
316 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_WTIME()

double MPI_Wtime(void)

DOUBLE PRECISION MPI_WTIME()

{double MPI::Wtime()(binding deprecated, see Section 15.2) }

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.

This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

{

double starttime, endtime;

starttime = MPI_Wtime();

.... stuff to be timed ...

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

}

The times returned are local to the node that called them. There is no requirement
that different nodes return “the same time.” (But see also the discussion of
MPI_WTIME_IS_GLOBAL).

MPI_WTICK()

double MPI_Wtick(void)

DOUBLE PRECISION MPI_WTICK()

{double MPI::Wtick()(binding deprecated, see Section 15.2) }

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI_WTICK should be 10−3.

8.7 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program writ-
ten using MPI and complying with the relevant language standards is portable as written,
and must not require any source code changes when moved from one system to another.
This explicitly does not say anything about how an MPI program is started or launched from
the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 317

before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_INIT(IERROR)

INTEGER IERROR

{void MPI::Init(int& argc, char**& argv)(binding deprecated, see Section 15.2) }

{void MPI::Init()(binding deprecated, see Section 15.2) }
ticket313.

[All MPI programs must contain exactly one call to an MPI initialization routine:
MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization routines are erro-
neous. The only MPI functions that may be invoked before the MPI initialization routines
are called are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED.] Each MPI ticket313.
process must call an MPI initialization routine, MPI_INIT or MPI_INIT_THREAD, exactly
once. Subsequent calls by the process to any initialization routine are erroneous. The
only MPI functions that may be invoked by a process before the MPI initialization routine
completed are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED.

The version for ISO C accepts the argc and argv that are provided by the arguments
to main or NULL:

int main(int argc, char **argv)

{

MPI_Init(&argc, &argv);

/* parse arguments */

/* main program */

MPI_Finalize(); /* see below */

}

The Fortran version takes only IERROR.
Conforming implementations of MPI are required to allow applications to pass NULL

for both the argc e argv arguments of main in C. [and C++. In C++, there is an alternative ticket313.
ticket313.binding for MPI::Init that does not have these arguments at all.]

Rationale. In some applications, libraries may be making the call to
MPI_Init, and may not have access to argc and argv from main. It is anticipated
that applications requiring special information about the environment or information
supplied by mpiexec can get that information from environment variables. (End of
rationale.)

MPI_FINALIZE()

int MPI_Finalize(void)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

318 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_FINALIZE(IERROR)

INTEGER IERROR

{void MPI::Finalize()(binding deprecated, see Section 15.2) }

This routine cleans up all MPI state. [Each process must call MPI_FINALIZE before itticket313.
exits. Unless there has been a call to MPI_ABORT, before each process exits process must
ensure that all pending nonblocking communications are (locally) complete before calling
MPI_FINALIZE. Further, at the instant at which the last process calls MPI_FINALIZE, all
pending sends must be matched by a receive, and all pending receives must be matched by
a send.

For example, the following program is correct] If an MPI program terminates normally
(i.e., not due to a call to MPI_ABORT or an unrecovered error) then the following must
hold:

• Each process must call MPI_FINALIZE before the process exits.

• When the last process calls MPI_FINALIZE, all non-local MPI calls at each process
have been matched by MPI calls at the other processes that are needed to complete the
relevant operation: For each send, the matching receive has occurred, each collective
operation has been invoked at all involved processes, etc.

The following examples illustrates these rules

Example 8.3 The following code is correct

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Send(dest=1); MPI_Recv(src=0);

MPI_Finalize(); MPI_Finalize();

Example 8.4 Without a matching receive, the program is erroneous

Process 0 Process 1

----------- -----------

MPI_Init(); MPI_Init();

MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();
ticket313.

[deleted in April Since MPI_FINALIZE is a collective call, a correct MPI program will
naturally ensure that all participants in pending collective operations have made the call
before calling MPI_FINALIZE.

A successful return from a blocking communication operation or from MPI_WAIT or
MPI_TEST tells the user that the buffer can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI_REQUEST_FREE with a request handle generated by
an MPI_ISEND nullifies the handle but provides no assurance of operation completion. The
MPI_ISEND is complete only when it is known by some means that a matching receive has

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 319

completed. MPI_FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI_FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI_WAIT, MPI_TEST, or MPI_REQUEST_FREE
combined with some other verification of completion).] ticket313.

[

Example 8.5 This program is correct HEADER SKIP ENDHEADER

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

Example 8.6 This program is erroneous and its behavior is undefined: HEADER SKIP
ENDHEADER

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

] ticket313.

Example 8.7 This program is erroneous: The MPI_Isend call is not guaranteed to be
locally complete before process 0 calls MPI_Finalize

Process 0 Process 1

--------- ---------

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize();
ticket313.

[If no MPI_BUFFER_DETACH occurs between an MPI_BSEND (or other buffered send)
and MPI_FINALIZE, the MPI_FINALIZE implicitly supplies the MPI_BUFFER_DETACH.

