
MPI3: Supporting Multiple Endpoints per Process

Hybrid Programming Working Group

August 15, 2011



0.1 Introduction

0.1.1 Rationale

Many applications run best when shared memory is used for communication inside a node
and MPI is used between nodes, with more than one MPI process per node. We expect
this model to become increasingly common as the number of cores per node increases: A
larger number of concurrent threads per node will often lead to a higher message rate that
is hard to achieve within one MPI process, for a variety of reasons. For example, message
matching time tends to increase linearily with the number of pending requests; the problem
is inherent to the matching semantics of MPI. The use of of multiple MPI processes can also
reduce intra-node communication, especially on NUMA nodes.

This model can be supported in two ways:

1. Run multiple OS processes at each node, each with one MPI rank, and use (Unix
V like) shared memory segments to communicate with shared memory between the
processes.

2. Run one OS process per node, but provide support for multiple “MPI processes”
within one address space.

.
The use of Unix V like shared memory segments introduces various overheads and

complexities, and is not supported by higher level shared memory programming models,
such as OpenMP, and by debuggers and performance tools. This document describes an
MPI extension for supporting the second approach.

Most MPI libraries, but not all, equate an MPI process with an OS process. This
equivalence is not an MPI requirement: The MPI standard says [3, §2.7]:

An MPI program consists of autonomous processes, executing their own code,
in a MIMD style. The codes executed by each process need not be identical.
The processes communicate via calls to MPI communication primitives. Typi-
cally, each process executes in its own address space, although shared-memory
implementations of MPI are possible.

The standard does not define “process” and does not equate it with an OS process.
In fact, there are MPI implementations where an MPI agent is an OS thread [1, 5], or
even a task that can be dynamically scheduled by a run-time on different threads, for load
balancing [2].

0.1.2 Proposed Approach

We use the following terminology

An OS process consists of an address space, a program, one or more threads and, possibly,
additional system resources, such as MPI endpoints.

A thread consists of a stack, program counter and other state associated with an execu-
tion.

An MPI endpoint consists of a set of resources that enable MPI calls. Such an endpoint is
identified in MPI by a rank in MPI_COMM_WORLD or a rank in derived communicators.

2



NODE

OS process

thread

OS process

thread thread

Rank Rank

NODE

thread

OS process

thread thread

Rank Rank

thread

Figure 1: Current and new design for MPI

An MPI process consists of an MPI endpoint and a set of threads that can perform MPI
calls using that endpoint. All references to a “process” in other parts of the MPI
standard should be understood as referring to an “MPI process”.

Most MPI implementations can support multiple MPI processes within one OS image,
each running in a distinct address space, as shown in Figure 1, left. The same mechanisms
can be used to create multiple endpoints within one address space, as shown in Figure 1,
right.

Changing the nature of an MPI process does not change in any way the semantics of
MPI. It also requires very few changes in the MPI software stack – the changes will mostly
be in the initialization code that allocates communication resources to an MPI process.

Currently, an MPI library creates an MPI endpoint for each OS process at initialization
time; all threads running in this process are implicitly associated with this endpoint.

In the new design, multiple MPI endpoints may be bound to the same OS process. The
binding of MPI endpoints to processes will occur when MPI is initialized. On the other
hand, the binding of threads to endpoints can change during execution. At any point in
time, a thread will be attached to at most one endpoint; an MPI send executed by such a
thread will use the (sender) rank of that endpoint.

0.1.3 Outline

The remainder of the document is organized as follows:
Proposed extensions to MPI to enable the association of multiple MPI endpoints with

distinct threads within one process are described in Section 0.2. We describe this proposal
assuming the existence of threads, but without making assumptions on the properties of
thread, other that they run within a shared address space.

Section 0.3 describes additional functions that can ease the use of endpoints
Section 0.4 describes how the MPI endpoints constructs interoperate with shared mem-

ory programming models such as Posix thread libraries, OpenMP and PGAS languages.

