
316 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_WTIME()

double MPI_Wtime(void)

DOUBLE PRECISION MPI_WTIME()

{double MPI::Wtime()(binding deprecated, see Section 15.2) }

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.

This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

{

double starttime, endtime;

starttime = MPI_Wtime();

.... stuff to be timed ...

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

}

The times returned are local to the node that called them. There is no requirement
that different nodes return “the same time.” (But see also the discussion of
MPI_WTIME_IS_GLOBAL).

MPI_WTICK()

double MPI_Wtick(void)

DOUBLE PRECISION MPI_WTICK()

{double MPI::Wtick()(binding deprecated, see Section 15.2) }

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI_WTICK should be 10−3.

8.7 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program writ-
ten using MPI and complying with the relevant language standards is portable as written,
and must not require any source code changes when moved from one system to another.
This explicitly does not say anything about how an MPI program is started or launched from
the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 317

before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_INIT(IERROR)

INTEGER IERROR

{void MPI::Init(int& argc, char**& argv)(binding deprecated, see Section 15.2) }

{void MPI::Init()(binding deprecated, see Section 15.2) }
ticket313.

[All MPI programs must contain exactly one call to an MPI initialization routine:
MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization routines are er-
roneous. The only MPI functions that may be invoked before the MPI initialization rou-
tines are called are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED.] Each ticket313.
MPI process must contain exactly one call to an MPI initialization routine, MPI_INIT or
MPI_INIT_THREAD. Subsequent calls by the process to any initialization routine are erro-
neous. The only MPI functions that may be invoked by a process before the MPI initializa-
tion routine completed are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED.

The version for ISO C accepts the argc and argv that are provided by the arguments
to main or NULL:

int main(int argc, char **argv)

{

MPI_Init(&argc, &argv);

/* parse arguments */

/* main program */

MPI_Finalize(); /* see below */

}

The Fortran version takes only IERROR.
Conforming implementations of MPI are required to allow applications to pass NULL

for both the argc e argv arguments of main in C. [and C++. In C++, there is an alternative ticket313.
ticket313.binding for MPI::Init that does not have these arguments at all.]

Rationale. In some applications, libraries may be making the call to
MPI_Init, and may not have access to argc and argv from main. It is anticipated
that applications requiring special information about the environment or information
supplied by mpiexec can get that information from environment variables. (End of
rationale.)

MPI_FINALIZE()

int MPI_Finalize(void)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

318 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_FINALIZE(IERROR)

INTEGER IERROR

{void MPI::Finalize()(binding deprecated, see Section 15.2) }

This routine cleans up all MPI state. [Each process must callticket313.
MPI_FINALIZE before it exits.] Before each process exits, the process must call
MPI_FINALIZE. Unless there has been a call to MPI_ABORT, each process must ensure
that all pending nonblocking communications are (locally) complete before calling
MPI_FINALIZE. [Further, at the instant at which the last process calls MPI_FINALIZE, allticket313.
pending sends must be matched by a receive, and all pending receives must be matched by
a send.

For example, the following program is correct] Further when the last process calls
MPI_FINALIZE, all non-local MPI calls at each process have been matched by MPI calls at
the other processes that are needed to complete the relevant operation: For each send, the
matching receive has occurred, each collective operation has been invoked at all involved
processes, etc. The following examples illustrates these rules

Example 8.3 The following code is correct

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Send(dest=1); MPI_Recv(src=0);

MPI_Finalize(); MPI_Finalize();

Example 8.4 Without a matching receive, the program is erroneous

Process 0 Process 1

----------- -----------

MPI_Init(); MPI_Init();

MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();
ticket313.

[deleted in April Since MPI_FINALIZE is a collective call, a correct MPI program will
naturally ensure that all participants in pending collective operations have made the call
before calling MPI_FINALIZE.

