

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address 2200 Mission College Blvd.
Santa Clara, CA 95052

	

LIMITED	 RIGHTS	 NOTICE.	 	 THESE	 DATA	 ARE	 SUBMITTED	 WITH	 LIMITED	 RIGHTS	 UNDER	 PRIME	 CONTRACT	
NO.	 DE-‐AC52-‐07NA27344	 BETWEEN	 LLNL	 AND	 THE	 GOVERNMENT	 AND	 SUBCONTRACT	 NO.	 B599860	 	
BETWEEN	 LLNL	 AND	 INTEL	 FEDERAL	 LLC.	 	 THIS	 DATA	 MAY	 BE	 REPRODUCED	 AND	 USED	 BY	 THE	 GOVERNMENT	
WITH	 THE	 EXPRESS	 LIMITATION	 THAT	 IT	 WILL	 NOT,	 WITHOUT	 WRITTEN	 PERMISSION	 OF	 INTEL,	 BE	 USED	 FOR	
PURPOSES	 OF	 MANUFACTURE	 NOR	 DISCLOSED	 OUTSIDE	 THE	 GOVERNMENT.	

THE	 INFORMATION	 CONTAINED	 HEREIN	 IS	 CONFIDENTIAL	 AND	 PROPRIETARY,	 AND	 IS	 CONSIDERED	 A	 “TRADE	
SECRET”	 UNDER	 18	 U.S.C.	 §	 1905	 (THE	 TRADE	 SECRETS	 ACT)	 AND	 EXEMPTION	 4	 TO	 FOIA.	 	 RELEASE	 OF	 THIS	
INFORMATION	 IS	 PROHIBITED.	

Date:	
March	 4,	 2013	 Design	 Document	 –	 HDF5	 API	 Changes	

(Includes	 asynchronous	 I/O,	 data	
integrity,	 transaction	 and	 data	 layout	
properties)	

FOR	 	 EXTREME-‐SCALE	 COMPUTING	
RESEARCH	 AND	 DEVELOPMENT	 (FAST	
FORWARD)	 STORAGE	 AND	 I/O	

i

Table	 of	 Contents	

Introduction	 ...	 1	

Definitions	 ..	 1	

Changes	 from	 Solution	 Architecture	 ..	 1	

Specification	 ...	 1	
New	 HDF5	 Library	 Capabilities	 ...	 1	
Asynchronous	 I/O	 ...	 1	
End-‐to-‐End	 Data	 Integrity	 ..	 2	
Transactions	 ..	 3	
Data	 Layout	 Properties	 ...	 3	

Architectural	 Changes	 to	 the	 HDF5	 library	 ...	 4	
Storing	 HDF5	 Objects	 in	 IOD	 Containers	 ...	 5	

API	 and	 Protocol	 Additions	 and	 Changes	 ...	 5	
Generic	 changes	 to	 HDF5	 API	 routines	 ...	 5	
HDF5	 Attribute	 Routines:	 ...	 6	
HDF5	 Dataset	 Routines:	 ..	 7	
HDF5	 Group	 Routines:	 ...	 7	
HDF5	 Link	 Routines:	 ...	 7	
HDF5	 Object	 Routines:	 ...	 7	
HDF5	 Datatype	 Routines:	 ..	 7	

Additions	 to	 the	 HDF5	 API	 ...	 7	
Asynchronous	 Operations:	 ...	 7	
End-‐to-‐End	 Integrity:	 ...	 8	
Transactions:	 ...	 9	
Data	 Layout	 Properties:	 ..	 9	
Library	 Instructure:	 ..	 9	
File	 Objects/Properties:	 ..	 9	
Dataset	 Objects:	 ..	 10	
Group	 Objects:	 ...	 10	
Named	 Datatype	 Objects:	 ...	 10	
Attribute	 Objects:	 ...	 10	
Link	 Objects:	 ...	 10	

Open	 Issues	 ..	 10	

Risks	 &	 Unknowns	 ..	 11	

Revision	 History	

Date	 Revision	 Author	
Feb. 26, 2013 1.0 Quincey Koziol, The HDF Group
Feb. 27, 2013 2.0, 3.0 Quincey Koziol, Ruth Aydt, The

