
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

August 23, 2011
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 6

Groups, Contexts, Communicators,
and Caching

6.1 Introduction

This chapter introduces MPI features that support the development of parallel libraries.
Parallel libraries are needed to encapsulate the distracting complications inherent in paral-
lel implementations of key algorithms. They help to ensure consistent correctness of such
procedures, and provide a “higher level” of portability than MPI itself can provide. As
such, libraries prevent each programmer from repeating the work of defining consistent
data structures, data layouts, and methods that implement key algorithms (such as matrix
operations). Since the best libraries come with several variations on parallel systems (dif-
ferent data layouts, different strategies depending on the size of the system or problem, or
type of floating point), this too needs to be hidden from the user.

We refer the reader to [4] and [1] for further information on writing libraries in MPI,
using the features described in this chapter.

6.1.1 Features Needed to Support Libraries

The key features needed to support the creation of robust parallel libraries are as follows:

• Safe communication space, that guarantees that libraries can communicate as they
need to, without conflicting with communication extraneous to the library,

• Group scope for collective operations, that allow libraries to avoid unnecessarily syn-
chronizing uninvolved processes (potentially running unrelated code),

• Abstract process naming to allow libraries to describe their communication in terms
suitable to their own data structures and algorithms,

• The ability to “adorn” a set of communicating processes with additional user-defined
attributes, such as extra collective operations. This mechanism should provide a
means for the user or library writer effectively to extend a message-passing notation.

In addition, a unified mechanism or object is needed for conveniently denoting communica-
tion context, the group of communicating processes, to house abstract process naming, and
to store adornments.

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

6.1.2 MPI’s Support for Libraries

The corresponding concepts that MPI provides, specifically to support robust libraries, are
as follows:

• Contexts of communication,

• Groups of processes,

• Virtual topologies,

• Attribute caching,

• Communicators.

Communicators (see [2, 3, 5]) encapsulate all of these ideas in order to provide the ap-
propriate scope for all communication operations in MPI. Communicators are divided into
two kinds: intra-communicators for operations within a single group of processes and inter-
communicators for operations between two groups of processes.

Caching. Communicators (see below) provide a “caching” mechanism that allows one to
associate new attributes with communicators, on a par with MPI built-in features. This
can be used by advanced users to adorn communicators further, and by MPI to implement
some communicator functions. For example, the virtual-topology functions described in
Chapter 7 are likely to be supported this way.

Groups. Groups define an ordered collection of processes, each with a rank, and it is this
group that defines the low-level names for inter-process communication (ranks are used for
sending and receiving). Thus, groups define a scope for process names in point-to-point
communication. In addition, groups define the scope of collective operations. Groups may
be manipulated separately from communicators in MPI, but only communicators can be
used in communication operations.

Intra-communicators. The most commonly used means for message passing in MPI is via
intra-communicators. Intra-communicators contain an instance of a group, contexts of
communication for both point-to-point and collective communication, and the ability to
include virtual topology and other attributes. These features work as follows:

• Contexts provide the ability to have separate safe “universes” of message-passing in
MPI. A context is akin to an additional tag that differentiates messages. The system
manages this differentiation process. The use of separate communication contexts
by distinct libraries (or distinct library invocations) insulates communication internal
to the library execution from external communication. This allows the invocation of
the library even if there are pending communications on “other” communicators, and
avoids the need to synchronize entry or exit into library code. Pending point-to-point
communications are also guaranteed not to interfere with collective communications
within a single communicator.

• Groups define the participants in the communication (see above) of a communicator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.1. INTRODUCTION 3

• A virtual topology defines a special mapping of the ranks in a group to and from a
topology. Special constructors for communicators are defined in Chapter 7 to provide
this feature. Intra-communicators as described in this chapter do not have topologies.

• Attributes define the local information that the user or library has added to a com-
municator for later reference.

Advice to users. The practice in many communication libraries is that there is a
unique, predefined communication universe that includes all processes available when
the parallel program is initiated; the processes are assigned consecutive ranks. Par-
ticipants in a point-to-point communication are identified by their rank; a collective
communication (such as broadcast) always involves all processes. This practice can be
followed in MPI by using the predefined communicator MPI_COMM_WORLD. Users
who are satisfied with this practice can plug in MPI_COMM_WORLD wherever a com-
municator argument is required, and can consequently disregard the rest of this chapter.
(End of advice to users.)

Inter-communicators. The discussion has dealt so far with intra-communication: com-
munication within a group. MPI also supports inter-communication: communication
between two non-overlapping groups. When an application is built by composing several
parallel modules, it is convenient to allow one module to communicate with another using
local ranks for addressing within the second module. This is especially convenient in a
client-server computing paradigm, where either client or server are parallel. The support
of inter-communication also provides a mechanism for the extension of MPI to a dynamic
model where not all processes are preallocated at initialization time. In such a situation,
it becomes necessary to support communication across “universes.” Inter-communication
is supported by objects called inter-communicators. These objects bind two groups to-
gether with communication contexts shared by both groups. For inter-communicators, these
features work as follows:

• Contexts provide the ability to have a separate safe “universe” of message-passing
between the two groups. A send in the local group is always a receive in the re-
mote group, and vice versa. The system manages this differentiation process. The
use of separate communication contexts by distinct libraries (or distinct library in-
vocations) insulates communication internal to the library execution from external
communication. This allows the invocation of the library even if there are pending
communications on “other” communicators, and avoids the need to synchronize entry
or exit into library code.

• A local and remote group specify the recipients and destinations for an inter-com-
municator.

• Virtual topology is undefined for an inter-communicator.

• As before, attributes cache defines the local information that the user or library has
added to a communicator for later reference.

MPI provides mechanisms for creating and manipulating inter-communicators. They
are used for point-to-point and collective communication in an related manner to intra-
communicators. Users who do not need inter-communication in their applications can safely

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

ignore this extension. Users who require inter-communication between overlapping groups
must layer this capability on top of MPI.

6.2 Basic Concepts

In this section, we turn to a more formal definition of the concepts introduced above.

6.2.1 Groups

A group is an ordered set of process identifiers (henceforth processes); processes are
implementation-dependent objects. Each process in a group is associated with an inte-
ger rank. Ranks are contiguous and start from zero. Groups are represented by opaque
group objects, and hence cannot be directly transferred from one process to another. A
group is used within a communicator to describe the participants in a communication “uni-
verse” and to rank such participants (thus giving them unique names within that “universe”
of communication).

There is a special pre-defined group: MPI_GROUP_EMPTY, which is a group with no
members. The predefined constant MPI_GROUP_NULL is the value used for invalid group
handles.

Advice to users. MPI_GROUP_EMPTY, which is a valid handle to an empty group,
should not be confused with MPI_GROUP_NULL, which in turn is an invalid handle.
The former may be used as an argument to group operations; the latter, which is
returned when a group is freed, is not a valid argument. (End of advice to users.)

Advice to implementors. A group may be represented by a virtual-to-real process-
address-translation table. Each communicator object (see below) would have a pointer
to such a table.

Simple implementations of MPI will enumerate groups, such as in a table. However,
more advanced data structures make sense in order to improve scalability and memory
usage with large numbers of processes. Such implementations are possible with MPI.
(End of advice to implementors.)

6.2.2 Contexts

A context is a property of communicators (defined next) that allows partitioning of the
communication space. A message sent in one context cannot be received in another context.
Furthermore, where permitted, collective operations are independent of pending point-to-
point operations. Contexts are not explicit MPI objects; they appear only as part of the
realization of communicators (below).

Advice to implementors. Distinct communicators in the same process have distinct
contexts. A context is essentially a system-managed tag (or tags) needed to make
a communicator safe for point-to-point and MPI-defined collective communication.
Safety means that collective and point-to-point communication within one commu-
nicator do not interfere, and that communication over distinct communicators don’t
interfere.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.2. BASIC CONCEPTS 5

A possible implementation for a context is as a supplemental tag attached to messages
on send and matched on receive. Each intra-communicator stores the value of its two
tags (one for point-to-point and one for collective communication). Communicator-
generating functions use a collective communication to agree on a new group-wide
unique context.

Analogously, in inter-communication, two context tags are stored per communicator,
one used by group A to send and group B to receive, and a second used by group B
to send and for group A to receive.

Since contexts are not explicit objects, other implementations are also possible. (End
of advice to implementors.)

6.2.3 Intra-Communicators

Intra-communicators bring together the concepts of group and context. To support
implementation-specific optimizations, and application topologies (defined in the next chap-
ter, Chapter 7), communicators may also “cache” additional information (see Section 6.7).
MPI communication operations reference communicators to determine the scope and the
“communication universe” in which a point-to-point or collective operation is to operate.

Each communicator contains a group of valid participants; this group always includes
the local process. The source and destination of a message is identified by process rank
within that group.

For collective communication, the intra-communicator specifies the set of processes that
participate in the collective operation (and their order, when significant). Thus, the commu-
nicator restricts the “spatial” scope of communication, and provides machine-independent
process addressing through ranks.

Intra-communicators are represented by opaque intra-communicator objects, and
hence cannot be directly transferred from one process to another.

6.2.4 Predefined Intra-Communicators

An initial intra-communicator MPI_COMM_WORLD of all processes the local process can
communicate with after initialization (itself included) is defined once MPI_INIT or
MPI_INIT_THREAD has been called. In addition, the communicator MPI_COMM_SELF is
provided, which includes only the process itself.

The predefined constant MPI_COMM_NULL is the value used for invalid communicator
handles.

In a static-process-model implementation of MPI, all processes that participate in the
computation are available after MPI is initialized. For this case, MPI_COMM_WORLD is a
communicator of all processes available for the computation; this communicator has the
same value in all processes. In an implementation of MPI where processes can dynami-
cally join an MPI execution, it may be the case that a process starts an MPI computation
without having access to all other processes. In such situations, MPI_COMM_WORLD is a
communicator incorporating all processes with which the joining process can immediately
communicate. Therefore, MPI_COMM_WORLD may simultaneously represent disjoint groups
in different processes.

All MPI implementations are required to provide the MPI_COMM_WORLD communi-
cator. It cannot be deallocated during the life of a process. The group corresponding to
this communicator does not appear as a pre-defined constant, but it may be accessed using

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_GROUP (see below). MPI does not specify the correspondence between the
process rank in MPI_COMM_WORLD and its (machine-dependent) absolute address. Neither
does MPI specify the function of the host process, if any. Other implementation-dependent,
predefined communicators may also be provided.

6.3 Group Management

This section describes the manipulation of process groups in MPI. These operations are
local and their execution does not require interprocess communication.

6.3.1 Group Accessors

MPI_GROUP_SIZE(group, size)

IN group group (handle)

OUT size number of processes in the group (integer)

int MPI_Group_size(MPI_Group group, int *size)

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)

INTEGER GROUP, SIZE, IERROR

{int MPI::Group::Get_size() const(binding deprecated, see Section 15.2) }

MPI_GROUP_RANK(group, rank)

IN group group (handle)

OUT rank rank of the calling process in group, or

MPI_UNDEFINED if the process is not a member (in-

teger)

int MPI_Group_rank(MPI_Group group, int *rank)

MPI_GROUP_RANK(GROUP, RANK, IERROR)

INTEGER GROUP, RANK, IERROR

{int MPI::Group::Get_rank() const(binding deprecated, see Section 15.2) }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.3. GROUP MANAGEMENT 7

MPI_GROUP_TRANSLATE_RANKS (group1, n, ranks1, group2, ranks2)

IN group1 group1 (handle)

IN n number of ranks in ranks1 and ranks2 arrays (integer)

IN ranks1 array of zero or more valid ranks in group1

IN group2 group2 (handle)

OUT ranks2 array of corresponding ranks in group2,

MPI_UNDEFINED when no correspondence exists.

int MPI_Group_translate_ranks (MPI_Group group1, int n, int *ranks1,

MPI_Group group2, int *ranks2)

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)

INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

{static void MPI::Group::Translate_ranks (const MPI::Group& group1, int n,

const int ranks1[], const MPI::Group& group2,

int ranks2[])(binding deprecated, see Section 15.2) }

This function is important for determining the relative numbering of the same processes
in two different groups. For instance, if one knows the ranks of certain processes in the group
of MPI_COMM_WORLD, one might want to know their ranks in a subset of that group.

MPI_PROC_NULL is a valid rank for input to MPI_GROUP_TRANSLATE_RANKS, which
returns MPI_PROC_NULL as the translated rank.

MPI_GROUP_COMPARE(group1, group2, result)

IN group1 first group (handle)

IN group2 second group (handle)

OUT result result (integer)

int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)

INTEGER GROUP1, GROUP2, RESULT, IERROR

{static int MPI::Group::Compare(const MPI::Group& group1,

const MPI::Group& group2)(binding deprecated, see Section 15.2) }

MPI_IDENT results if the group members and group order is exactly the same in both groups.
This happens for instance if group1 and group2 are the same handle. MPI_SIMILAR results if
the group members are the same but the order is different. MPI_UNEQUAL results otherwise.

6.3.2 Group Constructors

Group constructors are used to subset and superset existing groups. These constructors
construct new groups from existing groups. These are local operations, and distinct groups
may be defined on different processes; a process may also define a group that does not
include itself. Consistent definitions are required when groups are used as arguments in

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

communicator-building functions. MPI does not provide a mechanism to build a group
from scratch, but only from other, previously defined groups. The base group, upon which
all other groups are defined, is the group associated with the initial communicator
MPI_COMM_WORLD (accessible through the function MPI_COMM_GROUP).