Example 8.8 This program is correct, and after the MPI_Finalize, it is as if the buffer
had been detached. HEADER SKIP ENDHEADER

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

320 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

rank 0 rank 1

===

... ...

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();

] While the user must ensure that communications can complete before MPI is finalized,ticket313.
it needs not free resources allocated by MPI (buffers, windows, requests, communicators,
etc.); the MPI_FINALIZE function will do so.

Example 8.9 This program is correct, and after the MPI_Finalize, it is as if the buffer
had been detached.

Process 0 Process 1

--------- ---------

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();
ticket313.

[

Example 8.10 In this example, MPI_Iprobe() must return a FALSE flag.
MPI_Test_cancelled() must return a TRUE flag, independent of the relative order of execu-
tion of MPI_Cancel() in process 0 and MPI_Finalize() in process 1.

The MPI_Iprobe() call is there to make sure the implementation knows that the “tag1”
message exists at the destination, without being able to claim that the user knows about
it.

HEADER SKIP ENDHEADER

rank 0 rank 1

==

MPI_Init(); MPI_Init();

MPI_Isend(tag1);

MPI_Barrier(); MPI_Barrier();

MPI_Iprobe(tag2);

MPI_Barrier(); MPI_Barrier();

MPI_Finalize();

exit();

MPI_Cancel();

MPI_Wait();

MPI_Test_cancelled();

MPI_Finalize();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 321

exit();

] ticket313.

Example 8.11 This program is correct. The cancel operation must succeed, since the
send cannot complete normally.

Process 0 Process 1

--------- ---------

MPI_Isend(tag1); MPI_Finalize();

MPI_Cancel();

MPI_Wait();

MPI_Finalize();

ticket313.
[

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE until all potential future message cancellations have been processed.
One possible solution is to place a barrier inside MPI_FINALIZE (End of advice to
implementors.)

] ticket313.

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE on a process even if all communications related to MPI calls by that
process have completed; the process may still receive cancel requests for messages it
has completed receiving. One possible solution is to place a barrier inside
MPI_FINALIZE (End of advice to implementors.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called, ex-
cept for MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED. Each process must
complete any pending communication it initiated before it calls MPI_FINALIZE. If the call
returns, each process may continue local computations, or exit, without participating in
further MPI communication with other processes. MPI_FINALIZE is collective over all con-
nected processes. If no processes were spawned, accepted or connected then this means over
MPI_COMM_WORLD; otherwise it is collective over the union of all processes that have been
and continue to be connected, as explained in Section 10.5.4 on page 358.

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still buffered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPI communication before MPI_FINALIZE
returns. Thus, if a process exits after the call to MPI_FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)

Although it is not required that all processes return from MPI_FINALIZE, it is required
that at least process 0 in MPI_COMM_WORLD return, so that users can know that the MPI

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

322 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI_FINALIZE.

Example 8.12 The following illustrates the use of requiring that at least one process
return and that it be known that process 0 is one of the processes that return. One wants
code like the following to work no matter how many processes return.

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

...

MPI_Finalize();

if (myrank == 0) {

resultfile = fopen("outfile","w");

dump_results(resultfile);

fclose(resultfile);

}

exit(0);

MPI_INITIALIZED(flag)

OUT flag Flag is true if MPI_INIT has been called and false
otherwise.

int MPI_Initialized(int *flag)

MPI_INITIALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

{bool MPI::Is_initialized()(binding deprecated, see Section 15.2) }

This routine may be used to determine whether MPI_INIT has been called.
MPI_INITIALIZED returns true if the calling process has called MPI_INIT. Whether
MPI_FINALIZE has been called does not affect the behavior of MPI_INITIALIZED. It is one
of the few routines that may be called before MPI_INIT is called.

MPI_ABORT(comm, errorcode)

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_ABORT(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

{void MPI::Comm::Abort(int errorcode)(binding deprecated, see Section 15.2) }

This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 323

code. However, a Unix or POSIX environment should handle this as a return errorcode

from the main program.
It may not be possible for an MPI implementation to abort only the processes repre-

sented by comm if this is a subset of the processes. In this case, the MPI implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted or connected then this has the effect of
aborting all the processes associated with MPI_COMM_WORLD.

Rationale. The communicator argument is provided to allow for future extensions of
MPI to environments with, for example, dynamic process management. In particular,
it allows but does not require an MPI implementation to abort a subset of
MPI_COMM_WORLD. (End of rationale.)

Advice to users. Whether the errorcode is returned from the executable or from the
MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI
library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or
singleton init). (End of advice to implementors.)

8.7.1 Allowing User Functions at Process Termination

There are times in which it would be convenient to have actions happen when an MPI process
finishes. For example, a routine may do initializations that are useful until the MPI job (or
that part of the job that being terminated in the case of dynamically created processes) is
finished. This can be accomplished in MPI by attaching an attribute to MPI_COMM_SELF

with a callback function. When MPI_FINALIZE is called, it will first execute the equivalent
of an MPI_COMM_FREE on MPI_COMM_SELF. This will cause the delete callback function
to be executed on all keys associated with MPI_COMM_SELF, in the reverse order that
they were set on MPI_COMM_SELF. If no key has been attached to MPI_COMM_SELF, then
no callback is invoked. The “freeing” of MPI_COMM_SELF occurs before any other parts
of MPI are affected. Thus, for example, calling MPI_FINALIZED will return false in any
of these callback functions. Once done with MPI_COMM_SELF, the order and rest of the
actions taken by MPI_FINALIZE is not specified.