HDF Group
Feb. 28, 2013 4.0 Quincey Koziol, Ruth Aydt,

Mohamad Chaarawi, Jerome
Soumagne, The HDF Group

Mar. 1, 2013 5.0 Quincey Koziol, Ruth Aydt,
Mohamad Chaarawi, Jerome
Soumagne, The HDF Group

Mar. 1, 2013 6.0 Quincey Koziol, Ruth Aydt,
Mohamad Chaarawi, Jerome
Soumagne, The HDF Group

Mar. 4, 2013 7.0 Quincey Koziol, Ruth Aydt,
Mohamad Chaarawi, Jerome
Soumagne, The HDF Group

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 1 12/12/12

Introduction	
This document describes the design of multiple additions to the HDF5 library and API,
including asynchronous I/O, end-to-end data integrity, transactions, and data layout
property support. All changes for these capabilities were combined into one document
for easier tracking; furthermore, because many of the features affect the same HDF5 API
routines, they are easier to understand in combination.

Definitions	

CN = Compute Node

ION = I/O Node

VOL = Virtual Object Layer

Changes	 from	 Solution	 Architecture	
There are currently no changes from the Solution Architecture descriptions.

Specification	
New	 HDF5	 Library	 Capabilities	

New functionality added to the HDF5 library is described below, with sections for each
capability.

Asynchronous I/O

Support for asynchronous I/O in HDF5 will be implemented by:

1) Building a description of the asynchronous operation

2) Shipping that description from the CN to the ION for execution

3) Returning a request object back to the application while the operation
completes on the ION

The application is free to continue with other actions while an asynchronous operation
executes. The application may test or wait for an asynchronous operation’s completion
with calls to HDF5 API routines. All parameters passed to asynchronous operations are
copied into the HDF5 library and may be deallocated or reused, except for the buffers
containing data elements. The application must not deallocate, examine or modifie data
element buffers used in asynchronous operations until the asynchronous operation has
completed.

The HDF5 library tracks asynchronous operations to determine dependencies between
operations. Dependencies exist between operations when a later operation requires
information from an unfinished earlier operation in order to proceed. A simple “progress

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 2 12/12/12

engine” within the HDF5 library updates the state of asynchronous operations when the
library is called from the application. There is no use of background threads on CNs, only
on the IONs, eliminating the possibility of “jitter” from background operations on CNs
interfering with application computation and communication.

As a consequence of not using background threads on the CNs, when an asynchronous
operation is called which has a dependency on an earlier operation that hasn’t completed,
the dependent operation may be delayed. When an operation is delayed waiting for an
earlier operation to complete, the delayed operation will stall inside the HDF5 library until
the earlier operation completes, then schedule its operation for asynchronous completion
and return to the application. For example, if an application makes two asynchronous
HDF5 calls: creating a dataset, following by writing data elements to the new dataset; it
is possible that the data write operation may be delayed inside the HDF5 library until the
dataset creation operation completes and the object ID for the dataset is available for the
data write operation to use in scheduling its asynchronous write.

An application can mitigate these stalls in its asynchronous operations by issuing multiple
non-dependent operations, followed by operations that depend on the earlier operations.
For example, an application that wishes to create ten datasets and write data elements to
each new dataset can minimize the possibility of asynchronous stalls by first creating all
ten datasets, and then writing to each dataset, in the order the datasets were created.
This order of operations, as opposed to creating each dataset and immediately writing to
it, will give the maximum opportunity for earlier dataset creation operations to complete
before their results are needed by later data write operations.

Asynchronous invocations of HDF5 routines that create or open an HDF5 object will
return a “placeholder” object ID when they succeed. Placeholder object IDs can be used
in all HDF5 API calls, with the HDF5 library tracking dependencies created as a result. If
the asynchronous operation completes successfully, a placeholder object ID will
transparently transition to a normal object ID and will no longer generate asynchronous
dependencies. If the asynchronous operation fails, the placeholder object ID issued for
the operation (and any placeholder object IDs that depend on it) will be invalidated and
not be accepted in further HDF5 API calls. If a placeholder object ID is invalidated, all
asynchronous operations that depend on it will fail.

See below, in the API and Protocol Additions and Changes section, for details on how
existing HDF5 API routines are extended, along with new API routines to test and wait on
a asynchronous request object.

