.7 Misc

Constant$PI_SYNC_NULL, MPI_.MODE_WIN_PUT, MPI_MODE_WIN_GET,
MPI_MODE_WIN_ACCUMULATE

Conversion functionMPI_SYNC_COUNTER_F2C and
MPI_SYNC_COUNTER_C2F.

Error classMIPI_LERR_WIN_COUNTER (or put itinMPI_LERR_RMA_SYYNC).

15