Rationale. In what follows, there is no group duplication function analogous to
MPI_COMM_DUP, defined later in this chapter. There is no need for a group dupli-
cator. A group, once created, can have several references to it by making copies of
the handle. The following constructors address the need for subsets and supersets of
existing groups. (End of rationale.)

Advice to implementors. Each group constructor behaves as if it returned a new
group object. When this new group is a copy of an existing group, then one can
avoid creating such new objects, using a reference-count mechanism. (End of advice
to implementors.)

MPI_COMM_GROUP(comm, group)

IN comm communicator (handle)

OUT group group corresponding to comm (handle)

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

MPI_COMM_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

{MPI::Group MPI::Comm::Get_group() const(binding deprecated, see Section 15.2) }

MPI_COMM_GROUP returns in group a handle to the group of comm.

MPI_GROUP_UNION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup union group (handle)

int MPI_Group_union(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

{static MPI::Group MPI::Group::Union(const MPI::Group& group1,

const MPI::Group& group2)(binding deprecated, see Section 15.2) }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.3. GROUP MANAGEMENT 9

MPI_GROUP_INTERSECTION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup intersection group (handle)

int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

{static MPI::Group MPI::Group::Intersect(const MPI::Group& group1,

const MPI::Group& group2)(binding deprecated, see Section 15.2) }

MPI_GROUP_DIFFERENCE(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup difference group (handle)

int MPI_Group_difference(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

{static MPI::Group MPI::Group::Difference(const MPI::Group& group1,

const MPI::Group& group2)(binding deprecated, see Section 15.2) }

The set-like operations are defined as follows:

union All elements of the first group (group1), followed by all elements of second group
(group2) not in first.

intersect all elements of the first group that are also in the second group, ordered as in
first group.

difference all elements of the first group that are not in the second group, ordered as in
the first group.

Note that for these operations the order of processes in the output group is determined
primarily by order in the first group (if possible) and then, if necessary, by order in the
second group. Neither union nor intersection are commutative, but both are associative.

The new group can be empty, that is, equal to MPI_GROUP_EMPTY.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_GROUP_INCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (and size of

newgroup) (integer)

IN ranks ranks of processes in group to appear in

newgroup (array of integers)

OUT newgroup new group derived from above, in the order defined by

ranks (handle)

int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Incl(int n, const int ranks[]) const(binding
deprecated, see Section 15.2) }

The function MPI_GROUP_INCL creates a group newgroup that consists of the
n processes in group with ranks rank[0],. . ., rank[n-1]; the process with rank i in newgroup
is the process with rank ranks[i] in group. Each of the n elements of ranks must be a valid
rank in group and all elements must be distinct, or else the program is erroneous. If n = 0,
then newgroup is MPI_GROUP_EMPTY. This function can, for instance, be used to reorder
the elements of a group. See also MPI_GROUP_COMPARE.

MPI_GROUP_EXCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (integer)

IN ranks array of integer ranks in group not to appear in

newgroup

OUT newgroup new group derived from above, preserving the order

defined by group (handle)

int MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Excl(int n, const int ranks[]) const(binding
deprecated, see Section 15.2) }

The function MPI_GROUP_EXCL creates a group of processes newgroup that is obtained
by deleting from group those processes with ranks ranks[0] ,. . . ranks[n-1]. The ordering of
processes in newgroup is identical to the ordering in group. Each of the n elements of ranks
must be a valid rank in group and all elements must be distinct; otherwise, the program is
erroneous. If n = 0, then newgroup is identical to group.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.3. GROUP MANAGEMENT 11

MPI_GROUP_RANGE_INCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of triplets in array ranges (integer)

IN ranges a one-dimensional array of integer triplets, of the form

(first rank, last rank, stride) indicating ranks in group

of processes to be included in newgroup

OUT newgroup new group derived from above, in the order defined by

ranges (handle)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Range_incl(int n, const int ranges[][3])

const(binding deprecated, see Section 15.2) }

If ranges consist of the triplets

(first1, last1, stride1), ..., (firstn, lastn, striden)

then newgroup consists of the sequence of processes in group with ranks

first1, first1 + stride1, ..., first1 +

⌊
last1 − first1

stride1

⌋
stride1, ...

firstn, firstn + striden, ..., firstn +

⌊
lastn − firstn

striden

⌋
striden.

Each computed rank must be a valid rank in group and all computed ranks must be
distinct, or else the program is erroneous. Note that we may have firsti > lasti, and stridei
may be negative, but cannot be zero.

The functionality of this routine is specified to be equivalent to expanding the array
of ranges to an array of the included ranks and passing the resulting array of ranks and
other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is equivalent to a call
to MPI_GROUP_RANGE_INCL with each rank i in ranks replaced by the triplet (i,i,1) in
the argument ranges.

MPI_GROUP_RANGE_EXCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of elements in array ranges (integer)

IN ranges a one-dimensional array of integer triplets of the form

(first rank, last rank, stride), indicating the ranks in

group of processes to be excluded from the output

group newgroup.

OUT newgroup new group derived from above, preserving the order

in group (handle)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Range_excl(int n, const int ranges[][3])

const(binding deprecated, see Section 15.2) }

Each computed rank must be a valid rank in group and all computed ranks must be distinct,
or else the program is erroneous.

The functionality of this routine is specified to be equivalent to expanding the array of
ranges to an array of the excluded ranks and passing the resulting array of ranks and other
arguments to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a call to
MPI_GROUP_RANGE_EXCL with each rank i in ranks replaced by the triplet (i,i,1) in
the argument ranges.

Advice to users. The range operations do not explicitly enumerate ranks, and
therefore are more scalable if implemented efficiently. Hence, we recommend MPI
programmers to use them whenenever possible, as high-quality implementations will
take advantage of this fact. (End of advice to users.)

Advice to implementors. The range operations should be implemented, if possible,
without enumerating the group members, in order to obtain better scalability (time
and space). (End of advice to implementors.)

6.3.3 Group Destructors

MPI_GROUP_FREE(group)

INOUT group group (handle)

int MPI_Group_free(MPI_Group *group)

MPI_GROUP_FREE(GROUP, IERROR)

INTEGER GROUP, IERROR

{void MPI::Group::Free()(binding deprecated, see Section 15.2) }

This operation marks a group object for deallocation. The handle group is set to
MPI_GROUP_NULL by the call. Any on-going operation using this group will complete
normally.

Advice to implementors. One can keep a reference count that is incremented for
each call to MPI_COMM_GROUP, MPI_COMM_CREATE and MPI_COMM_DUP, and
decremented for each call to MPI_GROUP_FREE or MPI_COMM_FREE; the group
object is ultimately deallocated when the reference count drops to zero. (End of
advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.4. COMMUNICATOR MANAGEMENT 13

6.4 Communicator Management

This section describes the manipulation of communicators in MPI. Operations that access
communicators are local and their execution does not require interprocess communication.
Operations that create communicators are collective and may require interprocess commu-
nication.

Advice to implementors. High-quality implementations should amortize the over-
heads associated with the creation of communicators (for the same group, or subsets
thereof) over several calls, by allocating multiple contexts with one collective commu-
nication. (End of advice to implementors.)

6.4.1 Communicator Accessors

The following are all local operations.

MPI_COMM_SIZE(comm, size)

IN comm communicator (handle)

OUT size number of processes in the group of comm (integer)

int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

{int MPI::Comm::Get_size() const(binding deprecated, see Section 15.2) }

Rationale. This function is equivalent to accessing the communicator’s group with
MPI_COMM_GROUP (see above), computing the size using MPI_GROUP_SIZE, and
then freeing the temporary group via MPI_GROUP_FREE. However, this function is
so commonly used, that this shortcut was introduced. (End of rationale.)

Advice to users. This function indicates the number of processes involved in a
communicator. For MPI_COMM_WORLD, it indicates the total number of processes
available (for this version of MPI, there is no standard way to change the number of
processes once initialization has taken place).

This call is often used with the next call to determine the amount of concurrency
available for a specific library or program. The following call, MPI_COMM_RANK
indicates the rank of the process that calls it in the range from 0 . . .size−1, where size
is the return value of MPI_COMM_SIZE.(End of advice to users.)

MPI_COMM_RANK(comm, rank)

IN comm communicator (handle)

OUT rank rank of the calling process in group of comm (integer)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

int MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_COMM_RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

{int MPI::Comm::Get_rank() const(binding deprecated, see Section 15.2) }

Rationale. This function is equivalent to accessing the communicator’s group with
MPI_COMM_GROUP (see above), computing the rank using MPI_GROUP_RANK,
and then freeing the temporary group via MPI_GROUP_FREE. However, this function
is so commonly used, that this shortcut was introduced. (End of rationale.)

Advice to users. This function gives the rank of the process in the particular commu-
nicator’s group. It is useful, as noted above, in conjunction with MPI_COMM_SIZE.

Many programs will be written with the master-slave model, where one process (such
as the rank-zero process) will play a supervisory role, and the other processes will
serve as compute nodes. In this framework, the two preceding calls are useful for
determining the roles of the various processes of a communicator. (End of advice to
users.)

MPI_COMM_COMPARE(comm1, comm2, result)

IN comm1 first communicator (handle)

IN comm2 second communicator (handle)

OUT result result (integer)

int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2, int *result)

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)

INTEGER COMM1, COMM2, RESULT, IERROR

{static int MPI::Comm::Compare(const MPI::Comm& comm1,

const MPI::Comm& comm2)(binding deprecated, see Section 15.2) }

MPI_IDENT results if and only if comm1 and comm2 are handles for the same object (identical
groups and same contexts). MPI_CONGRUENT results if the underlying groups are identical
in constituents and rank order; these communicators differ only by context. MPI_SIMILAR

results if the group members of both communicators are the same but the rank order differs.
MPI_UNEQUAL results otherwise.

6.4.2 Communicator Constructors

The following are collective functions that are invoked by all processes in the group or
groups associated with comm.

Rationale. Note that there is a chicken-and-egg aspect to MPI in that a communicator
is needed to create a new communicator. The base communicator for all MPI com-
municators is predefined outside of MPI, and is MPI_COMM_WORLD. This model was
arrived at after considerable debate, and was chosen to increase “safety” of programs
written in MPI. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.4. COMMUNICATOR MANAGEMENT 15

The MPI interface provides four communicator construction routines that apply to
both intracommunicators and intercommunicators. The construction routine
MPI_INTERCOMM_CREATE (discussed later) applies only to intercommunicators.

An intracommunicator involves a single group while an intercommunicator involves
two groups. Where the following discussions address intercommunicator semantics, the
two groups in an intercommunicator are called the left and right groups. A process in an
intercommunicator is a member of either the left or the right group. From the point of view
of that process, the group that the process is a member of is called the local group; the
other group (relative to that process) is the remote group. The left and right group labels
give us a way to describe the two groups in an intercommunicator that is not relative to
any particular process (as the local and remote groups are).

MPI_COMM_DUP(comm, newcomm)

IN comm communicator (handle)

OUT newcomm copy of comm (handle)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

{MPI::Intracomm MPI::Intracomm::Dup() const(binding deprecated, see Section 15.2)
}

{MPI::Intercomm MPI::Intercomm::Dup() const(binding deprecated, see Section 15.2)
}

{MPI::Cartcomm MPI::Cartcomm::Dup() const(binding deprecated, see Section 15.2) }

{MPI::Graphcomm MPI::Graphcomm::Dup() const(binding deprecated, see Section 15.2)
}

{MPI::Distgraphcomm MPI::Distgraphcomm::Dup() const(binding deprecated, see
Section 15.2) }

{MPI::Comm& MPI::Comm::Clone() const = 0(binding deprecated, see Section 15.2) }

{MPI::Intracomm& MPI::Intracomm::Clone() const(binding deprecated, see
Section 15.2) }

{MPI::Intercomm& MPI::Intercomm::Clone() const(binding deprecated, see
Section 15.2) }

{MPI::Cartcomm& MPI::Cartcomm::Clone() const(binding deprecated, see Section 15.2)
}

{MPI::Graphcomm& MPI::Graphcomm::Clone() const(binding deprecated, see
Section 15.2) }

{MPI::Distgraphcomm& MPI::Distgraphcomm::Clone() const(binding deprecated, see
Section 15.2) }

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_DUP Duplicates the existing communicator comm with associated key val-
ues. For each key value, the respective copy callback function determines the attribute value
associated with this key in the new communicator; one particular action that a copy call-
back may take is to delete the attribute from the new communicator. Returns in newcomm
a new communicator with the same group or groups, any copied cached information, but a
new context (see Section 6.7.1). Please see Section 16.1.7 on page 496 for further discussion
about the C++ bindings for Dup() and Clone().

Advice to users. This operation is used to provide a parallel library call with a dupli-
cate communication space that has the same properties as the original communicator.
This includes any attributes (see below), and topologies (see Chapter 7). This call is
valid even if there are pending point-to-point communications involving the commu-
nicator comm. A typical call might involve a MPI_COMM_DUP at the beginning of
the parallel call, and an MPI_COMM_FREE of that duplicated communicator at the
end of the call. Other models of communicator management are also possible.

This call applies to both intra- and inter-communicators. (End of advice to users.)

Advice to implementors. One need not actually copy the group information, but only
add a new reference and increment the reference count. Copy on write can be used
for the cached information.(End of advice to implementors.)