End-to-End Data Integrity

When enabled by the application, end-to-end data integrity is guaranteed by performing
a checksum operation on all application data before it leaves a CN. The checksum for the
information (both data elements and metadata information, such as object names, etc.)
in each HDF5 operation will be passed along with the information to the underlying IOD
layer, which will store the checksum in addition to the information.

The HDF5 library will checksum application data before sending it from the CN to the ION
for storage in the HDF5 container, and optionally can additionally checksum application
data before copying it into internal buffers within the library (when it is copied). When
data is read from the container, the IOD layer will provide a checksum with the data,
which will be verified by the HDF5 library before returning the data to the application. If
the checksum of the data read doesn’t match the checksum from IOD, the HDF5 library

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 3 12/12/12

will issue an error by default, but will also provide a way for the application to override
this behavior and retrieve data even in the presence of checksum errors.

See below, in the API and Protocol Additions and Changes section, for details on new API
routines to set properties for controlling the optional checksum behaviors.

Transactions

The HDF5 library will allow applications to atomically perform multiple operations on an
HDF5 container through the use of transactions. New HDF5 API routines allow
transactions to be started, aborted and/or committed, and existing API routines will be
extended to accept transaction numbers that indicate which transaction each operation
belongs to. Data from specific transactions may be prefetched to the IOD layer from
DAOS storage, persisted from the IOD layer to DAOS storage, and removed from the IOD
layer through the HDF5 API as well. Specific versions of a container may be retained
with a snapshot operation, and container snapshots may be opened for reading by an
application, or removed when no longer desired.

An application is fully in charge of all aspects of transactions. The application must
specify the transaction number when a transaction is initiated, provide that transaction
number to all HDF5 operations that occur within the transaction, and eventually conclude
the transaction by committing or aborting it.

In addition to basic transaction management, changes resulting from each committed
transaction are initially stored at the IOD layer, where they must be either persisted to
DAOS and/or deleted – the HDF5 library will not manage the persist and delete
operations automatically. When reading from an HDF5 container, an application may
prefetch data for transactions from DAOS storage to the IOD layer, where it can be
accessed more quickly.

Additional details on transaction semantics and container snapshots will be provided in
Q4 of the project, as stated in the Statement of Work.

All HDF5 transaction operations may be asynchronous, with an application receiving
request objects for later query, etc.

See below, in the API and Protocol Additions and Changes section, for details on how
existing HDF5 API routines are extended, along with new API routines to create, commit,
abort, persist, delete and prefetch transactions.

Data Layout Properties

Data layout properties, and other aspects of HDF5, IOD and DAOS software stack
behavior, will be controlled by properties in HDF5 property lists (e.g. file creation, object
creation, object access, etc.). New properties are set and retrieved by HDF5 API routines
described below, in the API and Protocol Additions and Changes section. Existing HDF5
properties will be translated to appropriate actions on the container, e.g. the contiguous
and chunked storage properties for datasets in native HDF5 containers will be used by
the IOD layer to control analogous storage settings in IOD and DAOS containers. The set
of behaviors controlled by properties is still under active development; more properties
(and API routines to control them) will be added over the course of the project.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 4 12/12/12

Architectural	 Changes	 to	 the	 HDF5	 library	

The architecture of the core HDF5 library is largely unaffected by the changes described
in this document. The majority of the capabilities added to the HDF5 API are handled by
a wrapper layer above the main HDF5 library, and a small number of additions to the
main API routines (details of these API changes are described below in the API and
Protocols Changes section). Adding transactions requires extending the VOL interface to
incorporate some additional callbacks and/or parameters as well. Fortunately, the VOL is
already designed to support asynchronous operations (although it is currently not used
by any existing plugins), so few changes are required to support that capability.

The following diagram shows an overview of the HDF5 library architecture before the EFF
capabilities are added:

The following diagram shows an overview of the HDF5 library architecture after the EFF
capabilities are added, with the new or enhanced portions highlighted:

The majority of the implementation work is localized to the EFF wrapper routines and the
IOD VOL plugin. In particular, the end-to-end integrity checksums are created and
validated in the IOD plugin, and data layout information is translated from HDF5
properties to IOD hints there as well. Transactions and asynchronous operation
information is encapsulated in HDF5 properties by the EFF wrapper routines and

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 5 12/12/12

retrieved, interpreted and returned by the IOD plugin in the same way. Details of the
IOD VOL plugin design are located in an accompanying document.