3



0.2 MPI Support of Multiple Endpoints per Process

0.2.1 MPI Endpoints

An MPI endpoint is a (handle to a) set of resources that supports the independent execution
of MPI communications. These can be physical resources (e.g., registers mapped into the
address space of the process), or logical resources. An endpoint corresponds to a rank in an
MPI communicator. A thread can be attached to an endpoint, at which point it can make
MPI calls using the resources of the endpoint. Each process owns one or more endpoints;
the association is static. Each thread running within this process can be attached to at
most one endpoint; the association is dynamic.

In MPI with no endpoints, there is a fixed one-to-one correspondence between MPI pro-
cesses and ranks in MPI_COMM_WORLD; when a thread executes an MPI call with argument
MPI_COMM_WORLD then the rank of the caller is the rank of the MPI process containing
this thread.

Similarly, in our proposal, there is a one-to-one correspondence between MPI endpoints
and ranks in MPI_COMM_ENDPOINTS; when a thread that is attached to an MPI endpoint
executes an MPI call with argument MPI_COMM_ENDPOINTS then the caller’s rank is the
rank of the attached endpoint. Thus, if a thread is attached to endpoint 5, then a call
by that thread to MPI_SEND(. . . , MPI_COMM_ENDPOINTS) will appear as a send by the
MPI process with rank 5 in MPI_COMM_ENDPOINTS. Similarly, if a thread executes

MPI_Comm_Dup(MPI_COMM_ENDPOINTS, newcomm);

MPI_Send(..., newcomm);

Then the send appears to be executed by the MPI process with rank 5 in newcomm.

0.2.2 Initialization

A new initialization call is provided to generate endpoints.

MPI_INIT_ENDPOINT(count, thread_level, endpoints)

IN count number of endpoints created at local process (integer)

IN thread_level thread level of support (integer)

OUT endpoints array of endpoints (array of handles)

int int MPI_Init_endpoint_end(int *argc, char **argv, int count, int*

thread_level, MPI_Endpoint* endpoints)

MPI_INIT_ENDPOINT(COUNT, THREAD_LEVEL, ENDPOINTS, IERROR)

INTEGER COUNT, THREAD_LEVEL, ENDPOINTS(*), IERROR

The first two arguments in the C/C++ function MPI_Init_endpoint_begin are either
the arguments of the main() function, or NULL; see the description of MPI_INIT in [3, §8.7]
for details.

The other arguments of MPI_ENDPOINT_INIT specify:
count: the number of endpoints created at the local OS process. This must be less

or equal to the maximum value supported by the system. It can be different at different

4



processes.
thread_level: the level of thread support for the created endpoints. This must be less

or equal to the value supported by the system. If more than one endpoint is created within
one process, then the level of thread support must be at least MPI_THREAD_FUNNELED.

The argument endpoints is an array of length count. The call returns an array of handles
to (opaque) endpoint objects.

The initialization code must be aware of system parameters, such as the maximum
number of endpoints supported per process or the maximum level of thread support. These
can be passed through argc/argv or other such mechanism, or set by arguments to mpiexec.

Advice to implementors. If level of thread support and maximum number of endpoints
is set by mpiexec, then it is recommended to use the arguments -threadlevel ¡ ¿ and -

endpoints ¡ ¿, with thread level from 0 (not supported) to 3 (dully supported).

Good quality implementations will support a large number of endpoints; the selection
of the “best” number of endpoints will be system and application dependent, similarly
to the selection of the “best” number of threads. (End of advice to implementors.)

The call to MPI_INIT_ENDPOINT generates four communicators:

MPI_COMM_ENDPOINTS communicator that includes all endpoints

MPI_COMM_WORLD Communicator that includes the first endpoint of each OS
process

MPI_COMM_PROCESS Communicator that includes all endpoints within the local
OS process

MPI_COMM_SELF Communicator that contains exactly one endpoint

Endpoints within each process are ordered by endpoint number and have consecutive
ranks in MPI_COMM_ENDPOINTS and MPI_COMM_PROCESS. This is illustrated in Figure 2.