MPI_COMM_CREATE(comm, group, newcomm)

IN comm communicator (handle)

IN group Group, which is a subset of the group of

comm (handle)

OUT newcomm new communicator (handle)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

{MPI::Intercomm MPI::Intercomm::Create(const MPI::Group& group)

const(binding deprecated, see Section 15.2) }

{MPI::Intracomm MPI::Intracomm::Create(const MPI::Group& group)

const(binding deprecated, see Section 15.2) }

If comm is an intracommunicator, this function returns a new communicator newcomm with
communication group defined by the group argument. No cached information propagates
from comm to newcomm. Each process must call with a group argument that is a subgroup
of the group associated with comm; this could be MPI_GROUP_EMPTY. The processes may
specify different values for the group argument. If a process calls with a non-empty group
then all processes in that group must call the function with the same group as argument,
that is the same processes in the same order. Otherwise the call is erroneous. This implies
that the set of groups specified across the processes must be disjoint. If the calling process
is a member of the group given as group argument, then newcomm is a communicator with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.4. COMMUNICATOR MANAGEMENT 17

group as its associated group. In the case that a process calls with a group to which it does
not belong, e.g., MPI_GROUP_EMPTY, then MPI_COMM_NULL is returned as newcomm. The
function is collective and must be called by all processes in the group of comm.

Rationale. The interface supports the original mechanism from MPI-1.1, which re-
quired the same group in all processes of comm. It was extended in MPI-2.2 to allow
the use of disjoint subgroups in order to allow implementations to eliminate unnec-
essary communication that MPI_COMM_SPLIT would incur when the user already
knows the membership of the disjoint subgroups. (End of rationale.)

Rationale. The requirement that the entire group of comm participate in the call
stems from the following considerations:

• It allows the implementation to layer MPI_COMM_CREATE on top of regular
collective communications.

• It provides additional safety, in particular in the case where partially overlapping
groups are used to create new communicators.

• It permits implementations sometimes to avoid communication related to context
creation.

(End of rationale.)

Advice to users. MPI_COMM_CREATE provides a means to subset a group of pro-
cesses for the purpose of separate MIMD computation, with separate communication
space. newcomm, which emerges from MPI_COMM_CREATE can be used in subse-
quent calls to MPI_COMM_CREATE (or other communicator constructors) further to
subdivide a computation into parallel sub-computations. A more general service is
provided by MPI_COMM_SPLIT, below. (End of advice to users.)

Advice to implementors. When calling MPI_COMM_DUP, all processes call with the
same group (the group associated with the communicator). When calling
MPI_COMM_CREATE, the processes provide the same group or disjoint subgroups.
For both calls, it is theoretically possible to agree on a group-wide unique context
with no communication. However, local execution of these functions requires use
of a larger context name space and reduces error checking. Implementations may
strike various compromises between these conflicting goals, such as bulk allocation of
multiple contexts in one collective operation.

Important: If new communicators are created without synchronizing the processes
involved then the communication system should be able to cope with messages arriving
in a context that has not yet been allocated at the receiving process. (End of advice
to implementors.)

If comm is an intercommunicator, then the output communicator is also an intercommunica-
tor where the local group consists only of those processes contained in group (see Figure 6.1).
The group argument should only contain those processes in the local group of the input in-
tercommunicator that are to be a part of newcomm. All processes in the same local group of
comm must specify the same value for group, i.e., the same members in the same order. If ei-
ther group does not specify at least one process in the local group of the intercommunicator,
or if the calling process is not included in the group, MPI_COMM_NULL is returned.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Rationale. In the case where either the left or right group is empty, a null communi-
cator is returned instead of an intercommunicator with MPI_GROUP_EMPTY because
the side with the empty group must return MPI_COMM_NULL. (End of rationale.)

0 1

3

4

2

1

2

3

0

5

4

1

0

0

1

2

INTER-COMMUNICATOR CREATE

Before

After

Figure 6.1: Intercommunicator create using MPI_COMM_CREATE extended to intercom-
municators. The input groups are those in the grey circle.

Example 6.1 The following example illustrates how the first node in the left side of an
intercommunicator could be joined with all members on the right side of an intercommuni-
cator to form a new intercommunicator.

MPI_Comm inter_comm, new_inter_comm;

MPI_Group local_group, group;

int rank = 0; /* rank on left side to include in

new inter-comm */

/* Construct the original intercommunicator: "inter_comm" */

...

/* Construct the group of processes to be in new

intercommunicator */

if (/* I’m on the left side of the intercommunicator */) {

MPI_Comm_group (inter_comm, &local_group);

MPI_Group_incl (local_group, 1, &rank, &group);

MPI_Group_free (&local_group);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.4. COMMUNICATOR MANAGEMENT 19

else

MPI_Comm_group (inter_comm, &group);

MPI_Comm_create (inter_comm, group, &new_inter_comm);

MPI_Group_free(&group);

MPI_COMM_SPLIT(comm, color, key, newcomm)

IN comm communicator (handle)

IN color control of subset assignment (integer)

IN key control of rank assigment (integer)

OUT newcomm new communicator (handle)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)

INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

{MPI::Intercomm MPI::Intercomm::Split(int color, int key) const(binding
deprecated, see Section 15.2) }

{MPI::Intracomm MPI::Intracomm::Split(int color, int key) const(binding
deprecated, see Section 15.2) }

This function partitions the group associated with comm into disjoint subgroups, one for
each value of color. Each subgroup contains all processes of the same color. Within each
subgroup, the processes are ranked in the order defined by the value of the argument
key, with ties broken according to their rank in the old group. A new communicator is
created for each subgroup and returned in newcomm. A process may supply the color value
MPI_UNDEFINED, in which case newcomm returns MPI_COMM_NULL. This is a collective
call, but each process is permitted to provide different values for color and key.

With an intracommunicator comm, a call to MPI_COMM_CREATE(comm, group, new-
comm) is equivalent to a call to MPI_COMM_SPLIT(comm, color, key, newcomm), where
processes that are members of their group argument provide color = number of the group
(based on a unique numbering of all disjoint groups) and key = rank in group, and all
processes that are not members of their group argument provide color = MPI_UNDEFINED.

The value of color must be non-negative.

Advice to users. This is an extremely powerful mechanism for dividing a single
communicating group of processes into k subgroups, with k chosen implicitly by the
user (by the number of colors asserted over all the processes). Each resulting com-
municator will be non-overlapping. Such a division could be useful for defining a
hierarchy of computations, such as for multigrid, or linear algebra. For intracommu-
nicators, MPI_COMM_SPLIT provides similar capability as MPI_COMM_CREATE to
split a communicating group into disjoint subgroups. MPI_COMM_SPLIT is useful
when some processes do not have complete information of the other members in their
group, but all processes know (the color of) the group to which they belong. In this

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

case, the MPI implementation discovers the other group members via communica-
tion. MPI_COMM_CREATE is useful when all processes have complete information
of the members of their group. In this case, MPI can avoid the extra communication
required to discover group membership.

Multiple calls to MPI_COMM_SPLIT can be used to overcome the requirement that
any call have no overlap of the resulting communicators (each process is of only one
color per call). In this way, multiple overlapping communication structures can be
created. Creative use of the color and key in such splitting operations is encouraged.

Note that, for a fixed color, the keys need not be unique. It is MPI_COMM_SPLIT’s
responsibility to sort processes in ascending order according to this key, and to break
ties in a consistent way. If all the keys are specified in the same way, then all the
processes in a given color will have the relative rank order as they did in their parent
group.

Essentially, making the key value zero for all processes of a given color means that one
doesn’t really care about the rank-order of the processes in the new communicator.
(End of advice to users.)

Rationale. color is restricted to be non-negative, so as not to confict with the value
assigned to MPI_UNDEFINED. (End of rationale.)

The result of MPI_COMM_SPLIT on an intercommunicator is that those processes on the
left with the same color as those processes on the right combine to create a new intercom-
municator. The key argument describes the relative rank of processes on each side of the
intercommunicator (see Figure 6.2). For those colors that are specified only on one side of
the intercommunicator, MPI_COMM_NULL is returned. MPI_COMM_NULL is also returned
to those processes that specify MPI_UNDEFINED as the color.

Advice to users. For intercommunicators, MPI_COMM_SPLIT is more general than
MPI_COMM_CREATE. A single call to MPI_COMM_SPLIT can create a set of disjoint
intercommunicators, while a call to MPI_COMM_CREATE creates only one. (End of
advice to users.)

Example 6.2 (Parallel client-server model). The following client code illustrates how clients
on the left side of an intercommunicator could be assigned to a single server from a pool of
servers on the right side of an intercommunicator.

/* Client code */

MPI_Comm multiple_server_comm;

MPI_Comm single_server_comm;

int color, rank, num_servers;

/* Create intercommunicator with clients and servers:

multiple_server_comm */

...

/* Find out the number of servers available */

MPI_Comm_remote_size (multiple_server_comm, &num_servers);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.4. COMMUNICATOR MANAGEMENT 21

1(1,0)

0(0)

1(3)
0(1)

1(0)

Rank in the original group

Color = 0

Color = 1

Color = 2

0(4)
0(1)

0(2)1(3)
0(2)

0(0,0)

3(0,1)
2(2,0)

Color

Key

0(0,1)

4(1,0)

1(0,0)

3(2,1)

2(2,0)

Input Intercommunicator (comm)

Disjoint output communicators (newcomm)

(one per color)

Figure 6.2: Intercommunicator construction achieved by splitting an existing intercommu-
nicator with MPI_COMM_SPLIT extended to intercommunicators.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

/* Determine my color */

MPI_Comm_rank (multiple_server_comm, &rank);

color = rank % num_servers;

/* Split the intercommunicator */

MPI_Comm_split (multiple_server_comm, color, rank,

&single_server_comm);

The following is the corresponding server code:

/* Server code */

MPI_Comm multiple_client_comm;

MPI_Comm single_server_comm;

int rank;

/* Create intercommunicator with clients and servers:

multiple_client_comm */

...

/* Split the intercommunicator for a single server per group

of clients */

MPI_Comm_rank (multiple_client_comm, &rank);

MPI_Comm_split (multiple_client_comm, rank, 0,

&single_server_comm);

MPI_COMM_SPLIT_TYPE(comm, type, key, newcomm)

IN comm communicator (handle)

IN type subset communicator type (integer)

IN key control of rank assigment (integer)

OUT newcomm new communicator (handle)

int MPI_Comm_split_type(MPI_Comm comm, int type, int key,

MPI_Comm *newcomm)

MPI_COMM_SPLIT_TYPE(COMM, TYPE, KEY, NEWCOMM, IERROR)

INTEGER COMM, TYPE, KEY, NEWCOMM, IERROR

This function partitions the group associated with comm into disjoint subgroups, based on
the type specified by type. Each subgroup contains all processes of the same type. Within
each subgroup, the processes are ranked in the order defined by the value of the argument
key, with ties broken according to their rank in the old group. A new communicator is
created for each subgroup and returned in newcomm. A process may supply the type value
MPI_UNDEFINED, in which case newcomm returns MPI_COMM_NULL. This is a collective
call, but each process is permitted to provide different values for type and key.

Two types are predefined by MPI:

MPI_COMM_TYPE_SHM — this type splits the communicator into subcommunicators, each
of which can create a shared memory region using MPI_WIN_ALLOCATE_SHARED.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.5. MOTIVATING EXAMPLES 23

MPI_COMM_TYPE_PROCESS – this type splits the communicator into subcommunicators,
each of which contains all the endpoints in the parent communicator that are created
by the same OS process.

6.4.3 Communicator Destructors

MPI_COMM_FREE(comm)

INOUT comm communicator to be destroyed (handle)

int MPI_Comm_free(MPI_Comm *comm)

MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

{void MPI::Comm::Free()(binding deprecated, see Section 15.2) }

This collective operation marks the communication object for deallocation. The handle
is set to MPI_COMM_NULL. Any pending operations that use this communicator will com-
plete normally; the object is actually deallocated only if there are no other active references
to it. This call applies to intra- and inter-communicators. The delete callback functions for
all cached attributes (see Section 6.7) are called in arbitrary order.

Advice to implementors. A reference-count mechanism may be used: the reference
count is incremented by each call to MPI_COMM_DUP, and decremented by each call
to MPI_COMM_FREE. The object is ultimately deallocated when the count reaches
zero.

Though collective, it is anticipated that this operation will normally be implemented
to be local, though a debugging version of an MPI library might choose to synchronize.
(End of advice to implementors.)

6.5 Motivating Examples

6.5.1 Current Practice #1

Example #1a:

int main(int argc, char **argv)

{

int me, size;

...

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &me);

MPI_Comm_size (MPI_COMM_WORLD, &size);

(void)printf ("Process %d size %d\n", me, size);

...

MPI_Finalize();

}

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Example #1a is a do-nothing program that initializes itself legally, and refers to the “all”
communicator, and prints a message. It terminates itself legally too. This example does
not imply that MPI supports printf-like communication itself.
Example #1b (supposing that size is even):

int main(int argc, char **argv)

{

int me, size;

int SOME_TAG = 0;

...

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

MPI_Comm_size(MPI_COMM_WORLD, &size); /* local */

if((me % 2) == 0)

{

/* send unless highest-numbered process */

if((me + 1) < size)

MPI_Send(..., me + 1, SOME_TAG, MPI_COMM_WORLD);

}

else

MPI_Recv(..., me - 1, SOME_TAG, MPI_COMM_WORLD, &status);

...

MPI_Finalize();

}

Example #1b schematically illustrates message exchanges between “even” and “odd” pro-
cesses in the “all” communicator.