Storing	 HDF5	 Objects	 in	 IOD	 Containers	

Objects in the HDF5 data model and operations on them are mapped to IOD objects and
operations, as they are handled by the IOD VOL plugin. See section 4.3.2 in the IOD
design document for a description of the mapping from HDF5 objects to IOD objects and
the accompanying IOD VOL plugin design document for a description of how those
mappings are carried out.

API	 and	 Protocol	 Additions	 and	 Changes	
There are two kinds of changes to the HDF5 library API: generic changes to existing API
routines that accommodate new capabilities, such as asynchronous I/O and transactions,
and additions to the HDF5 API which add new features. Both of these types of changes
to the HDF5 API are described below.

Generic	 changes	 to	 HDF5	 API	 routines	

Many HDF5 API routines operate on HDF5 file objects and need to be extended in the
same way. Rather than describing each of the modified HDF5 API routines, a generic
modification is described below, along with a list of HDF5 API routines that are affected.

Existing HDF5 routines that operate on HDF5 file objects are extended by adding two new
parameters: a transaction number and a pointer to an asynchronous operation request
object. Additionally, HDF5 API routines that are extended in this manner have a suffix
appended to the routine name, to distinguish these routines from existing routines. The
following pseudo-function prototypes describe the method for these changes to HDF5 API
routines:

Current routine:

<return type> H5Xexisting_routine(<current parameters>);

Extended routine:

<return type> H5Xexisting_routine_ff(<current parameters>,

 uint64_t transaction_number, H5_request_t *request_ptr);

In other words, each extended HDF5 API routine has a suffix of “_ff”1 added to the API’s
routine name and two new parameters added to its parameter list: a transaction number,
which indicates the transaction this operation is part of, and a pointer to a request object,
for testing/waiting on the asynchronous completion of the operation. Passing a NULL
pointer for the request object pointer value indicates that an operation should complete
synchronously.

1 “ff” is short for “FastForward”

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 6 12/12/12

As a concrete example, the following prototypes show the change to the group creation
API routine for HDF5, H5Gcreate2:

Current routine:

hid_t H5Gcreate(hid_t loc_id, const char *name, hid_t lcpl_id,

 hid_t gcpl_id, hid_t gapl_id);

Extended routine:

hid_t H5Gcreate_ff(hid_t loc_id, const char *name, hid_t lcpl_id,

 hid_t gcpl_id, hid_t gapl_id, uint64_t transaction_number,

 H5_request_t *request_ptr);

Note that the error value returned when a routine is invoked asynchronously only
indicates the status of the routine up to the point when it is scheduled for later
completion. The asynchronous test and wait routines (below) return the error status for
the “second half” of the routine’s execution.

We anticipate that if the features from the FastForward project are productized in a
future public release of HDF5, the “_ff” suffix will be removed and affected API routines
will be versioned according to the standard convention for modifying HDF5 API routines3.

A note on the design of the API changes: We considered alternate forms of passing the
transaction and request information into and out of the HDF5 API routines, such as using
HDF5 properties in one of the property lists passed in to API routines to convey the
information. Using HDF5 properties had a number of drawbacks however: (1) several of
the API routines did not have property list parameters and so would have to be extended
with more parameters anyway, (2) setting the additional information in properties can
sometimes obscure the fact that an operation’s behavior has been changed, and (3) it is
particularly tedious for application developers to retrieve the asynchronous request object
from a property list after each API call.

The following is a list of all HDF5 API routines extended in the manner described above:

HDF5 Attribute Routines:

• H5Acreate
• H5Acreate_by_name
• H5Adelete
• H5Adelete_by_name
• H5Adelete_by_idx
• H5Aexists

• H5Aexists_by_name
• H5Aget_info_by_idx
• H5Aget_info_by_name
• H5Aget_name_by_idx
• H5Aiterate
• H5Aiterate_by_name

• H5Aopen
• H5Aopen_by_idx
• H5Aopen_by_name
• H5Aread
• H5Arename
• H5Arename_by_name
• H5Awrite

2 http://www.hdfgroup.org/HDF5/doc/RM/RM_H5G.html#Group-Create2
3 HDF5’s API versioning conventions are described here:
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 7 12/12/12