An error of class MPI_ERR_ENDPOINT is returned if the initialization call fails.
All MPI programs must contain at least one call per OS process to an MPI initialization

routine. If only one endpoint is created at the OS process, the call can be one of MPI_INIT,
MPI_INIT_THREAD or MPI_INIT_ENDPOINT. If more than one endpoint is created, then
the initialization must use MPI_INIT_ENDPOINT. Additional calls to initialization routines
are erroneous. The only MPI functions that can be invoked before MPI_INIT_ENDPOINT
are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED.

An initialization with MPI_INIT creates the same MPI environment as an initialization
with MPI_ENDPOINT_INIT that creates one endpoint, with thread level
MPI_THREAD_SINGLE.

An initialization with MPI_INIT_THREAD creates the same MPI environment as an
initialization with MPI_INIT_ENDPOINT that creates one endpoint, with thread support
at the same level as returned by the provided argument of MPI_INIT_THREAD.

Advice to users. MPI_COMM_WORLD and derived communicators should be used by
code that is unaware of multiple endpoints per process; MPI_COMM_ENDPOINTS and
derived communicators should be used by code that is aware of multiple endpoints
per process.

5



OS Process

Endpoint Endpoint

OS Process

Endpoint Endpoint Endpoint

0 0 0 0 0 MPI_COMM_SELF

  0                            1   0                          1                           2 MPI_COMM_PROCESS

  0                                                                      1

  0                            1                                        2                          3                           4  

MPI_COMM_WORLD

MPI_COMM_ENDPOINTS

thread thread thread

Figure 2: Communicators created by a call to MPI_INIT_ENDPOINT

Once MPI is initialized, the code can query the level of thread support using
MPI_QUERY_THREAD and can find the number of endpoints per process by querying
the size of MPI_COMM_PROCESS. (End of advice to users.)

Advice to implementors. The four communicators should be always created when MPI
is initialized, even if it is initialized with MPI_INIT or MPI_INIT_THREAD. If a process
initializes with MPI_INIT or MPI_INIT_THREAD, then MPI_COMM_PROCESS at that
process is a duplicate of MPI_COMM_SELF. If all processes initialize with MPI_INIT
or MPI_INIT_THREAD, then MPI_COMM_ENDPOINTS is a duplicate of
MPI_COMM_WORLD. (End of advice to implementors.)

Discussion. The current design assumes that the same level of thread support is
provided at all endpoints at the same OS process, but different OS processes can
provide different levels of thread support. (End of discussion.)

0.2.3 Thread Attachment

Any newly spawned thread is attached, by default, to the first endpoint of the process.
Thus, code that uses only one endpoint per OS process requires no modification. Threads
can be detached and re-attached to any endpoint.

MPI_THREAD_DETACH()

int MPI_Thread_detach()

MPI_THREAD_DETACH(IERROR)

INTEGER IERROR

6



This call detaches the calling thread from the endpoint it is currently attached to. The
call outcome is undefined if the invoking thread is not attached to an endpoint or if there is a
pending local MPI call on that endpoint (i.e., a non-blocking MPI call that is not complete)
and no other thread is attached to it.

MPI_THREAD_ATTACH(endpoint)

INOUT endpoint endpoint (handle)

int int MPI_Thread_attach(MPI_Endpoint endpoint)

MPI_THREAD_ATTACH (ENDPOINT, IERROR)

INTEGER ENDPOINT, IERROR

The function attaches the invoking thread to the specified endpoint. A thread may
attach to at most one endpoint. The call outcome is undefined if the invoking thread is
already attached, or if the level of thread support is MPI_THREAD_FUNNELED and a thread
is already attached to the endpoint.

The MPI_THREAD_ATTACH and MPI_THREAD_DETACH calls are local. We discuss
progress when an endpoint has no attached thread in Section 0.2.4.

An error of class MPI_ERR_ENDPOINTS is returned if the attach or detach calls fail.

0.2.4 Communication With Endpoints

Unless said otherwise, whenever “process” is mentioned in the MPI standard, it should be
understood to mean “MPI process”, i.e., an endpoint and all the threads attached to that
endpoint. The rules listed below follow from this interpretation.

A thread must be attached to an endpoint (i.e. must be part of an MPI process) in
order to make MPI calls other than MPI_INIT, MPI_INIT_THREAD, MPI_INIT_ENDPOINT,
MPI_GET_VERSION, MPI_INITIALIZED, MPI_FINALIZED and MPI_THREAD_ATTACH.