6.5.2 Current Practice #2

int main(int argc, char **argv)

{

int me, count;

void *data;

...

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == 0)

{

/* get input, create buffer ‘‘data’’ */

...

}

MPI_Bcast(data, count, MPI_BYTE, 0, MPI_COMM_WORLD);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.5. MOTIVATING EXAMPLES 25

...

MPI_Finalize();

}

This example illustrates the use of a collective communication.

6.5.3 (Approximate) Current Practice #3

int main(int argc, char **argv)

{

int me, count, count2;

void *send_buf, *recv_buf, *send_buf2, *recv_buf2;

MPI_Group MPI_GROUP_WORLD, grprem;

MPI_Comm commslave;

static int ranks[] = {0};

...

MPI_Init(&argc, &argv);

MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

MPI_Group_excl(MPI_GROUP_WORLD, 1, ranks, &grprem); /* local */

MPI_Comm_create(MPI_COMM_WORLD, grprem, &commslave);

if(me != 0)

{

/* compute on slave */

...

MPI_Reduce(send_buf,recv_buff,count, MPI_INT, MPI_SUM, 1, commslave);

...

MPI_Comm_free(&commslave);

}

/* zero falls through immediately to this reduce, others do later... */

MPI_Reduce(send_buf2, recv_buff2, count2,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Group_free(&MPI_GROUP_WORLD);

MPI_Group_free(&grprem);

MPI_Finalize();

}

This example illustrates how a group consisting of all but the zeroth process of the “all”
group is created, and then how a communicator is formed (commslave) for that new group.
The new communicator is used in a collective call, and all processes execute a collective call
in the MPI_COMM_WORLD context. This example illustrates how the two communicators
(that inherently possess distinct contexts) protect communication. That is, communication
in MPI_COMM_WORLD is insulated from communication in commslave, and vice versa.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

In summary, “group safety” is achieved via communicators because distinct contexts
within communicators are enforced to be unique on any process.

6.5.4 Example #4

The following example is meant to illustrate “safety” between point-to-point and collective
communication. MPI guarantees that a single communicator can do safe point-to-point and
collective communication.

#define TAG_ARBITRARY 12345

#define SOME_COUNT 50

int main(int argc, char **argv)

{

int me;

MPI_Request request[2];

MPI_Status status[2];

MPI_Group MPI_GROUP_WORLD, subgroup;

int ranks[] = {2, 4, 6, 8};

MPI_Comm the_comm;

...

MPI_Init(&argc, &argv);

MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, 4, ranks, &subgroup); /* local */

MPI_Group_rank(subgroup, &me); /* local */

MPI_Comm_create(MPI_COMM_WORLD, subgroup, &the_comm);

if(me != MPI_UNDEFINED)

{

MPI_Irecv(buff1, count, MPI_DOUBLE, MPI_ANY_SOURCE, TAG_ARBITRARY,

the_comm, request);

MPI_Isend(buff2, count, MPI_DOUBLE, (me+1)%4, TAG_ARBITRARY,

the_comm, request+1);

for(i = 0; i < SOME_COUNT, i++)

MPI_Reduce(..., the_comm);

MPI_Waitall(2, request, status);

MPI_Comm_free(&the_comm);

}

MPI_Group_free(&MPI_GROUP_WORLD);

MPI_Group_free(&subgroup);

MPI_Finalize();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.5. MOTIVATING EXAMPLES 27

6.5.5 Library Example #1

The main program:

int main(int argc, char **argv)

{

int done = 0;

user_lib_t *libh_a, *libh_b;

void *dataset1, *dataset2;

...

MPI_Init(&argc, &argv);

...

init_user_lib(MPI_COMM_WORLD, &libh_a);

init_user_lib(MPI_COMM_WORLD, &libh_b);

...

user_start_op(libh_a, dataset1);

user_start_op(libh_b, dataset2);

...

while(!done)

{

/* work */

...

MPI_Reduce(..., MPI_COMM_WORLD);

...

/* see if done */

...

}

user_end_op(libh_a);

user_end_op(libh_b);

uninit_user_lib(libh_a);

uninit_user_lib(libh_b);

MPI_Finalize();

}

The user library initialization code:

void init_user_lib(MPI_Comm comm, user_lib_t **handle)

{

user_lib_t *save;

user_lib_initsave(&save); /* local */

MPI_Comm_dup(comm, &(save -> comm));

/* other inits */

...

*handle = save;

}

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

User start-up code:

void user_start_op(user_lib_t *handle, void *data)

{

MPI_Irecv(..., handle->comm, &(handle -> irecv_handle));

MPI_Isend(..., handle->comm, &(handle -> isend_handle));

}

User communication clean-up code:

void user_end_op(user_lib_t *handle)

{

MPI_Status status;

MPI_Wait(handle -> isend_handle, &status);

MPI_Wait(handle -> irecv_handle, &status);

}

User object clean-up code:

void uninit_user_lib(user_lib_t *handle)

{

MPI_Comm_free(&(handle -> comm));

free(handle);

}

6.5.6 Library Example #2

The main program:

int main(int argc, char **argv)

{

int ma, mb;

MPI_Group MPI_GROUP_WORLD, group_a, group_b;

MPI_Comm comm_a, comm_b;

static int list_a[] = {0, 1};

#if defined(EXAMPLE_2B) | defined(EXAMPLE_2C)

static int list_b[] = {0, 2 ,3};

#else/* EXAMPLE_2A */

static int list_b[] = {0, 2};

#endif

int size_list_a = sizeof(list_a)/sizeof(int);

int size_list_b = sizeof(list_b)/sizeof(int);

...

MPI_Init(&argc, &argv);

MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, size_list_a, list_a, &group_a);

MPI_Group_incl(MPI_GROUP_WORLD, size_list_b, list_b, &group_b);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.5. MOTIVATING EXAMPLES 29

MPI_Comm_create(MPI_COMM_WORLD, group_a, &comm_a);

MPI_Comm_create(MPI_COMM_WORLD, group_b, &comm_b);

if(comm_a != MPI_COMM_NULL)

MPI_Comm_rank(comm_a, &ma);

if(comm_b != MPI_COMM_NULL)

MPI_Comm_rank(comm_b, &mb);

if(comm_a != MPI_COMM_NULL)

lib_call(comm_a);

if(comm_b != MPI_COMM_NULL)

{

lib_call(comm_b);

lib_call(comm_b);

}

if(comm_a != MPI_COMM_NULL)

MPI_Comm_free(&comm_a);

if(comm_b != MPI_COMM_NULL)

MPI_Comm_free(&comm_b);

MPI_Group_free(&group_a);

MPI_Group_free(&group_b);

MPI_Group_free(&MPI_GROUP_WORLD);

MPI_Finalize();

}

The library:

void lib_call(MPI_Comm comm)

{

int me, done = 0;

MPI_Status status;

MPI_Comm_rank(comm, &me);

if(me == 0)

while(!done)

{

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

...

}

else

{

/* work */

MPI_Send(..., 0, ARBITRARY_TAG, comm);

....

}

#ifdef EXAMPLE_2C

/* include (resp, exclude) for safety (resp, no safety): */

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_Barrier(comm);

#endif

}

The above example is really three examples, depending on whether or not one includes rank
3 in list_b, and whether or not a synchronize is included in lib_call. This example illustrates
that, despite contexts, subsequent calls to lib_call with the same context need not be safe
from one another (colloquially, “back-masking”). Safety is realized if the MPI_Barrier is
added. What this demonstrates is that libraries have to be written carefully, even with
contexts. When rank 3 is excluded, then the synchronize is not needed to get safety from
back masking.

Algorithms like “reduce” and “allreduce” have strong enough source selectivity prop-
erties so that they are inherently okay (no backmasking), provided that MPI provides basic
guarantees. So are multiple calls to a typical tree-broadcast algorithm with the same root
or different roots (see [5]). Here we rely on two guarantees of MPI: pairwise ordering of
messages between processes in the same context, and source selectivity — deleting either
feature removes the guarantee that backmasking cannot be required.

Algorithms that try to do non-deterministic broadcasts or other calls that include wild-
card operations will not generally have the good properties of the deterministic implemen-
tations of “reduce,” “allreduce,” and “broadcast.” Such algorithms would have to utilize
the monotonically increasing tags (within a communicator scope) to keep things straight.

All of the foregoing is a supposition of “collective calls” implemented with point-to-
point operations. MPI implementations may or may not implement collective calls using
point-to-point operations. These algorithms are used to illustrate the issues of correctness
and safety, independent of how MPI implements its collective calls. See also Section 6.9.

6.6 Inter-Communication

This section introduces the concept of inter-communication and describes the portions of
MPI that support it. It describes support for writing programs that contain user-level
servers.

All communication described thus far has involved communication between processes
that are members of the same group. This type of communication is called “intra-commun-
ication” and the communicator used is called an “intra-communicator,” as we have noted
earlier in the chapter.

In modular and multi-disciplinary applications, different process groups execute distinct
modules and processes within different modules communicate with one another in a pipeline
or a more general module graph. In these applications, the most natural way for a process
to specify a target process is by the rank of the target process within the target group. In
applications that contain internal user-level servers, each server may be a process group that
provides services to one or more clients, and each client may be a process group that uses
the services of one or more servers. It is again most natural to specify the target process
by rank within the target group in these applications. This type of communication is called
“inter-communication” and the communicator used is called an “inter-communicator,” as
introduced earlier.

An inter-communication is a point-to-point communication between processes in differ-
ent groups. The group containing a process that initiates an inter-communication operation
is called the “local group,” that is, the sender in a send and the receiver in a receive. The

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.6. INTER-COMMUNICATION 31

group containing the target process is called the “remote group,” that is, the receiver in a
send and the sender in a receive. As in intra-communication, the target process is specified
using a (communicator, rank) pair. Unlike intra-communication, the rank is relative to a
second, remote group.

All inter-communicator constructors are blocking and require that the local and remote
groups be disjoint.

Advice to users. The groups must be disjoint for several reasons. Primarily, this
is the intent of the intercommunicators — to provide a communicator for commu-
nication between disjoint groups. This is reflected in the definition of
MPI_INTERCOMM_MERGE, which allows the user to control the ranking of the pro-
cesses in the created intracommunicator; this ranking makes little sense if the groups
are not disjoint. In addition, the natural extension of collective operations to inter-
communicators makes the most sense when the groups are disjoint. (End of advice to
users.)

Here is a summary of the properties of inter-communication and inter-communicators:

• The syntax of point-to-point and collective communication is the same for both inter-
and intra-communication. The same communicator can be used both for send and for
receive operations.

• A target process is addressed by its rank in the remote group, both for sends and for
receives.

• Communications using an inter-communicator are guaranteed not to conflict with any
communications that use a different communicator.

• A communicator will provide either intra- or inter-communication, never both.

The routine MPI_COMM_TEST_INTER may be used to determine if a communicator is an
inter- or intra-communicator. Inter-communicators can be used as arguments to some of the
other communicator access routines. Inter-communicators cannot be used as input to some
of the constructor routines for intra-communicators (for instance, MPI_CART_CREATE).

Advice to implementors. For the purpose of point-to-point communication, commu-
nicators can be represented in each process by a tuple consisting of:

group

send_context

receive_context

source

For inter-communicators, group describes the remote group, and source is the rank of
the process in the local group. For intra-communicators, group is the communicator
group (remote=local), source is the rank of the process in this group, and send
context and receive context are identical. A group can be represented by a rank-
to-absolute-address translation table.

The inter-communicator cannot be discussed sensibly without considering processes in
both the local and remote groups. Imagine a process P in group P, which has an inter-
communicator CP , and a process Q in group Q, which has an inter-communicator
CQ. Then

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

• CP .group describes the group Q and CQ.group describes the group P.

• CP .send_context = CQ.receive_context and the context is unique in Q;
CP .receive_context = CQ.send_context and this context is unique in P.

• CP .source is rank of P in P and CQ.source is rank of Q in Q.

Assume that P sends a message to Q using the inter-communicator. Then P uses
the group table to find the absolute address of Q; source and send_context are
appended to the message.

Assume that Q posts a receive with an explicit source argument using the inter-
communicator. Then Q matches receive_context to the message context and source
argument to the message source.

The same algorithm is appropriate for intra-communicators as well.

In order to support inter-communicator accessors and constructors, it is necessary to
supplement this model with additional structures, that store information about the
local communication group, and additional safe contexts. (End of advice to imple-
mentors.)

6.6.1 Inter-communicator Accessors

MPI_COMM_TEST_INTER(comm, flag)

IN comm communicator (handle)

OUT flag (logical)

int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)

INTEGER COMM, IERROR

LOGICAL FLAG

{bool MPI::Comm::Is_inter() const(binding deprecated, see Section 15.2) }

This local routine allows the calling process to determine if a communicator is an inter-
communicator or an intra-communicator. It returns true if it is an inter-communicator,
otherwise false.

When an inter-communicator is used as an input argument to the communicator ac-
cessors described above under intra-communication, the following table describes behavior.

MPI_COMM_SIZE returns the size of the local group.
MPI_COMM_GROUP returns the local group.
MPI_COMM_RANK returns the rank in the local group

Table 6.1: MPI_COMM_* Function Behavior (in Inter-Communication Mode)

Furthermore, the operation MPI_COMM_COMPARE is valid for inter-communicators. Both
communicators must be either intra- or inter-communicators, or else MPI_UNEQUAL results.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.6. INTER-COMMUNICATION 33

Both corresponding local and remote groups must compare correctly to get the results
MPI_CONGRUENT and MPI_SIMILAR. In particular, it is possible for MPI_SIMILAR to result
because either the local or remote groups were similar but not identical.