HDF5 Dataset Routines:

• H5Dcreate
• H5Dcreate_anon

• H5Dopen
• H5Dread

• H5Dset_extent
• H5Dwrite

HDF5 Group Routines:

• H5Gcreate
• H5Gcreate_anon

• H5Gget_info_by_idx
• H5Gget_info_by_name

• H5Gopen

HDF5 Link Routines:

• H5Lcopy
• H5Lcreate_external
• H5Lcreate_hard
• H5Lcreate_soft
• H5Lcreate_ud
• H5Ldelete

• H5Ldelete_by_idx
• H5Lexists
• H5Lget_info
• H5Lget_info_by_idx
• H5Lget_name_by_idx
• H5Lget_val

• H5Lget_val_by_idx
• H5Literate
• H5Literate_by_name
• H5Lmove
• H5Lvisit
• H5Lvisit_by_name

HDF5 Object Routines:

• H5Ocopy
• H5Odecr_refcount
• H5Oexists_by_name
• H5Oget_comment
• H5Oget_comment_b

y_name

• H5Oget_info
• H5Oget_info_by_idx
• H5Oget_info_by_name
• H5Oincr_refcount
• H5Olink

• H5Oopen
• H5Oopen_by_idx
• H5Ovisit
• H5Ovisit_by_name

HDF5 Datatype Routines:

• H5Tcommit • H5Tcommit_anon • H5Topen

Additions	 to	 the	 HDF5	 API	

The following routines will be added to the HDF5 API to support the new capabilities in
the library.

Asynchronous Operations:

Note: The test and wait operations below can be expanded with MPI-like testall/waitall
and/or testany/waitany variants as needed.

H5AOtest() – Test if an asynchronous operation has completed:

herr_t H5AOtest(H5_request_t *request_ptr, H5_status_t *status_ptr);

Calling H5AOtest will determine if an asynchronous operation has completed, and return
the operation’s status to the application. Possible values returned for the operation’s
status are:

• H5AO_PENDING – The operation has not yet completed

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 8 12/12/12

• H5AO_SUCCEEDED – The operation completed successfully

• H5AO_FAILED – The operation has completed, but failed

Once an asynchronous operation has completed (successfully or not), the request object
becomes is invalid for future test/wall calls.

The return value from H5AOtest is negative on failure and non-negative on success.

H5AOwait() – Wait for an asynchronous operation to complete:

herr_t H5AOwait(H5_request_t *request_ptr, H5_status_t *status_ptr);

Calling H5AOwait waits for an asynchronous operation to complete, returning the
operation’s status to the application. Possible values returned for the operation’s status
are:

• H5AO_SUCCEEDED – The operation completed successfully

• H5AO_FAILED – The operation has completed, but failed

Once an asynchronous operation has completed (successfully or not), the request object
becomes is invalid for future test/wall calls.

The return value from H5AOwait is negative on failure and non-negative on success.

End-to-End Integrity:

H5Pset_data_checksum() – Set a checksum for data buffer in application memory:

herr_t H5Pset_data_checksum(hid_t dxpl_id, H5_checksum_t chksum);

H5Pset_data_checksum sets a checksum value property on a dataset access property list
for the library to use in future calls to H5Dwrite. The HDF5 library will verify that the
application data generates the same checksum before copying data to internal buffers. If
no copy to internal buffers is necessary, the application’s checksum value will be passed
directly to the IOD layer.

Note: the checksum passed in must be generated with the HDF5 library’s H5checksum
routine (below). [Optionally, we could have the application give us function pointer to a
routine that the HDF5 library can use for verifying the buffer’s checksum, but this is
slower when the buffer doesn’t need to be copied, since the H5checksum routine must be
used for passing checksums to IOD]

The return value from H5Pset_data_checksum is negative on failure and non-negative on
success.

H5checksum() – Perform a checksum on a buffer:

H5_checksum_t H5checksum(const void *buffer, size_t size, H5_checksum_t
input_checksum);

Perform a checksum on a buffer, returning the value generated. Passing in a non-zero
input checksum will use that value as the “seed” for the checksum’s initial value, allowing
a single checksum value to be generated for multiple buffers (possibly from a set of data

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 9 12/12/12

elements scattered in memory). The checksum algorithm will produce the same result
on a single contiguous buffer as on multiple separated buffers containing the same data
values.