MPI handles are local to an MPI process and cannot be communicated between MPI
processes, even within the same OS process. Thus, a handle returned by an MPI call of a
thread attached to an endpoint can be used only by threads attached to that same endpoint.

The rules and restrictions specified by the MPI standard [3, §12.4] for threads continue
to apply. In particular, a blocking MPI call will block the thread that executes the call,
but will not affect other threads. The blocked thread will continue execution when the call
completes. Since each thread can be attached to only one endpoint, deadlock situations do
not arise. Two distinct threads should not block on the same request.

Advice to implementors. The support of multiple MPI processes within one address
space should not be different than the support of multiple MPI processes, each within
a distinct address space, within one OS image. In particular, communication using
the MPI_THREAD_FUNNELED model, with k endpoints in one OS process within an
OS image, should be performing as well or better than communication with k single-
threaded OS processes, each with one endpoint, in that OS image. (End of advice to
implementors.)

7



Progress

The MPI standard specifies situations where progress on an MPI call at an agent might
depend on the execution of matching MPI calls at other agents. Thus, a blocking send op-
eration might not return until a matching receive is executed; a blocking call to a collective
operation call might not return until the call is invoked by all other processes in the com-
municator; and so on. On the other hand, a non-blocking send or non-blocking collective
will return irrespective of activities at other MPI processes.

These rules are extended to the situation where an OS process may have multiple
endpoints: a blocking send on an endpoint might not return until a matching receive has
occurred at the destination endpoint; and a blocking call to a collective operation might
not return until the operation is invoked at all endpoints of the communicator (including
endpoints at the same OS process). On the other hand, a non-blocking send or a non-
blocking call to a collective operation will return, irrespective of the activities of threads
attached to other endpoints (including threads in the same address space).

The same rules dictate progress when an endpoint has no attached thread. An endpoint
with no attached thread might prevent progress of an MPI call if the progress of that call
depends on the execution of a matching MPI call at that endpoint, but will not prevent
progress of other MPI calls. Thus, a blocking send might not return if no thread is attached
to the destination endpoint; a blocking call to a collective operation call might not return if
one of the endpoints in the communicator has no attached thread. However, a non-blocking
send will return even if there is no thread attached to the destination endpoint; and a
non-blocking call to a collective operation will return even if one of the endpoints in the
communicator has no attached thread.

Finalize

MPI_FINALIZE must be invoked once at each OS process. The call should be invoked only
after all pending MPI calls at that process have completed. (This is an exception to the
rule – we do not require a separate call for each MPI process.)

Memory Allocation

Memory allocated by MPI_ALLOC_MEM [3, §6.2] can be used only for communication with
the endpoint the calling thread is attached to.

Rationale. Endpoints may be supported by distinct adapters, each requiring different
memory areas for efficient communication. (End of rationale.)

Error Handling

Error handlers are attached to endpoints. A communicator may have different error handlers
attached to the different endpoints of that communicator within the same address space.

The same rule applies to error handlers attached to windows or files.

Process Manager Interface

The functionMPI_COMM_SPAWN function can be used to spawn OS processes with multiple
endpoints, with the same number of endpoints at each OS process. The number of spawned
OS processes is specified by the argument maxprocs. The number of endpoints per OS

8



process is specified by the value of the reserved key num_endpoints in the info argument. If
the key num_endpoints is not provided in the info argument, then the new communicator
has one endpoint per OS process. The call returns an error of class MPI_ERR_SPAWN if
it cannot generate the required number of endpoints per process. If it succeeds, then it
returns an intercommunicator that contains the parent endpoints in the local group and
the first endpoint of each spawned process in the remote group. This intercommunicator
has, as local group, the endpoints of the comm argument of MPI_COMM_SPAWN, and, as a
remote group, the endpoints of newly created MPI_COMM_WORLD. This intercommunicator
will be returned at a newly spawned process by the call to MPI_GET_PARENT (for threads
attached to the first endpoint of the OS process). One error code per OS process is returned
in array_of_errcodes argument.