The following accessors provide consistent access to the remote group of an inter-
communicator:

The following are all local operations.

MPI_COMM_REMOTE_SIZE(comm, size)

IN comm inter-communicator (handle)

OUT size number of processes in the remote group of comm

(integer)

int MPI_Comm_remote_size(MPI_Comm comm, int *size)

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

{int MPI::Intercomm::Get_remote_size() const(binding deprecated, see Section 15.2)
}

MPI_COMM_REMOTE_GROUP(comm, group)

IN comm inter-communicator (handle)

OUT group remote group corresponding to comm (handle)

int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

{MPI::Group MPI::Intercomm::Get_remote_group() const(binding deprecated, see
Section 15.2) }

Rationale. Symmetric access to both the local and remote groups of an inter-
communicator is important, so this function, as well as MPI_COMM_REMOTE_SIZE
have been provided. (End of rationale.)

6.6.2 Inter-communicator Operations

This section introduces four blocking inter-communicator operations.
MPI_INTERCOMM_CREATE is used to bind two intra-communicators into an inter-com-
municator; the function MPI_INTERCOMM_MERGE creates an intra-communicator by merg-
ing the local and remote groups of an inter-communicator. The functions MPI_COMM_DUP
and MPI_COMM_FREE, introduced previously, duplicate and free an inter-communicator,
respectively.

Overlap of local and remote groups that are bound into an inter-communicator is
prohibited. If there is overlap, then the program is erroneous and is likely to deadlock. (If

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

a process is multithreaded, and MPI calls block only a thread, rather than a process, then
“dual membership” can be supported. It is then the user’s responsibility to make sure that
calls on behalf of the two “roles” of a process are executed by two independent threads.)

The function MPI_INTERCOMM_CREATE can be used to create an inter-communicator
from two existing intra-communicators, in the following situation: At least one selected
member from each group (the “group leader”) has the ability to communicate with the
selected member from the other group; that is, a “peer” communicator exists to which both
leaders belong, and each leader knows the rank of the other leader in this peer communicator.
Furthermore, members of each group know the rank of their leader.

Construction of an inter-communicator from two intra-communicators requires separate
collective operations in the local group and in the remote group, as well as a point-to-point
communication between a process in the local group and a process in the remote group.

In standard MPI implementations (with static process allocation at initialization), the
MPI_COMM_WORLD communicator (or preferably a dedicated duplicate thereof) can be this
peer communicator. For applications that have used spawn or join, it may be necessary to
first create an intracommunicator to be used as peer.

The application topology functions described in Chapter 7 do not apply to inter-
communicators. Users that require this capability should utilize
MPI_INTERCOMM_MERGE to build an intra-communicator, then apply the graph or carte-
sian topology capabilities to that intra-communicator, creating an appropriate topology-
oriented intra-communicator. Alternatively, it may be reasonable to devise one’s own ap-
plication topology mechanisms for this case, without loss of generality.

MPI_INTERCOMM_CREATE(local_comm, local_leader, peer_comm, remote_leader, tag,
newintercomm)

IN local_comm local intra-communicator (handle)

IN local_leader rank of local group leader in local_comm (integer)

IN peer_comm “peer” communicator; significant only at the

local_leader (handle)

IN remote_leader rank of remote group leader in peer_comm; significant

only at the local_leader (integer)

IN tag “safe” tag (integer)

OUT newintercomm new inter-communicator (handle)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,

MPI_Comm peer_comm, int remote_leader, int tag,

MPI_Comm *newintercomm)

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,

TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,

NEWINTERCOMM, IERROR

{MPI::Intercomm MPI::Intracomm::Create_intercomm(int local_leader, const

MPI::Comm& peer_comm, int remote_leader, int tag) const(binding
deprecated, see Section 15.2) }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.6. INTER-COMMUNICATION 35

This call creates an inter-communicator. It is collective over the union of the local and
remote groups. Processes should provide identical local_comm and local_leader arguments
within each group. Wildcards are not permitted for remote_leader, local_leader, and tag.

This call uses point-to-point communication with communicator
peer_comm, and with tag tag between the leaders. Thus, care must be taken that there be
no pending communication on peer_comm that could interfere with this communication.

Advice to users. We recommend using a dedicated peer communicator, such as a
duplicate of MPI_COMM_WORLD, to avoid trouble with peer communicators. (End of
advice to users.)

MPI_INTERCOMM_MERGE(intercomm, high, newintracomm)

IN intercomm Inter-Communicator (handle)

IN high (logical)

OUT newintracomm new intra-communicator (handle)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high,

MPI_Comm *newintracomm)

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)

INTEGER INTERCOMM, INTRACOMM, IERROR

LOGICAL HIGH

{MPI::Intracomm MPI::Intercomm::Merge(bool high) const(binding deprecated, see
Section 15.2) }

This function creates an intra-communicator from the union of the two groups that are
associated with intercomm. All processes should provide the same high value within each
of the two groups. If processes in one group provided the value high = false and processes
in the other group provided the value high = true then the union orders the “low” group
before the “high” group. If all processes provided the same high argument then the order
of the union is arbitrary. This call is blocking and collective within the union of the two
groups.

The error handler on the new intercommunicator in each process is inherited from
the communicator that contributes the local group. Note that this can result in different
processes in the same communicator having different error handlers.

Advice to implementors. The implementation of MPI_INTERCOMM_MERGE,
MPI_COMM_FREE and MPI_COMM_DUP are similar to the implementation of
MPI_INTERCOMM_CREATE, except that contexts private to the input inter-com-
municator are used for communication between group leaders rather than contexts
inside a bridge communicator. (End of advice to implementors.)

6.6.3 Inter-Communication Examples

Example 1: Three-Group “Pipeline”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requires
one inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Group 1 Group 2Group 0

Figure 6.3: Three-group pipeline[ticket0.][.]

inter-communicator.

int main(int argc, char **argv)

{

MPI_Comm myComm; /* intra-communicator of local sub-group */

MPI_Comm myFirstComm; /* inter-communicator */

MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */

int membershipKey;

int rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* User code must generate membershipKey in the range [0, 1, 2] */

membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */

MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */

if (membershipKey == 0)

{ /* Group 0 communicates with group 1. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);

}

else if (membershipKey == 1)

{ /* Group 1 communicates with groups 0 and 2. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);

}

else if (membershipKey == 2)

{ /* Group 2 communicates with group 1. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

12, &myFirstComm);

}

/* Do work ... */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.6. INTER-COMMUNICATION 37

Group 1 Group 2Group 0

Figure 6.4: Three-group ring[ticket0.][.]

switch(membershipKey) /* free communicators appropriately */

{

case 1:

MPI_Comm_free(&mySecondComm);

case 0:

case 2:

MPI_Comm_free(&myFirstComm);

break;

}

MPI_Finalize();

}

Example 2: Three-Group “Ring”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate.
Therefore, each requires two inter-communicators.

int main(int argc, char **argv)

{

MPI_Comm myComm; /* intra-communicator of local sub-group */

MPI_Comm myFirstComm; /* inter-communicators */

MPI_Comm mySecondComm;

MPI_Status status;

int membershipKey;

int rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

/* User code must generate membershipKey in the range [0, 1, 2] */

membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */

MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */

if (membershipKey == 0)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

{ /* Group 0 communicates with groups 1 and 2. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

2, &mySecondComm);

}

else if (membershipKey == 1)

{ /* Group 1 communicates with groups 0 and 2. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);

}

else if (membershipKey == 2)

{ /* Group 2 communicates with groups 0 and 1. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

2, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

12, &mySecondComm);

}

/* Do some work ... */

/* Then free communicators before terminating... */

MPI_Comm_free(&myFirstComm);

MPI_Comm_free(&mySecondComm);

MPI_Comm_free(&myComm);

MPI_Finalize();

}

6.7 Caching

MPI provides a “caching” facility that allows an application to attach arbitrary pieces of
information, called attributes, to three kinds of MPI objects, communicators, windows and
datatypes. More precisely, the caching facility allows a portable library to do the following:

• pass information between calls by associating it with an MPI intra- or inter-commun-
icator, window or datatype,

• quickly retrieve that information, and

• be guaranteed that out-of-date information is never retrieved, even if the object is
freed and its handle subsequently reused by MPI.

The caching capabilities, in some form, are required by built-in MPI routines such as
collective communication and application topology. Defining an interface to these capa-
bilities as part of the MPI standard is valuable because it permits routines like collective
communication and application topologies to be implemented as portable code, and also
because it makes MPI more extensible by allowing user-written routines to use standard
MPI calling sequences.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 39

Advice to users. The communicator MPI_COMM_SELF is a suitable choice for posting
process-local attributes, via this attributing-caching mechanism. (End of advice to
users.)

Rationale. In one extreme one can allow caching on all opaque handles. The other
extreme is to only allow it on communicators. Caching has a cost associated with it
and should only be allowed when it is clearly needed and the increased cost is modest.
This is the reason that windows and datatypes were added but not other handles.
(End of rationale.)

One difficulty is the potential for size differences between Fortran integers and C point-
ers. To overcome this problem with attribute caching on communicators, functions are also
given for this case. The functions to cache on datatypes and windows also address this
issue. For a general discussion of the address size problem, see Section 16.3.6.

Advice to implementors. High-quality implementations should raise an error when
a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL is used with an
object of the wrong type with a call to MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR,
MPI_YYY_DELETE_ATTR, or MPI_YYY_FREE_KEYVAL. To do so, it is necessary to
maintain, with each keyval, information on the type of the associated user function.
(End of advice to implementors.)

6.7.1 Functionality

Attributes can be attached to communicators, windows, and datatypes. Attributes are local
to the process and specific to the communicator to which they are attached. Attributes are
not propagated by MPI from one communicator to another except when the communicator
is duplicated using MPI_COMM_DUP (and even then the application must give specific
permission through callback functions for the attribute to be copied).

Advice to users. Attributes in C are of type void *. Typically, such an attribute will
be a pointer to a structure that contains further information, or a handle to an MPI
object. In Fortran, attributes are of type INTEGER. Such attribute can be a handle to
an MPI object, or just an integer-valued attribute. (End of advice to users.)

Advice to implementors. Attributes are scalar values, equal in size to, or larger than
a C-language pointer. Attributes can always hold an MPI handle. (End of advice to
implementors.)

The caching interface defined here requires that attributes be stored by MPI opaquely
within a communicator, window, and datatype. Accessor functions include the following:

• obtain a key value (used to identify an attribute); the user specifies “callback” func-
tions by which MPI informs the application when the communicator is destroyed or
copied.

• store and retrieve the value of an attribute;

Advice to implementors. Caching and callback functions are only called synchronously,
in response to explicit application requests. This avoid problems that result from re-
peated crossings between user and system space. (This synchronous calling rule is a
general property of MPI.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

The choice of key values is under control of MPI. This allows MPI to optimize its
implementation of attribute sets. It also avoids conflict between independent modules
caching information on the same communicators.

A much smaller interface, consisting of just a callback facility, would allow the entire
caching facility to be implemented by portable code. However, with the minimal call-
back interface, some form of table searching is implied by the need to handle arbitrary
communicators. In contrast, the more complete interface defined here permits rapid
access to attributes through the use of pointers in communicators (to find the attribute
table) and cleverly chosen key values (to retrieve individual attributes). In light of the
efficiency “hit” inherent in the minimal interface, the more complete interface defined
here is seen to be superior. (End of advice to implementors.)

MPI provides the following services related to caching. They are all process local.

6.7.2 Communicators

Functions for caching on communicators are:

MPI_COMM_CREATE_KEYVAL(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval,
extra_state)

IN comm_copy_attr_fn copy callback function for comm_keyval (function)

IN comm_delete_attr_fn delete callback function for comm_keyval (function)

OUT comm_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,

MPI_Comm_delete_attr_function *comm_delete_attr_fn,

int *comm_keyval, void *extra_state)

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN

INTEGER COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static int MPI::Comm::Create_keyval(MPI::Comm::Copy_attr_function*

comm_copy_attr_fn,

MPI::Comm::Delete_attr_function* comm_delete_attr_fn,

void* extra_state)(binding deprecated, see Section 15.2) }

Generates a new attribute key. Keys are locally unique in a process, and opaque to
user, though they are explicitly stored in integers. Once allocated, the key value can be
used to associate attributes and access them on any locally defined communicator.

This function replaces MPI_KEYVAL_CREATE, whose use is deprecated. The C binding
is identical. The Fortran binding differs in that extra_state is an address-sized integer.
Also, the copy and delete callback functions have Fortran bindings that are consistent with
address-sized attributes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 41

The C callback functions are:
typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

and
typedef int MPI_Comm_delete_attr_function(MPI_Comm comm, int comm_keyval,

void *attribute_val, void *extra_state);

which are the same as the MPI-1.1 calls but with a new name. The old names are deprecated.
The Fortran callback functions are:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

and
SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:
{typedef int MPI::Comm::Copy_attr_function(const MPI::Comm& oldcomm,

int comm_keyval, void* extra_state, void* attribute_val_in,

void* attribute_val_out, bool& flag); (binding deprecated, see
Section 15.2)}

and
{typedef int MPI::Comm::Delete_attr_function(MPI::Comm& comm,

int comm_keyval, void* attribute_val, void* extra_state);

(binding deprecated, see Section 15.2)}

The comm_copy_attr_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. comm_copy_attr_fn should be of type MPI_Comm_copy_attr_function. The
copy callback function is invoked for each key value in oldcomm in arbitrary order. Each call
to the copy callback is made with a key value and its corresponding attribute. If it returns
flag = 0, then the attribute is deleted in the duplicated communicator. Otherwise (flag = 1),
the new attribute value is set to the value returned in attribute_val_out. The function returns
MPI_SUCCESS on success and an error code on failure (in which case MPI_COMM_DUP will
fail).