H5Pset_edc_check() – Existing routine – Enables/disables checksum verification on data
element reads.

Transactions:

Note: The transaction routines below are incomplete and are included for a general
sense of the routines being planned.

H5TRcreate() – Begin new transaction

H5TRabort() – Abort a transaction, abandoning all changes to the container made within
the transaction

H5TRcomplete() – Complete a transaction, committing all changes made within the
transaction to the container

H5TRpersist() – Persist a transaction’s data from IOD to DAOS storage

H5TRremove() – Remove a transaction’s data from the IOD storage

H5TRprefetch() – Prefetch a transaction’s data from DAOS to IOD storage

H5TRcreate_snapshot() – Create a container snapshot. (Opening a container snapshot is
specified as a property on the file open operation, described below)

H5TRremove_snapshot() – Remove a snapshot from a container

Data Layout Properties:

H5Pset_layout() – Existing routine – Choose chunked or contiguous layout for dataset
storage. This property will be translated to an IOD hint when the dataset is created in
the IOD/DAOS container.

Library Instructure:

EFF_init() – Initialize the Exascale FastForward storage stack:

int EFF_init(MPI_Comm comm, MPI_Info info, const char *fs_driver, const
char *fs_info);

Must be called by an application before any HDF5/IOD/DAOS API calls are made. The
MPI communicator and info objects are used to set aside the IONs from the CNs and set
up communication channels between each CN and an ION. The fs_driver and fs_info
parameters choose the network driver to use for function shipper communications and
pass configuration information to that driver, respectively.

The return value from EFF_init is negative on failure and non-negative on success.

File Objects/Properties:

H5Pset_fapl_vol_iod() – Use the IOD VOL plugin for container operations:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 10 12/12/12

herr_t H5Pset_fapl_vol_iod(hid_t fapl_id, MPI_Comm comm, MPI_Info info);

Calling H5Pset_fapl_vol_iod will cause the HDF5 library to use the IOD VOL plugin for
accessing the HDF5 container object (as opposed to the native HDF5 file format, or
another storage/access mechanism). The communicator and info parameters are used to
set up communication channels for collective operations on the HDF5 container.

Calling this routine is mandatory to use the HDF5 API capabilities described in this
document.

The return value from H5Pset_fapl_vol_iod is negative on failure and non-negative on
success.

H5Pset_eff_snapshot() – Set snapshot to use when opening a container:

herr_t H5Pset_eff_snapshot(hid_t fapl_id, uint64_t snapshot_value);

Calling H5Pset_eff_snapshot will set a container snapshot value in the file access property
list, to use when opening the HDF5 container, instead of the default action of accessing
the latest consistent version of the container.

The return value from H5Pset_eff_snapshot is negative on failure and non-negative on
success.

Dataset Objects:

None yet

Group Objects:

None yet

Named Datatype Objects:

None yet

Attribute Objects:

None yet

Link Objects:

None yet

Open	 Issues	
Some of the existing HDF5 routines that are extended above don’t need a transaction ID
(e.g. routines which only read information from the container, like H5Lexists) and so
might need to be modified differently (they would be “generically” modified to take an
asynchronous request object, but not a transaction number parameter).

During our internal design discussions, we have considered having a mechanism for
tagging objects in some way so that they are prefetched/persisted/removed together. It
also seems more likely that an application would want to prefetch/persist/remove objects

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 11 12/12/12

at the IOD layer instead of transactions. We are considering use cases for these
behaviors and may include them in the full design for transactions, next quarter.

Risks	 &	 Unknowns	
As the changes to the HDF5 library are dependent on capabilities added to multiple lower
layers of the software stack (the function shipper, IOD and DAOS layers), it is likely that
changes at those layers will ripple up through the HDF5 API and cause additional work at
this layer. On the other hand, we can always mitigate the effect of changes at lower
levels by abstracting those capabilities and implementing support within the HDF5 library
for features missing or different below it.

Conversely, the demands of the applications that use the HDF5 API may pull the features
and interface in unexpected directions as well, in order to provide the necessary
capabilities for the application to efficiently and effectively store its data. These two
forces must be balanced over the course of the project, hopefully producing a high
quality storage stack that is useful to applications at the exascale.