Advice to implementors. Since attributes can be added from any supported language,
the MPI implementation needs to remember the creating language so the correct
callback is made. Implementations that use the attribute delete callback on
MPI_COMM_SELF internally should register their internal callbacks before returning
from MPI_INIT / MPI_INIT_THREAD, so that libraries or applications will not have
portions of the MPI implementation shut down before the application-level callbacks
are made. (End of advice to implementors.)

8.7.2 Determining Whether MPI Has Finished

One of the goals of MPI was to allow for layered libraries. In order for a library to do
this cleanly, it needs to know if MPI is active. In MPI the function MPI_INITIALIZED was

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

324 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

provided to tell if MPI had been initialized. The problem arises in knowing if MPI has been
finalized. Once MPI has been finalized it is no longer active and cannot be restarted. A
library needs to be able to determine this to act accordingly. To achieve this the following
function is needed:

MPI_FINALIZED(flag)

OUT flag true if MPI was finalized (logical)

int MPI_Finalized(int *flag)

MPI_FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

{bool MPI::Is_finalized()(binding deprecated, see Section 15.2) }

This routine returns true if MPI_FINALIZE has completed. It is legal to call
MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE.

Advice to users. MPI is “active” and it is thus safe to call MPI functions if MPI_INIT
has completed and MPI_FINALIZE has not completed. If a library has no other
way of knowing whether MPI is active or not, then it can use MPI_INITIALIZED and
MPI_FINALIZED to determine this. For example, MPI is “active” in callback functions
that are invoked during MPI_FINALIZE. (End of advice to users.)

8.8 Portable MPI Process Startup

A number of implementations of MPI provide a startup command for MPI programs that
is of the form

mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides flexibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability of MPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard starup mechanism. In order that the “standard” command not be confused with
existing practice, which is not standard and not portable among implementations, instead
of mpirun MPI specifies mpiexec.

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI specifies an mpiexec startup command
and recommends but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below.

It is suggested that

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.8. PORTABLE MPI PROCESS STARTUP 325

mpiexec -n <numprocs> <program>

be at least one way to start <program> with an initial MPI_COMM_WORLD whose group
contains <numprocs> processes. Other arguments to mpiexec may be implementation-
dependent.

Advice to implementors. Implementors, if they do provide a special startup command
for MPI programs, are advised to give it the following form. The syntax is chosen in
order that mpiexec be able to be viewed as a command-line version of
MPI_COMM_SPAWN (See Section 10.3.4).

Analogous to MPI_COMM_SPAWN, we have ticket310.

[

mpiexec -n <maxprocs>

-soft < >

-host < >

-arch < >

-wdir < >

-path < >

-file < >

...

<command line>

] ticket310.

mpiexec -n <maxprocs>

-soft < >

-host < >

-arch < >

-wdir < >

-path < >

-file < >

-asp < >

...

<command line>

for the case where a single command line for the application program and its arguments
will suffice. See Section 10.3.4 for the meanings of these arguments. For the case
corresponding to MPI_COMM_SPAWN_MULTIPLE there are two possible formats:

Form A:

mpiexec { <above arguments> } : { ... } : { ... } : ... : { ... }

As with MPI_COMM_SPAWN, all the arguments are optional. (Even the -n x argu-
ment is optional; the default is implementation dependent. It might be 1, it might be
taken from an environment variable, or it might be specified at compile time.) The
names and meanings of the arguments are taken from the keys in the info argument

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

326 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

to MPI_COMM_SPAWN. There may be other, implementation-dependent arguments
as well.

Note that Form A, though convenient to type, prevents colons from being program
arguments. Therefore an alternate, file-based form is allowed:

Form B:

mpiexec -configfile <filename>

where the lines of <filename> are of the form separated by the colons in Form A.
Lines beginning with ‘#’ are comments, and lines may be continued by terminating
the partial line with ‘\’.

Example 8.13 Start 16 instances of myprog on the current or default machine:

mpiexec -n 16 myprog

Example 8.14 Start 10 processes on the machine called ferrari:

mpiexec -n 10 -host ferrari myprog

Example 8.15 Start three copies of the same program with different command-line
arguments:

mpiexec myprog infile1 : myprog infile2 : myprog infile3

Example 8.16 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s:

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

It is assumed that the implementation in this case has a method for choosing hosts of
the appropriate type. Their ranks are in the order specified.

Example 8.17 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s (Form B):

mpiexec -configfile myfile

where myfile contains

-n 5 -arch sun ocean

-n 10 -arch rs6000 atmosticket310.

Example 8.18 Start 12 MPI processes of the foo program, with 4 MPI processes in
each address space:

mpiexec -asp 4 -n 12 foo

(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