The argument comm_copy_attr_fn may be specified as MPI_COMM_NULL_COPY_FN
or MPI_COMM_DUP_FN from either C, C++, or Fortran. MPI_COMM_NULL_COPY_FN
is a function that does nothing other than returning flag = 0 and MPI_SUCCESS.
MPI_COMM_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. These replace the MPI-1
predefined callbacks MPI_NULL_COPY_FN and MPI_DUP_FN, whose use is deprecated.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Advice to users. Even though both formal arguments attribute_val_in and
attribute_val_out are of type void *, their usage differs. The C copy function is passed
by MPI in attribute_val_in the value of the attribute, and in attribute_val_out the
address of the attribute, so as to allow the function to return the (new) attribute
value. The use of type void * for both is to avoid messy type casts.

A valid copy function is one that completely duplicates the information by making
a full duplicate copy of the data structures implied by an attribute; another might
just make another reference to that data structure, while using a reference-count
mechanism. Other types of attributes might not copy at all (they might be specific
to oldcomm only). (End of advice to users.)

Advice to implementors. A C interface should be assumed for copy and delete
functions associated with key values created in C; a Fortran calling interface should
be assumed for key values created in Fortran. (End of advice to implementors.)

Analogous to comm_copy_attr_fn is a callback deletion function, defined as follows.
The comm_delete_attr_fn function is invoked when a communicator is deleted by
MPI_COMM_FREE or when a call is made explicitly to MPI_COMM_DELETE_ATTR.
comm_delete_attr_fn should be of type MPI_Comm_delete_attr_function.

This function is called by MPI_COMM_FREE, MPI_COMM_DELETE_ATTR, and
MPI_COMM_SET_ATTR to do whatever is needed to remove an attribute. The function
returns MPI_SUCCESS on success and an error code on failure (in which case
MPI_COMM_FREE will fail).

The argument comm_delete_attr_fn may be specified as MPI_COMM_NULL_DELETE_FN
from either C, C++, or Fortran. MPI_COMM_NULL_DELETE_FN is a function that
does nothing, other than returning MPI_SUCCESS. MPI_COMM_NULL_DELETE_FN re-
places MPI_NULL_DELETE_FN, whose use is deprecated.

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_COMM_FREE),
is erroneous.

The special key value MPI_KEYVAL_INVALID is never returned by
MPI_KEYVAL_CREATE. Therefore, it can be used for static initialization of key values.

Advice to implementors. To be able to use the predefined C functions
MPI_COMM_NULL_COPY_FN or MPI_COMM_DUP_FN as comm_copy_attr_fn argu-
ment and/or MPI_COMM_NULL_DELETE_FN as the comm_delete_attr_fn argument
in a call to the C++ routine MPI::Comm::Create_keyval, this routine may be over-
loaded with 3 additional routines that accept the C functions as the first, the second,
or both input arguments (instead of an argument that matches the C++ prototype).
(End of advice to implementors.)

Advice to users. If a user wants to write a “wrapper” routine that internally calls
MPI::Comm::Create_keyval and comm_copy_attr_fn and/or comm_delete_attr_fn are
arguments of this wrapper routine, and if this wrapper routine should be callable with
both user-defined C++ copy and delete functions and with the predefined C functions,
then the same overloading as described above in the advice to implementors may be
necessary. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 43

MPI_COMM_FREE_KEYVAL(comm_keyval)

INOUT comm_keyval key value (integer)

int MPI_Comm_free_keyval(int *comm_keyval)

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)

INTEGER COMM_KEYVAL, IERROR

{static void MPI::Comm::Free_keyval(int& comm_keyval)(binding deprecated, see
Section 15.2) }

Frees an extant attribute key. This function sets the value of keyval to
MPI_KEYVAL_INVALID. Note that it is not erroneous to free an attribute key that is in use,
because the actual free does not transpire until after all references (in other communicators
on the process) to the key have been freed. These references need to be explictly freed by the
program, either via calls to MPI_COMM_DELETE_ATTR that free one attribute instance,
or by calls to MPI_COMM_FREE that free all attribute instances associated with the freed
communicator.

This call is identical to the MPI-1 call MPI_KEYVAL_FREE but is needed to match the
new communicator-specific creation function. The use of MPI_KEYVAL_FREE is deprecated.

MPI_COMM_SET_ATTR(comm, comm_keyval, attribute_val)

INOUT comm communicator from which attribute will be attached

(handle)

IN comm_keyval key value (integer)

IN attribute_val attribute value

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

{void MPI::Comm::Set_attr(int comm_keyval, const void* attribute_val)

const(binding deprecated, see Section 15.2) }

This function stores the stipulated attribute value attribute_val for subsequent retrieval
by MPI_COMM_GET_ATTR. If the value is already present, then the outcome is as if
MPI_COMM_DELETE_ATTR was first called to delete the previous value (and the callback
function comm_delete_attr_fn was executed), and a new value was next stored. The call
is erroneous if there is no key with value keyval; in particular MPI_KEYVAL_INVALID is an
erroneous key value. The call will fail if the comm_delete_attr_fn function returned an error
code other than MPI_SUCCESS.

This function replaces MPI_ATTR_PUT, whose use is deprecated. The C binding is
identical. The Fortran binding differs in that attribute_val is an address-sized integer.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_GET_ATTR(comm, comm_keyval, attribute_val, flag)

IN comm communicator to which the attribute is attached (han-

dle)

IN comm_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,

int *flag)

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

{bool MPI::Comm::Get_attr(int comm_keyval, void* attribute_val)

const(binding deprecated, see Section 15.2) }

Retrieves attribute value by key. The call is erroneous if there is no key with value
keyval. On the other hand, the call is correct if the key value exists, but no attribute is
attached on comm for that key; in such case, the call returns flag = false. In particular
MPI_KEYVAL_INVALID is an erroneous key value.

Advice to users. The call to MPI_Comm_set_attr passes in attribute_val the value of
the attribute; the call to MPI_Comm_get_attr passes in attribute_val the address of the
location where the attribute value is to be returned. Thus, if the attribute value itself is
a pointer of type void*, then the actual attribute_val parameter to MPI_Comm_set_attr
will be of type void* and the actual attribute_val parameter to MPI_Comm_get_attr
will be of type void**. (End of advice to users.)

Rationale. The use of a formal parameter attribute_val or type void* (rather than
void**) avoids the messy type casting that would be needed if the attribute value is
declared with a type other than void*. (End of rationale.)

This function replaces MPI_ATTR_GET, whose use is deprecated. The C binding is
identical. The Fortran binding differs in that attribute_val is an address-sized integer.

MPI_COMM_DELETE_ATTR(comm, comm_keyval)

INOUT comm communicator from which the attribute is deleted (han-

dle)

IN comm_keyval key value (integer)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 45

{void MPI::Comm::Delete_attr(int comm_keyval)(binding deprecated, see
Section 15.2) }

Delete attribute from cache by key. This function invokes the attribute delete function
comm_delete_attr_fn specified when the keyval was created. The call will fail if the
comm_delete_attr_fn function returns an error code other than MPI_SUCCESS.

Whenever a communicator is replicated using the function MPI_COMM_DUP, all call-
back copy functions for attributes that are currently set are invoked (in arbitrary order).
Whenever a communicator is deleted using the function MPI_COMM_FREE all callback
delete functions for attributes that are currently set are invoked.

This function is the same as MPI_ATTR_DELETE but is needed to match the new
communicator specific functions. The use of MPI_ATTR_DELETE is deprecated.

6.7.3 Windows

The new functions for caching on windows are:

MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn, win_delete_attr_fn, win_keyval, extra_state)

IN win_copy_attr_fn copy callback function for win_keyval (function)

IN win_delete_attr_fn delete callback function for win_keyval (function)

OUT win_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,

MPI_Win_delete_attr_function *win_delete_attr_fn,

int *win_keyval, void *extra_state)

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN

INTEGER WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static int MPI::Win::Create_keyval(MPI::Win::Copy_attr_function*

win_copy_attr_fn,

MPI::Win::Delete_attr_function* win_delete_attr_fn,

void* extra_state)(binding deprecated, see Section 15.2) }

The argument win_copy_attr_fn may be specified as MPI_WIN_NULL_COPY_FN or
MPI_WIN_DUP_FN from either C, C++, or Fortran. MPI_WIN_NULL_COPY_FN is a
function that does nothing other than returning flag = 0 and MPI_SUCCESS.
MPI_WIN_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument win_delete_attr_fn may be specified as MPI_WIN_NULL_DELETE_FN
from either C, C++, or Fortran. MPI_WIN_NULL_DELETE_FN is a function that does
nothing, other than returning MPI_SUCCESS.

The C callback functions are:

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

and
typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,

void *attribute_val, void *extra_state);

The Fortran callback functions are:
SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

and
SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:
{typedef int MPI::Win::Copy_attr_function(const MPI::Win& oldwin,

int win_keyval, void* extra_state, void* attribute_val_in,

void* attribute_val_out, bool& flag); (binding deprecated, see
Section 15.2)}

and
{typedef int MPI::Win::Delete_attr_function(MPI::Win& win, int win_keyval,

void* attribute_val, void* extra_state); (binding deprecated, see
Section 15.2)}

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_WIN_FREE), is
erroneous.

MPI_WIN_FREE_KEYVAL(win_keyval)

INOUT win_keyval key value (integer)

int MPI_Win_free_keyval(int *win_keyval)

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)

INTEGER WIN_KEYVAL, IERROR

{static void MPI::Win::Free_keyval(int& win_keyval)(binding deprecated, see
Section 15.2) }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 47

MPI_WIN_SET_ATTR(win, win_keyval, attribute_val)

INOUT win window to which attribute will be attached (handle)

IN win_keyval key value (integer)

IN attribute_val attribute value

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

{void MPI::Win::Set_attr(int win_keyval, const void* attribute_val)(binding
deprecated, see Section 15.2) }

MPI_WIN_GET_ATTR(win, win_keyval, attribute_val, flag)

IN win window to which the attribute is attached (handle)

IN win_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,

int *flag)

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

{bool MPI::Win::Get_attr(int win_keyval, void* attribute_val) const(binding
deprecated, see Section 15.2) }

MPI_WIN_DELETE_ATTR(win, win_keyval)

INOUT win window from which the attribute is deleted (handle)

IN win_keyval key value (integer)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

{void MPI::Win::Delete_attr(int win_keyval)(binding deprecated, see Section 15.2)
}

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

6.7.4 Datatypes

The new functions for caching on datatypes are:

MPI_TYPE_CREATE_KEYVAL(type_copy_attr_fn, type_delete_attr_fn, type_keyval, extra_state)

IN type_copy_attr_fn copy callback function for type_keyval (function)

IN type_delete_attr_fn delete callback function for type_keyval (function)

OUT type_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,

MPI_Type_delete_attr_function *type_delete_attr_fn,

int *type_keyval, void *extra_state)

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN

INTEGER TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static int MPI::Datatype::Create_keyval(MPI::Datatype::Copy_attr_function*

type_copy_attr_fn, MPI::Datatype::Delete_attr_function*

type_delete_attr_fn, void* extra_state)(binding deprecated, see
Section 15.2) }

The argument type_copy_attr_fn may be specified as MPI_TYPE_NULL_COPY_FN or
MPI_TYPE_DUP_FN from either C, C++, or Fortran. MPI_TYPE_NULL_COPY_FN is a
function that does nothing other than returning flag = 0 and MPI_SUCCESS.
MPI_TYPE_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument type_delete_attr_fn may be specified as MPI_TYPE_NULL_DELETE_FN
from either C, C++, or Fortran. MPI_TYPE_NULL_DELETE_FN is a function that does
nothing, other than returning MPI_SUCCESS.

The C callback functions are:
typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

and
typedef int MPI_Type_delete_attr_function(MPI_Datatype type,

int type_keyval, void *attribute_val, void *extra_state);

The Fortran callback functions are:
SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 49

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

and
SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:
{typedef int

MPI::Datatype::Copy_attr_function(const MPI::Datatype& oldtype,

int type_keyval, void* extra_state,

const void* attribute_val_in, void* attribute_val_out,

bool& flag); (binding deprecated, see Section 15.2)}

and
{typedef int MPI::Datatype::Delete_attr_function(MPI::Datatype& type,

int type_keyval, void* attribute_val, void* extra_state);

(binding deprecated, see Section 15.2)}

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_TYPE_FREE),
is erroneous.

