Flexible Communication Endpoints

MPI Forum Hybrid Working Group
March 13, 2013

Flexible Communication Endpoints Overview

= Allow threads/tasks to acquire MPI ranks

= Benefit: progress for threads
— Make progress on endpoint rather than single shared rank

= Difference from previous proposed approaches
— New: Spawn new communicators with additional endpoints
— Old: special MPI_COMM _ENDPOINTS, Init_endpoints(), attach/detach()

= Rough sketch of the interface:
1. Generate a communicator with additional endpoints
2. Threads/tasks attach to endpoints
3. ..(awesomeness) ...
4. Free communicator

Creation of Communicator with Endpoints

= MPI_Comm_create_endpoints(
— MPI_Comm parent_comm,
— int my_num_ep,
— MPI_Info info,
— MPI_Comm *output_comm)

= Create a new intracommunicator where my_num_ep ranks will be
available at each process

— The operation is collective over parent_comm
— No cached info propagates
— All processes/threads are initially detached

" my_num_ep semantics

— Each process can provide a different value
— If value is zero, the process will be left out of new communicator

=" Endpoint ranks are assigned in <process, index> order

Attaching threads/tasks to EP Communicator

MPI_Comm_attach(

— MPI_Comm comm,
— int parent_rank,
— intindex)

® |nitializes threads to make MPI calls on EP communicator

= Threads are attached to one of parent_rank’s endpoints
— Selected endpoint indicated by index argument
— Multiple threads may attach to each communicator endpoint
— A thread can attach to a communicator only once
= Default thread rank
— Conventional communicators: parent process rank
— Endpoint communicators: undefined, cannot call MPI until attached

= This call is not collective

Motivation for parent_rank/index

MPI_COMM_WORLD

0 1 2 3
p— p— p— "

© MO0 O[O e
0L el e

= Parent rank allows app to identify endpoint rank without
knowing number of endpoints requested by other processes

Freeing a Communicator with Endpoints

= MPI_Comm_free(...)

— Must be called once per endpoint

Progress on Communicator Processes/Endpoints

= Currently, each process makes
individual progress on
communications involving that
process

= Threads make progress on all
of their MPI ranks

— Each thread makes progress on
its “process”

— Each thread makes progress on
its attached endpoints

= Enables per-communicator
progress for E.P.
communicators

— Individual message queues

COMM_WORLD
S’ a
o
3
E.P. COMM | 3
() %
.
(@]
] 4\ S
I / \ 3
S A ¢ 5
C=

Threads

Interoperability of EP communicators with ...

= Endpoints are treated as “processes” or “ranks” in existing MPI calls
— Existing calls should work as expected

= MPI_Comm_dup, split, create, etc.
— Results in another communicator with endpoints
— All endpoints from the parent communicator are attached to their rank in the output communicator
— Additional threads are unattached by default and can call attach

= Request objects
— Associated with a rank, must be completed by the rank that created them

= Collectives
— Must be called once per rank in the EP communicator

= RMA
— Communicators with endpoints can be used to create RMA windows

— Standard local access semantics apply:
e Only the rank that owns the window buffer is allowed to perform load/store

= /O

— Communicators with endpoints can be used for I/0

OpenMP Example - Global Communicator
Threads in the parallel region acquire MPI ranks

int main(int argc, char **argv) {
int world rank, tl; MPI_Comm omp_comm;

MPI Init thread(&argc, &argv, MPI _THREAD MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

#pragma omp parallel
{

#pragma omp master

{
MPI Comm create endpoints(MPI_COMM _WORLD, omp get num_threads(),
MPI INFO_NULL, &omp_comm);

}

MPI Comm_attach(omp _comm, world rank, omp get thread num());
#pragma omp for

for (...) {

}

MPI_Comm_free (&omp_comm) ;

MPI Finalize(); return 0O;

OpenMP Ex. - Hierarchical Node Communicator
Threads in the parallel region acquire MPI ranks

int main(int argc, char **argv) {
int world rank, tl; MPI_Comm omp_comm;

MPI Init thread(&argc, &argv, MPI _THREAD MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

#pragma omp parallel
{

#pragma omp master

{

MPI_Comm_create_endpoints(MPI_COMM_SELF, omp_get num_threads(),
MPI INFO_NULL, &omp_comm);

}

MPI_Comm_attach(omp_comm, @, omp_get thread num());
#pragma omp for

for (...) {

}

MPI_Comm_free (&omp_comm) ;

}
MPI Finalize(); return 0O;

UPC Example Notes

= |n this example, UPC threads are implemented as threads
— Not O.S. processes

= This UPC implementation utilizes a 1:1 mapping between UPC
threads and MPI processes

— Generate a new “endpoints” communicator where UPC threads are
assigned new MPI ranks

11

UPC Example Code - Generated Code

/* This 1is C code, generated by the UPC compiler */
int main(int argc, char **argv) {

int world rank, t1;

MPI_Comm upc_comm;

MPI_Init_thread(&argc, &argv, MPI_THREAD_ MULTIPLE, &tl);
MPI_Comm_rank (MPI_COMM_WORLD, &world_rank);

MPI Comm create _endpoints(MPI_COMM_WORLD, THREADS PER _NODE,
MPI INFO_NULL, &upc_comm);

/* Calls upc_thread init(), which calls user’s upc_main() */
UPCR _Spawn_threads (THREADS PER NODE, upc thread init, upc_comm);

MPI_Finalize();

upc_thread init(int argc, char **argv, MPI_Comm upc_comm) ({
MPI_Comm_attach(upc_comm, world_rank, MYTHREAD) ;
upc_main(argc, argv),; /* User’s main function */
MPI Comm_ free(upc_comm);

UPC Example Code - User’s Code

shared [*] double data[lO0*THREADS];

int main(int argc, char **argv) {
int rank, 1i;
double err;
MPI Comm upc_comm;

UPCMPI World comm_query (&upc_comm) ;

do {
upc_forall(i = 0; i < 10O0*THREADS; i++; i) {
datal[i] = ..;
err += ..;
}
MPI Allreduce(&err, .., upc_comm);

} while (err > TOL);

return 0;

Discussion

Straw vote in support of continuing work on this proposal:
— Yes: 20, No: O, Abstain: 3

An alternative interface was proposed, that consists of one function:

MPI_Comm_create_endpoints(
— MPI_Comm parent_comm,
— int my_num_ep,
— MPI _Info info,
— MPI_Comm output_commsl])

Collective on parent_comm, produces an array of communicator handles, one
per endpoint. No attach/detach. Threads just start using one of the commes.

Advantages:
— Does not require THREAD MULTIPLE (attach does)
— Places fewer dependencies on threading model
— Data encapsulated in MPI_Comm, removes dependency on thread-local storage

14

Additional Semantics

= MPI_Comm_create_endpoints info key
— max_attached_per_ep = integer value

= Requests are associated with an endpoint
— Must be completed by the endpoint that generated them

15

Things We Still Need to Figure Out...

= Query functions to find that a communicator is of “endpoint
type”, to find that different ranks are in the same address
space, etc.

— Similar to RMA interface, we could use:
MPI_Comm_get_attr(..., MPI_COMM _FLAVOR, ...)