A newly spawned OS process has to initialize MPI with MPI_INIT_ENDPOINTS if it
contains more than one endpoint.

The function MPI_COMM_SPAWN_MULTIPLE is extended in a similar manner. The
function is passed multiple array arguments. The values associated with the key
num_endpoints in the i-th entry of the info array argument specifies the number of endpoints
to generate in each of the processes that execute the i-th command.

Windows

An invocation to MPI_WIN_CREATE(base, size, disp_unit, info, comm, win) may return a
different window for different endpoints in the same address space. Windows associated
with different endpoints in the same address space may overlap. However, the outcome
of a code where conflicting accesses occur to a location that appears in two windows is
undefined.

I/O

The invocation to MPI_FILE_OPEN returns a distinct file handle at each endpoint. Note
that the function is collective and must be invoked at all endpoints of the communicator
with the same file name and access mode arguments.

An invocation to MPI_FILE_SET_VIEW can set a different view of the file for each file
handle argument (passing different disp, filetype or info arguments) – hence a different view
at each endpoint within the same address space.

Data access calls that use individual file pointers (such as MPI_FILE_READ) maintain
a distinct file pointer for each file handle; hence different endpoints within the same address
space are associated with distinct individual file pointers.

0.3 Extensions

The functions described in this section facilitate the use of endpoints

0.3.1 Endpoint Attributes

Attributes can be associated with endpoints. Endpoint attributes are manipulated using
the following functions:

9



MPI_ENDPOINT_CREATE_KEYVAL(endpoint_keyval)

OUT endpoint_keyval key value for future access (integer)

int MPI_Endpoint_create_keyval(int *endpoint_keyval)

MPI_ENDPOINT_CREATE_KEYVAL(ENDPOINT_KEYVAL, IERROR)

INTEGER ENDPOINT_KEYVAL, IERROR

Rationale. Endpoints cannot be duplicated or freed; they do not change after
initialization. Hence, no call-back functions are associated with endpoint key values.
(End of rationale.)

MPI_ENDPOINT_FREE_KEYVAL(endpoint_keyval)

INOUT endpoint_keyval key value (integer)

int MPI_Endpoint_free_keyval(int *endpoint_keyval)

MPI_ENDPOINT_FREE_KEYVAL(ENDPOINT_KEYVAL, IERROR)

INTEGER ENDPOINT_KEYVAL, IERROR

MPI_ENDPOINT_SET_ATTR(endpoint, endpoint_keyval, attribute_val)

INOUT endpoint endpoint to which attribute will be attached (handle)

IN endpoint_keyval key value

IN attribute_val attribute value

int MPI_Endpoint_set_attr(MPI_Endpoint endpoint, int endpoint_keyval, void

*attribute_val)

MPI_ENDPOINT_SET_ATTR(ENDPOINT, ENDPOINT_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER ENDPOINT, ENDPOINT_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_ENDPOINT_GET_ATTR(endpoint, endpoint_keyval, attribute_val, flag)

INOUT endpoint endpoint to which attribute is attached (handle)

IN endpoint_keyval key value

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Endpoint_get_attr(MPI_Endpoint endpoint, int endpoint_keyval, void

*attribute_val, int *flag)

10



MPI_ENDPOINT_GET_ATTR(ENDPOINT, ENDPOINT_KEYVAL, ATTRIBUTE_VAL, FLAG,

IERROR)

INTEGER ENDPOINT, ENDPOINT_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_ENDPOINT_DELETE_ATTR(endpoint, endpoint_keyval)

INOUT endpoint endpoint to which attribute is attached (handle)

IN endpoint_keyval key value

int MPI_Endpoint_get_attr(MPI_Endpoint endpoint, int endpoint_keyval)

MPI_ENDPOINT_GET_ATTR(ENDPOINT, ENDPOINT_KEYVAL, IERROR)

INTEGER ENDPOINT, ENDPOINT_KEYVAL, IERROR

Advice to users. The following attributes may facilitate the design of libraries that
use endpoints:

A mutex reference, to synchronize threads attached to the same endpoint.