MPI_TYPE_FREE_KEYVAL(type_keyval)

INOUT type_keyval key value (integer)

int MPI_Type_free_keyval(int *type_keyval)

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)

INTEGER TYPE_KEYVAL, IERROR

{static void MPI::Datatype::Free_keyval(int& type_keyval)(binding deprecated,
see Section 15.2) }

MPI_TYPE_SET_ATTR(type, type_keyval, attribute_val)

INOUT type datatype to which attribute will be attached (handle)

IN type_keyval key value (integer)

IN attribute_val attribute value

int MPI_Type_set_attr(MPI_Datatype type, int type_keyval,

void *attribute_val)

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

{void MPI::Datatype::Set_attr(int type_keyval, const void*

attribute_val)(binding deprecated, see Section 15.2) }

MPI_TYPE_GET_ATTR(type, type_keyval, attribute_val, flag)

IN type datatype to which the attribute is attached (handle)

IN type_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void

*attribute_val, int *flag)

MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

{bool MPI::Datatype::Get_attr(int type_keyval, void* attribute_val)

const(binding deprecated, see Section 15.2) }

MPI_TYPE_DELETE_ATTR(type, type_keyval)

INOUT type datatype from which the attribute is deleted (handle)

IN type_keyval key value (integer)

int MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

{void MPI::Datatype::Delete_attr(int type_keyval)(binding deprecated, see
Section 15.2) }

6.7.5 Error Class for Invalid Keyval

Key values for attributes are system-allocated, by MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL.
Only such values can be passed to the functions that use key values as input arguments.
In order to signal that an erroneous key value has been passed to one of these functions,
there is a new MPI error class: MPI_ERR_KEYVAL. It can be returned by
MPI_ATTR_PUT, MPI_ATTR_GET, MPI_ATTR_DELETE, MPI_KEYVAL_FREE,
MPI_{TYPE,COMM,WIN}_DELETE_ATTR, MPI_{TYPE,COMM,WIN}_SET_ATTR,
MPI_{TYPE,COMM,WIN}_GET_ATTR, MPI_{TYPE,COMM,WIN}_FREE_KEYVAL,
MPI_COMM_DUP, MPI_COMM_DISCONNECT, and MPI_COMM_FREE. The last three are
included because keyval is an argument to the copy and delete functions for attributes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.7. CACHING 51

6.7.6 Attributes Example

Advice to users. This example shows how to write a collective communication
operation that uses caching to be more efficient after the first call. The coding style
assumes that MPI function results return only error statuses. (End of advice to users.)

/* key for this module’s stuff: */

static int gop_key = MPI_KEYVAL_INVALID;

typedef struct

{

int ref_count; /* reference count */

/* other stuff, whatever else we want */

} gop_stuff_type;

Efficient_Collective_Op (comm, ...)

MPI_Comm comm;

{

gop_stuff_type *gop_stuff;

MPI_Group group;

int foundflag;

MPI_Comm_group(comm, &group);

if (gop_key == MPI_KEYVAL_INVALID) /* get a key on first call ever */

{

if (! MPI_Comm_create_keyval(gop_stuff_copier,

gop_stuff_destructor,

&gop_key, (void *)0));

/* get the key while assigning its copy and delete callback

behavior. */

MPI_Abort (comm, 99);

}

MPI_Comm_get_attr (comm, gop_key, &gop_stuff, &foundflag);

if (foundflag)

{ /* This module has executed in this group before.

We will use the cached information */

}

else

{ /* This is a group that we have not yet cached anything in.

We will now do so.

*/

/* First, allocate storage for the stuff we want,

and initialize the reference count */

gop_stuff = (gop_stuff_type *) malloc (sizeof(gop_stuff_type));

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

if (gop_stuff == NULL) { /* abort on out-of-memory error */ }

gop_stuff -> ref_count = 1;

/* Second, fill in *gop_stuff with whatever we want.

This part isn’t shown here */

/* Third, store gop_stuff as the attribute value */

MPI_Comm_set_attr (comm, gop_key, gop_stuff);

}

/* Then, in any case, use contents of *gop_stuff

to do the global op ... */

}

/* The following routine is called by MPI when a group is freed */

gop_stuff_destructor (comm, keyval, gop_stuff, extra)

MPI_Comm comm;

int keyval;

gop_stuff_type *gop_stuff;

void *extra;

{

if (keyval != gop_key) { /* abort -- programming error */ }

/* The group’s being freed removes one reference to gop_stuff */

gop_stuff -> ref_count -= 1;

/* If no references remain, then free the storage */

if (gop_stuff -> ref_count == 0) {

free((void *)gop_stuff);

}

}

/* The following routine is called by MPI when a group is copied */

gop_stuff_copier (comm, keyval, extra, gop_stuff_in, gop_stuff_out, flag)

MPI_Comm comm;

int keyval;

gop_stuff_type *gop_stuff_in, *gop_stuff_out;

void *extra;

{

if (keyval != gop_key) { /* abort -- programming error */ }

/* The new group adds one reference to this gop_stuff */

gop_stuff -> ref_count += 1;

gop_stuff_out = gop_stuff_in;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.8. NAMING OBJECTS 53

6.8 Naming Objects

There are many occasions on which it would be useful to allow a user to associate a printable
identifier with an MPI communicator, window, or datatype, for instance error reporting,
debugging, and profiling. The names attached to opaque objects do not propagate when
the object is duplicated or copied by MPI routines. For communicators this can be achieved
using the following two functions.

MPI_COMM_SET_NAME (comm, comm_name)

INOUT comm communicator whose identifier is to be set (handle)

IN comm_name the character string which is remembered as the name

(string)

int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM_NAME

{void MPI::Comm::Set_name(const char* comm_name)(binding deprecated, see
Section 15.2) }

MPI_COMM_SET_NAME allows a user to associate a name string with a communicator.
The character string which is passed to MPI_COMM_SET_NAME will be saved inside the
MPI library (so it can be freed by the caller immediately after the call, or allocated on the
stack). Leading spaces in name are significant but trailing ones are not.

MPI_COMM_SET_NAME is a local (non-collective) operation, which only affects the
name of the communicator as seen in the process which made the MPI_COMM_SET_NAME
call. There is no requirement that the same (or any) name be assigned to a communicator
in every process where it exists.

Advice to users. Since MPI_COMM_SET_NAME is provided to help debug code, it
is sensible to give the same name to a communicator in all of the processes where it
exists, to avoid confusion. (End of advice to users.)

The length of the name which can be stored is limited to the value of
MPI_MAX_OBJECT_NAME in Fortran and MPI_MAX_OBJECT_NAME-1 in C and C++ to al-
low for the null terminator. Attempts to put names longer than this will result in truncation
of the name. MPI_MAX_OBJECT_NAME must have a value of at least 64.

Advice to users. Under circumstances of store exhaustion an attempt to put a name
of any length could fail, therefore the value of MPI_MAX_OBJECT_NAME should be
viewed only as a strict upper bound on the name length, not a guarantee that setting
names of less than this length will always succeed. (End of advice to users.)

Advice to implementors. Implementations which pre-allocate a fixed size space for a
name should use the length of that allocation as the value of MPI_MAX_OBJECT_NAME.
Implementations which allocate space for the name from the heap should still define

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_MAX_OBJECT_NAME to be a relatively small value, since the user has to allocate
space for a string of up to this size when calling MPI_COMM_GET_NAME. (End of
advice to implementors.)

MPI_COMM_GET_NAME (comm, comm_name, resultlen)

IN comm communicator whose name is to be returned (handle)

OUT comm_name the name previously stored on the communicator, or

an empty string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM_NAME

{void MPI::Comm::Get_name(char* comm_name, int& resultlen) const(binding
deprecated, see Section 15.2) }

MPI_COMM_GET_NAME returns the last name which has previously been associated
with the given communicator. The name may be set and got from any language. The same
name will be returned independent of the language used. name should be allocated so that
it can hold a resulting string of length MPI_MAX_OBJECT_NAME characters.
MPI_COMM_GET_NAME returns a copy of the set name in name.

In C, a null character is additionally stored at name[resultlen]. resultlen cannot be
larger then MPI_MAX_OBJECT_NAME-1. In Fortran, name is padded on the right with
blank characters. resultlen cannot be larger then MPI_MAX_OBJECT_NAME.

If the user has not associated a name with a communicator, or an error occurs,
MPI_COMM_GET_NAME will return an empty string (all spaces in Fortran, "" in C and
C++). The three predefined communicators will have predefined names associated with
them. Thus, the names of MPI_COMM_WORLD, MPI_COMM_SELF, and the communicator
returned by MPI_COMM_GET_PARENT (if not MPI_COMM_NULL) will have the default of
MPI_COMM_WORLD, MPI_COMM_SELF, and MPI_COMM_PARENT. The fact that the system
may have chosen to give a default name to a communicator does not prevent the user from
setting a name on the same communicator; doing this removes the old name and assigns
the new one.

Rationale. We provide separate functions for setting and getting the name of a com-
municator, rather than simply providing a predefined attribute key for the following
reasons:

• It is not, in general, possible to store a string as an attribute from Fortran.

• It is not easy to set up the delete function for a string attribute unless it is known
to have been allocated from the heap.

• To make the attribute key useful additional code to call strdup is necessary. If
this is not standardized then users have to write it. This is extra unneeded work
which we can easily eliminate.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.8. NAMING OBJECTS 55

• The Fortran binding is not trivial to write (it will depend on details of the
Fortran compilation system), and will not be portable. Therefore it should be in
the library rather than in user code.

(End of rationale.)

Advice to users. The above definition means that it is safe simply to print the string
returned by MPI_COMM_GET_NAME, as it is always a valid string even if there was
no name.

Note that associating a name with a communicator has no effect on the semantics of
an MPI program, and will (necessarily) increase the store requirement of the program,
since the names must be saved. Therefore there is no requirement that users use these
functions to associate names with communicators. However debugging and profiling
MPI applications may be made easier if names are associated with communicators,
since the debugger or profiler should then be able to present information in a less
cryptic manner. (End of advice to users.)

The following functions are used for setting and getting names of datatypes.

MPI_TYPE_SET_NAME (type, type_name)

INOUT type datatype whose identifier is to be set (handle)

IN type_name the character string which is remembered as the name

(string)

int MPI_Type_set_name(MPI_Datatype type, char *type_name)

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)

INTEGER TYPE, IERROR

CHARACTER*(*) TYPE_NAME

{void MPI::Datatype::Set_name(const char* type_name)(binding deprecated, see
Section 15.2) }

MPI_TYPE_GET_NAME (type, type_name, resultlen)

IN type datatype whose name is to be returned (handle)

OUT type_name the name previously stored on the datatype, or a empty

string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen)

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)

INTEGER TYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE_NAME

{void MPI::Datatype::Get_name(char* type_name, int& resultlen) const(binding
deprecated, see Section 15.2) }

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Named predefined datatypes have the default names of the datatype name. For exam-
ple, MPI_WCHAR has the default name of MPI_WCHAR.

The following functions are used for setting and getting names of windows.

MPI_WIN_SET_NAME (win, win_name)

INOUT win window whose identifier is to be set (handle)

IN win_name the character string which is remembered as the name

(string)

int MPI_Win_set_name(MPI_Win win, char *win_name)

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)

INTEGER WIN, IERROR

CHARACTER*(*) WIN_NAME

{void MPI::Win::Set_name(const char* win_name)(binding deprecated, see
Section 15.2) }

MPI_WIN_GET_NAME (win, win_name, resultlen)

IN win window whose name is to be returned (handle)

OUT win_name the name previously stored on the window, or a empty

string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER*(*) WIN_NAME

{void MPI::Win::Get_name(char* win_name, int& resultlen) const(binding
deprecated, see Section 15.2) }

6.9 Formalizing the Loosely Synchronous Model

In this section, we make further statements about the loosely synchronous model, with
particular attention to intra-communication.

6.9.1 Basic Statements

When a caller passes a communicator (that contains a context and group) to a callee, that
communicator must be free of side effects throughout execution of the subprogram: there
should be no active operations on that communicator that might involve the process. This
provides one model in which libraries can be written, and work “safely.” For libraries
so designated, the callee has permission to do whatever communication it likes with the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

6.9. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 57

communicator, and under the above guarantee knows that no other communications will
interfere. Since we permit good implementations to create new communicators without
synchronization (such as by preallocated contexts on communicators), this does not impose
a significant overhead.

This form of safety is analogous to other common computer-science usages, such as
passing a descriptor of an array to a library routine. The library routine has every right to
expect such a descriptor to be valid and modifiable.

6.9.2 Models of Execution

In the loosely synchronous model, transfer of control to a parallel procedure is effected by
having each executing process invoke the procedure. The invocation is a collective operation:
it is executed by all processes in the execution group, and invocations are similarly ordered
at all processes. However, the invocation need not be synchronized.

We say that a parallel procedure is active in a process if the process belongs to a group
that may collectively execute the procedure, and some member of that group is currently
executing the procedure code. If a parallel procedure is active in a process, then this process
may be receiving messages pertaining to this procedure, even if it does not currently execute
the code of this procedure.

Static communicator allocation

This covers the case where, at any point in time, at most one invocation of a parallel
procedure can be active at any process, and the group of executing processes is fixed. For
example, all invocations of parallel procedures involve all processes, processes are single-
threaded, and there are no recursive invocations.

In such a case, a communicator can be statically allocated to each procedure. The
static allocation can be done in a preamble, as part of initialization code. If the parallel
procedures can be organized into libraries, so that only one procedure of each library can
be concurrently active in each processor, then it is sufficient to allocate one communicator
per library.

Dynamic communicator allocation

Calls of parallel procedures are well-nested if a new parallel procedure is always invoked in
a subset of a group executing the same parallel procedure. Thus, processes that execute
the same parallel procedure have the same execution stack.

In such a case, a new communicator needs to be dynamically allocated for each new
invocation of a parallel procedure. The allocation is done by the caller. A new communicator
can be generated by a call to MPI_COMM_DUP, if the callee execution group is identical to
the caller execution group, or by a call to MPI_COMM_SPLIT if the caller execution group
is split into several subgroups executing distinct parallel routines. The new communicator
is passed as an argument to the invoked routine.