A successful return from a blocking communication operation or from MPI_WAIT or
MPI_TEST tells the user that the buffer can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI_REQUEST_FREE with a request handle generated by
an MPI_ISEND nullifies the handle but provides no assurance of operation completion. The
MPI_ISEND is complete only when it is known by some means that a matching receive has
completed. MPI_FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI_FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI_WAIT, MPI_TEST, or MPI_REQUEST_FREE
combined with some other verification of completion).]ticket313.

[

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 319

Example 8.5 This program is correct HEADER SKIP ENDHEADER

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

Example 8.6 This program is erroneous and its behavior is undefined: HEADER SKIP
ENDHEADER

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

] ticket313.

Example 8.7 This program is erroneous: The MPI_Isend call is not guaranteed to be
locally complete before process 0 calls MPI_Finalize

Process 0 Process 1

--------- ---------

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize();
ticket313.

[If no MPI_BUFFER_DETACH occurs between an MPI_BSEND (or other buffered send)
and MPI_FINALIZE, the MPI_FINALIZE implicitly supplies the MPI_BUFFER_DETACH.

Example 8.8 This program is correct, and after the MPI_Finalize, it is as if the buffer
had been detached. HEADER SKIP ENDHEADER

rank 0 rank 1

===

... ...

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

320 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

] While the user must ensure that communications can complete before MPI is finalized, ticket313.
it needs not free resources allocated by MPI (buffers, windows, requests, communicators,
etc.); the MPI_FINALIZE function will do so.

Example 8.9 This program is correct, and after the MPI_Finalize, it is as if the buffer
had been detached.

Process 0 Process 1

--------- ---------

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();
ticket313.

[

Example 8.10 In this example, MPI_Iprobe() must return a FALSE flag.
MPI_Test_cancelled() must return a TRUE flag, independent of the relative order of execu-
tion of MPI_Cancel() in process 0 and MPI_Finalize() in process 1.

The MPI_Iprobe() call is there to make sure the implementation knows that the “tag1”
message exists at the destination, without being able to claim that the user knows about
it.

HEADER SKIP ENDHEADER

rank 0 rank 1

==

MPI_Init(); MPI_Init();

MPI_Isend(tag1);

MPI_Barrier(); MPI_Barrier();

MPI_Iprobe(tag2);

MPI_Barrier(); MPI_Barrier();

MPI_Finalize();

exit();

MPI_Cancel();

MPI_Wait();

MPI_Test_cancelled();

MPI_Finalize();

exit();

]ticket313.

Example 8.11 This program is correct. The cancel operation must succeed, since the
send cannot complete normally.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 321

Process 0 Process 1

--------- ---------

MPI_Isend(tag1); MPI_Finalize();

MPI_Cancel();

MPI_Wait();

MPI_Finalize();

ticket313.
[

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE until all potential future message cancellations have been processed.
One possible solution is to place a barrier inside MPI_FINALIZE (End of advice to
implementors.)

] ticket313.

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE on a process even if all communications related to MPI calls by that
process have completed; the process may still receive cancel requests for messages it
has completed receiving. One possible solution is to place a barrier inside
MPI_FINALIZE (End of advice to implementors.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called, ex-
cept for MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED. Each process must
complete any pending communication it initiated before it calls MPI_FINALIZE. If the call
returns, each process may continue local computations, or exit, without participating in
further MPI communication with other processes. MPI_FINALIZE is collective over all con-
nected processes. If no processes were spawned, accepted or connected then this means over
MPI_COMM_WORLD; otherwise it is collective over the union of all processes that have been
and continue to be connected, as explained in Section 10.5.4 on page 358.

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still buffered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPI communication before MPI_FINALIZE
returns. Thus, if a process exits after the call to MPI_FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)

Although it is not required that all processes return from MPI_FINALIZE, it is required
that at least process 0 in MPI_COMM_WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI_FINALIZE.

Example 8.12 The following illustrates the use of requiring that at least one process
return and that it be known that process 0 is one of the processes that return. One wants
code like the following to work no matter how many processes return.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