A count of the number of threads attached to the endpoint.

A list of the ids of the threads attached to an endpoint (End of advice to users.)

0.3.2 Merge of Communicators

The following function is used to merge partially overlapping communicator groups.

MPI_COMM_MERGE(comm1, comm2, newcomm)

IN comm1 first merged communicator (handle)

IN comm2 second merged communicator (handle)

OUT newcomm new communicator (handle)

int MPI_Comm_merge(MPI_Comm comm1, MPI_Comm comm2, MPI_Comm* newcomm)

MPI_COMM_MERGE(COMM1, COMM2, NEWCOMM, IERROR)

INTEGER COMM1, COMM2, NEWCOMM, IERROR

Either comm1 or comm2 can be null, but not both. If they are both non-null, then
the groups of comm1 and comm2 are merged together in the new communicator. As a
result the communicator returned in newcomm contains all endpoints that are in the same
connected component as the invoking endpoint. The ranks in the returned communicators
are arbitrary.

The effect of this function is illustrated in Figure 3.
The call is invoked by all 13 endpoints shown in the figure. 4 of the calls provide two

non-null communicator arguments, the other provide one non-null argument. The result is

11



0

1

2

3

0 1 2 3

0

1

2

0

1

2

0 1 2

4

5

6

0 1 2 3

7

0

1

2

3 4

Figure 3: Communicator created by the merge of several communicators

two disjoint communicators, one for each connected component of the input communicators.
MPI_COMM_MERGE is collective over each connected component of the input com-

municators.

Advice to users. This call is useful in a situation where a library is invoked collectively
by one endpoint per OS process (in the old MPI model).The library can invoke
MPI_COMM_MERGE with the communicator argument passed to the library and with
MPI_COMM_PROCESS in order to create a communicator containing all the endpoints
at these OS processes. (End of advice to users.)

0.4 Interoperability

This section discusses how the endpoint constructs can interact with other programming
models, such as Posix threads, OpenMP and PGAS languages.

0.4.1 Posix Binding

An MPI library is compatible with a POSIX thread library if the behavior described in the
previous section holds for threads spawned by the POSIX thread library.

0.4.2 example

We present below a simple “hello world” program. The program creates multiple endpoints
at each process, and attaches one thread to each endpoint. The thread attached to endpoint
zero gathers the tread ids of all the spawned threads and prints them.

Listing 1: Simple MPI hybrid program

1 #include <mpi . h>

12



2 #include <pos ix . h>
3 #include <s t d i o . h>
4 #define max endpoints 32
5

6 MPI Endpoints endpoint [ max endpoints ] ;
7 pthread t thread [ max endpoints ] ;
8

9 /∗ code executed by each thread ∗/
10 void ∗ f oo (void ∗ id )
11 {
12 int i = ( int ) id ;
13 long t i d = ( long ) thread [ i ] ;
14 int rank , s i z e ;
15 long ∗ recvbuf ;
16

17 MPI Thread detach ( ) ;
18 MPI Thread attach(&endpoint [ i ] ) ;
19 MPI Comm size (MPI COMM ENDPOINTS, s i z e ) ;
20 MPI Comm rank(MPI COMM ENDPOINTS, rank ) ;
21 i f ( rank == 0)
22 recvbuf = ( long ∗) mal loc ( s i z e ∗ s izeof ( long ) ) ;
23 MPI Gather(&t id , 1 , MPI LONG, &recvbuf , 1 , MPI LONG, 0 ,
24 MPI ENDPOINTS) ;
25 i f ( rank=0)
26 {
27 p r i n t f ( ”number o f endpoints i s %d ; t h e i r thread i d s are : ” ,
28 s i z e ) ;
29 for ( int j =0; j<s i z e ; j++)
30 p r i n t f ( ” %d ” , ∗( recvbuf+j ) ) ;
31 }
32 p t h r e a d e x i t (NULL) ;
33 }
34

35 int main ( )
36 {
37 MPI Init endpoint (NULL, NULL, max endpoints , max thread leve l ,
38 s i z e , rank ) ;
39

40 /∗ c r ea t e a thread f o r each endpoint ∗/
41 for ( int i =0; i < max endpoints ; i++)
42 pth r ead c r ea t e (&thread [ i ] , NULL, foo , (void ∗) i ) ;
43 p t h r e a d e x i t (NULL) ;
44 }

13



0.4.3 OpenMP

An MPI library is compatible with OpenMP if if the behavior described in the previous
section holds for threads as defined in the OpenMP standard.