The need for generating a new communicator at each invocation can be alleviated or
avoided altogether in some cases: If the execution group is not split, then one can allocate
a stack of communicators in a preamble, and next manage the stack in a way that mimics
the stack of recursive calls.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

One can also take advantage of the well-ordering property of communication to avoid
confusing caller and callee communication, even if both use the same communicator. To do
so, one needs to abide by the following two rules:

• messages sent before a procedure call (or before a return from the procedure) are also
received before the matching call (or return) at the receiving end;

• messages are always selected by source (no use is made of MPI_ANY_SOURCE).

The General [c]Caseticket0.

In the general case, there may be multiple concurrently active invocations of the same
parallel procedure within the same group; invocations may not be well-nested. A new
communicator needs to be created for each invocation. It is the user’s responsibility to make
sure that, should two distinct parallel procedures be invoked concurrently on overlapping
sets of processes, then communicator creation be properly coordinated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

Bibliography

[1] Purushotham V. Bangalore, Nathan E. Doss, and Anthony Skjellum. MPI++: Issues
and Features. In OON-SKI ’94, page in press, 1994. 6.1

[2] D. Feitelson. Communicators: Object-based multiparty interactions for parallel pro-
gramming. Technical Report 91-12, Dept. Computer Science, The Hebrew University of
Jerusalem, November 1991. 6.1.2

[3] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library
atop the reactive kernel. In D. W. Walker and Q. F. Stout, editors, Proceedings of
the Fifth Distributed Memory Concurrent Computing Conference, pages 767–776. IEEE
Press, 1990. 6.1.2

[4] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing Libraries
in MPI. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable
Parallel Libraries Conference, pages 166–173. IEEE Computer Society Press, October
1993. 6.1

[5] Anthony Skjellum, Steven G. Smith, Nathan E. Doss, Alvin P. Leung, and Manfred
Morari. The Design and Evolution of Zipcode. Parallel Computing, 20(4):565–596,
April 1994. 6.1.2, 6.5.6

Unofficial Draft for Comment Only 59

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

comm_copy_attr_fn, 41, 42
comm_delete_attr_fn, 42, 43
CONST:false, 32, 44, 47, 50
CONST:flag = 0, 41
CONST:flag = 1, 41
CONST:INTEGER, 39
CONST:MPI::Comm, 8, 13–16, 19, 22, 23,

32–35, 41, 43, 44
CONST:MPI::Group, 6, 6, 7–12, 16, 33
CONST:MPI::Win, 45–47, 56
CONST:MPI_ANY_SOURCE, 58
CONST:MPI_Comm, 8, 13–16, 19, 22, 23,

32–35, 41, 43, 44
CONST:MPI_COMM_NULL, 5, 16, 17, 19,

20, 22, 23, 54
CONST:MPI_COMM_PARENT, 54
CONST:MPI_COMM_SELF, 5, 39, 54
CONST:MPI_COMM_TYPE_PROCESS, 22
CONST:MPI_COMM_TYPE_SHM, 22
CONST:MPI_COMM_WORLD, 5–7, 13, 14,

25, 34, 35, 54
CONST:MPI_CONGRUENT, 14, 32
CONST:MPI_ERR_KEYVAL, 50
CONST:MPI_Group, 6, 6, 7–12, 16, 33
CONST:MPI_GROUP_EMPTY, 4, 9, 10, 16,

17
CONST:MPI_GROUP_NULL, 4, 12
CONST:MPI_IDENT, 7, 14
CONST:MPI_KEYVAL_INVALID, 42–44
CONST:MPI_MAX_OBJECT_NAME, 53, 54
CONST:MPI_PROC_NULL, 7
CONST:MPI_SIMILAR, 7, 14, 32
CONST:MPI_SUCCESS, 41–43, 45, 46, 48,

49
CONST:MPI_UNDEFINED, 6, 7, 20
CONST:MPI_UNEQUAL, 7, 14, 32
CONST:MPI_WCHAR, 56
CONST:MPI_Win, 45–47, 56
CONST:true, 32
CONST:void *, 39, 42

CONST:void*, 44
CONST:void**, 44

EXAMPLES:Intercommunicator, 18, 20
EXAMPLES:MPI_Comm_create, 18
EXAMPLES:MPI_Comm_group, 18
EXAMPLES:MPI_Comm_remote_size, 20
EXAMPLES:MPI_Comm_split, 20
EXAMPLES:MPI_Group_free, 18
EXAMPLES:MPI_Group_incl, 18

MPI_ATTR_DELETE, 45, 50
MPI_ATTR_GET, 44, 50
MPI_ATTR_PUT, 43, 50
MPI_CART_CREATE, 31
MPI_COMM_COMPARE, 32
MPI_COMM_COMPARE(comm1, comm2, re-

sult), 14
MPI_COMM_CREATE, 12, 17–20
MPI_COMM_CREATE(comm, group, new-

comm), 16, 19
MPI_COMM_CREATE_KEYVAL, 39, 42, 50
MPI_COMM_CREATE_KEYVAL(comm_copy_attr_fn,

comm_delete_attr_fn, comm_keyval,
extra_state), 40

MPI_COMM_DELETE_ATTR, 39, 42, 43,
50

MPI_COMM_DELETE_ATTR(comm, comm_keyval),
44

MPI_COMM_DISCONNECT, 50
MPI_COMM_DUP, 8, 12, 15–17, 23, 33, 35,

39, 41, 45, 50, 57
MPI_COMM_DUP(comm, newcomm), 15
MPI_COMM_DUP_FN, 41, 41, 42
MPI_COMM_FREE, 12, 16, 23, 33, 35, 42,

43, 45, 50
MPI_COMM_FREE(comm), 23
MPI_COMM_FREE_KEYVAL, 39, 50
MPI_COMM_FREE_KEYVAL(comm_keyval),

43

60

INDEX 61

MPI_COMM_GET_ATTR, 39, 43, 50
MPI_COMM_GET_ATTR(comm, comm_keyval,

attribute_val, flag), 44
MPI_COMM_GET_NAME, 54, 55
MPI_COMM_GET_NAME (comm, comm_name,

resultlen), 54
MPI_COMM_GET_PARENT, 54
MPI_COMM_GROUP, 6, 8, 12–14, 32
MPI_COMM_GROUP(comm, group), 8
MPI_COMM_NULL_COPY_FN, 41, 41, 42
MPI_COMM_NULL_DELETE_FN, 42, 42
MPI_COMM_RANK, 13, 32
MPI_COMM_RANK(comm, rank), 13
MPI_COMM_REMOTE_GROUP(comm, group),

33
MPI_COMM_REMOTE_SIZE, 33
MPI_COMM_REMOTE_SIZE(comm, size),

33
MPI_COMM_SET_ATTR, 39, 42, 50
MPI_COMM_SET_ATTR(comm, comm_keyval,

attribute_val), 43
MPI_COMM_SET_NAME, 53
MPI_COMM_SET_NAME (comm, comm_name),

53
MPI_COMM_SIZE, 13, 14, 32
MPI_COMM_SIZE(comm, size), 13
MPI_COMM_SPLIT, 17, 19–21, 57
MPI_COMM_SPLIT(comm, color, key, new-

comm), 19, 19
MPI_COMM_SPLIT_TYPE(comm, type, key,

newcomm), 22
MPI_COMM_TEST_INTER, 31
MPI_COMM_TEST_INTER(comm, flag), 32
MPI_DUP_FN, 41
MPI_GROUP_COMPARE, 10
MPI_GROUP_COMPARE(group1, group2,

result), 7
MPI_GROUP_DIFFERENCE(group1, group2,

newgroup), 9
MPI_GROUP_EXCL, 10, 12
MPI_GROUP_EXCL(group, n, ranks, new-

group), 10
MPI_GROUP_FREE, 12–14
MPI_GROUP_FREE(group), 12
MPI_GROUP_INCL, 10, 11
MPI_GROUP_INCL(group, n, ranks, new-

group), 10

MPI_GROUP_INTERSECTION(group1, group2,
newgroup), 9

MPI_GROUP_RANGE_EXCL, 12
MPI_GROUP_RANGE_EXCL(group, n, ranges,

newgroup), 11
MPI_GROUP_RANGE_INCL, 11
MPI_GROUP_RANGE_INCL(group, n, ranges,

newgroup), 11
MPI_GROUP_RANK, 14
MPI_GROUP_RANK(group, rank), 6
MPI_GROUP_SIZE, 13
MPI_GROUP_SIZE(group, size), 6
MPI_GROUP_TRANSLATE_RANKS, 7
MPI_GROUP_TRANSLATE_RANKS (group1,

n, ranks1, group2, ranks2), 7
MPI_GROUP_UNION(group1, group2, new-

group), 8
MPI_INIT, 5
MPI_INIT_THREAD, 5
MPI_INTERCOMM_CREATE, 15, 33, 35
MPI_INTERCOMM_CREATE(local_comm,

local_leader, peer_comm, remote_leader,
tag, newintercomm), 34

MPI_INTERCOMM_MERGE, 31, 33–35
MPI_INTERCOMM_MERGE(intercomm, high,

newintracomm), 35
MPI_KEYVAL_CREATE, 40, 42
MPI_KEYVAL_FREE, 43, 50
MPI_NULL_COPY_FN, 41
MPI_NULL_DELETE_FN, 42
MPI_TYPE_CREATE_KEYVAL, 39, 50
MPI_TYPE_CREATE_KEYVAL(type_copy_attr_fn,

type_delete_attr_fn, type_keyval, ex-
tra_state), 48

MPI_TYPE_DELETE_ATTR, 39, 50
MPI_TYPE_DELETE_ATTR(type, type_keyval),

50
MPI_TYPE_DUP_FN, 48, 48
MPI_TYPE_FREE, 49
MPI_TYPE_FREE_KEYVAL, 39, 50
MPI_TYPE_FREE_KEYVAL(type_keyval),

49
MPI_TYPE_GET_ATTR, 39, 50
MPI_TYPE_GET_ATTR(type, type_keyval,

attribute_val, flag), 50
MPI_TYPE_GET_NAME (type, type_name,

resultlen), 55
MPI_TYPE_NULL_COPY_FN, 48, 48

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 INDEX

MPI_TYPE_NULL_DELETE_FN, 48
MPI_TYPE_SET_ATTR, 39, 50
MPI_TYPE_SET_ATTR(type, type_keyval,

attribute_val), 49
MPI_TYPE_SET_NAME (type, type_name),

55
MPI_WIN_ALLOCATE_SHARED, 22
MPI_WIN_CREATE_KEYVAL, 39, 50
MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn,

win_delete_attr_fn, win_keyval, ex-
tra_state), 45

MPI_WIN_DELETE_ATTR, 39, 50
MPI_WIN_DELETE_ATTR(win, win_keyval),

47
MPI_WIN_DUP_FN, 45, 45
MPI_WIN_FREE, 46
MPI_WIN_FREE_KEYVAL, 39, 50
MPI_WIN_FREE_KEYVAL(win_keyval), 46
MPI_WIN_GET_ATTR, 39, 50
MPI_WIN_GET_ATTR(win, win_keyval, at-

tribute_val, flag), 47
MPI_WIN_GET_NAME (win, win_name, re-

sultlen), 56
MPI_WIN_NULL_COPY_FN, 45, 45
MPI_WIN_NULL_DELETE_FN, 45
MPI_WIN_SET_ATTR, 39, 50
MPI_WIN_SET_ATTR(win, win_keyval, at-

tribute_val), 47
MPI_WIN_SET_NAME (win, win_name), 56

TYPEDEF:MPI_Comm_copy_attr_function(MPI_Comm old-
comm, int comm_keyval, void *ex-
tra_state, void *attribute_val_in, void *at-
tribute_val_out, int *flag), 41

TYPEDEF:MPI_Comm_delete_attr_function(MPI_Comm
comm, int comm_keyval, void *at-
tribute_val, void *extra_state), 41

TYPEDEF:MPI_Type_copy_attr_function(MPI_Datatype old-
type, int type_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out,
int *flag), 48

TYPEDEF:MPI_Type_delete_attr_function(MPI_Datatype type,
int type_keyval, void *attribute_val,
void *extra_state), 48

TYPEDEF:MPI_Win_copy_attr_function(MPI_Win old-
win, int win_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out,
int *flag), 46

TYPEDEF:MPI_Win_delete_attr_function(MPI_Win win,
int win_keyval, void *attribute_val,
void *extra_state), 46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

	Groups, Contexts, Communicators, and Caching
	Introduction
	Features Needed to Support Libraries
	MPI's Support for Libraries

	Basic Concepts
	Groups
	Contexts
	Intra-Communicators
	Predefined Intra-Communicators

	Group Management
	Group Accessors
	Group Constructors
	Group Destructors

	Communicator Management
	Communicator Accessors
	Communicator Constructors
	Communicator Destructors

	Motivating Examples
	Current Practice #1
	Current Practice #2
	(Approximate) Current Practice #3
	Example #4
	Library Example #1
	Library Example #2

	Inter-Communication
	Inter-communicator Accessors
	Inter-communicator Operations
	Inter-Communication Examples

	Caching
	Functionality
	Communicators
	Windows
	Datatypes
	Error Class for Invalid Keyval
	Attributes Example

	Naming Objects
	Formalizing the Loosely Synchronous Model
	Basic Statements
	Models of Execution