0.4.4 PGAS languages

A UPC or Fortran implementation that is compatible with MPI will provide a mechanism
for identifying which threads (in UPC) or images (in Fortran) are within the same address
space. The MPI library should support the creation of at least one MPI endpoint per thread
(in UPC) or image (in Fortran).

0.4.5 Porting Codes to Hybrid MPI

Codes written with the current MPI interfaces port without change, and use one endpoint
per OS process. The transition from current MPI codes to codes using multiple endpoints
per OS process can entail one or more of the following scenarios:

1. Code is written to utilize multiple endpoints per OS process and leverage shared
memory communication within OS processes.

2. Libraries are written so that they can be invoked in parallel by one thread per end-
point; they compute correctly irrespective of the number of endpoints per OS process.
Such portability is important for MPI libraries invoked from UPC or Fortran: The
library can have one MPI process per UPC thread (or Fortran image), and its behavior
will not depend on the number of UPC threads per OS process.

3. Code written to use a single endpoint per OS process invokes a library written to use
multiple endpoints per OS process. This will enable recoding only critical kernels,
with no changes to the overall program logic.

MPI code can be written so that it has the same outcome, whether each MPI process
is a distinct OS process, or multiple MPI processes run within the same address space. The
only part of the code that has to be aware of the system configuration (i.e., the number
of MPI processes per OS process) is the initialization code that creates the endpoints and
attaches threads to endpoints. To achieve this portability one needs to ensure that threads
belonging to different MPI processes do not interfere with each other (i.e., do not communi-
cate inadvertently). Consider the simple case of a code with single-threaded MPI processes
written using C, C++ or Fortran. Problems arise if the code uses mutable static variables:
When the threads are in distinct address spaces then the threads have distinct instances of
these variables; but when they run in the same address space, they would share the same
instance.

In C and C++, static heap variables can be made thread-private by declaring them
with the storage class keyword __thread. This storage specifier ensures that there will
be one separate instance of the declared variable for each thread. While not standard,
this extension is widely supported [4, §5.54]. This extension is not currently supported in
Fortran – we hope this will change. Alternatively, a preprocessor can be used for replacing
each static heap variable with a dynamic one that is allocated separately by each thread –
see, e.g., [2]. Additional care must be taken to ensure that the library code invokes only
thread-safe libraries.

14



Bibliography

[1] E.D. Demaine. A threads-only MPI implementation for the development of parallel
programs. In Proceedings of the 11th International Symposium on High Performance
Computing Systems, pages 153–163. Citeseer, 1997. 0.1.1

[2] C. Huang, O. Lawlor, and L.V. Kale. Adaptive mpi. Lecture notes in computer science,
pages 306–322, 2003. 0.1.1, 0.4.5

[3] MPI Forum. MPI: A Message-Passing Interface Standard V2.2, 2009. 0.1.1, 0.2.2, 0.2.4,
0.2.4

[4] Richard M. Stallman and the GCC Developer Community. Using the GNU Compiler
Collection (for GCC version 4.4.2). 0.4.5

[5] H. Tang, K. Shen, and T. Yang. Program transformation and runtime support for
threaded MPI execution on shared-memory machines. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 22(4):673–700, 2000. 0.1.1

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


	Introduction
	Rationale
	Proposed Approach
	Outline

	MPI Support of Multiple Endpoints per Process
	MPI Endpoints
	Initialization
	Thread Attachment
	Communication With Endpoints
	Progress
	Finalize
	Memory Allocation
	Error Handling
	Process Manager Interface
	Windows
	I/O


	Extensions
	Endpoint Attributes
	Merge of Communicators

	Interoperability
	Posix Binding
	example
	OpenMP
	PGAS languages
	Porting Codes to Hybrid MPI


