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1 Introduction 

1.1 Current State 

In the next few years, supercomputers will be built of nodes with a increasingly large number 

of cores.  Indeed, much of the increase in performance will come from an increase in the 

number of cores per node, while the number of nodes will increase at a more modest rate. This 

increases the interest in good support for hybrid programming models that take advantage of 

shared memory inside shared memory nodes, while using message passing across nodes. 

We assume that such future systems will have hardware support for multiple, concurrent 

communication channels at a node: they may have multiple network interfaces, and each 

network interface may support multiple independent communication channels. This has 

already been the case on existing systems. 

The two most prevalent approaches to handle large SMP nodes are: 

MPI only:  One associates a process with each core; processes communicate using MPI, both 

between nodes and within a node.  

MPI+OpenMP:  One associates one multithreaded process with each node (each OS image) – 

typically with one (kernel) thread running on each core. MPI is used for communication across 

nodes, while OpenMP is used for handling threads within a node; the threads communicate 

using shared memory.   

The first model leads to an inefficient use of shared memory communication, as MPI forces an 

additional copy, going from address space to address space. The second model may lead to other 

inefficiencies: If only one thread makes MPI calls (the MPI_THREAD_FUNELLED model) 

then the single thread making theses calls becomes a bottleneck. If, on the other hand, we allow 

all threads to make MPI calls, then we have to use the MPI_THREAD_MULTIPLE model that 

requires a thread safe MPI implementation; such implementation is often less performing than a 

lock-free implementation [11]. 

In addition, OpenMP encourages a programming style with heavy use of fine-grain dynamic 

resource allocation (e.g., dynamic scheduling of the iterates of a parallel loop). It is easy to write 

code that has high scheduling overheads, and bad locality [3]. 
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1.2 Goals 

We seek a way of supporting a hybrid programming model, with the following properties: 

1. Intranode communication uses shared memory 

2. Internode communication uses-message passing 

3. The number of MPI end-points per node can be larger than one, but need not be equal 

to the number of cores / executing threads 

4. MPI end-points can be dedicated, to avoid the overhead of a thread-safe MPI library 

1.3 Possible Approaches 

One possible solution is to use memory segments shared across multiple processes. Some, or 

all of these processes would be MPI processes. The UNIX V IPC shared memory segment calls 

shmget, shmat, shmadt, and shmatctl provide mechanisms for allocating memory 

segments that are shared by multiple processes running on the same node [12, Section 2.1]; 

Windows provide similar capabilities. A current proposal [2] suggests extensions to MPI that 

will provide a portable syntax for the creation of  memory segments shared by multiple MPI 

processes on one node.  

Process parallelism was used quite frequently several decades ago, since thread support was 

rudimentary. As operating system support for threads improved, process parallelism has been 

discarded in favor of thread parallelism. Thread parallelism provides more flexibility, as all 

variable can be shared; it facilitates resource management, since each node is associated with one 

user process. (Shared memory segments persist even if the attached processes have died, and 

have to be reclaimed separately.) Shared memory languages such as OpenMP [4], or frameworks 

such as TBB [9], provide a higher-level task abstraction, and handle the mapping of tasks to 

threads in the run-time. It is not clear that there are compelling reasons to reverse this 

evolution. True, task parallel constructs in OpenMP or TBB are focused on load balancing and 

often encourage a programming style that leads to poor locality. We believe this is better 

handled by defining an OpenMP programming style that promotes locality, rather than by 

reverting to lower level, less flexible sharing mechanisms. 

Another approach is to improve multithreading support on MPI implementations, so that the 

overhead of sharing communication resources becomes insignificant. Note, however, that as the 

number of cores per node increases, systems are becoming more “NUMA-ish”: there is a 

significant difference in access time to local and remote memory; and cache-to-cache transfer 

time also varies. We may want to have more algorithmic control on the association of threads to 

MPI endpoints   to computational threads. 

The approach we propose in this document is to provide support to a model where kernel 

threads, rather than processes, serve as MPI endpoints. In this approach, each core (or a subset of 

the cores) could function as “MPI processes”, while communicating with other cores on the 

same node using shared memory, within the same address space. 

The proposed solution consists of three parts: 



 

 3 

1. Proposed extensions to MPI to enable the association of multiple MPI end-points with 

distinct threads within one process. These are described in Section 2. This proposal 

modifies and expands the proposal presented at the MPI-3 forum by Alexander Supalov 

[10] – with one key pragmatic difference: We do not focus on supporting an arbitrary 

number of threads, each acting as an MPI process, within one OS process but, rather, 

supporting a number of “MPI  processes”  equal to the number of distinct 

communication channels that the hardware supports: The MPI endpoints will be created 

at initialization time, and will not change during execution. The proposed approach does 

not require changes on how “MPI processes” are identified, and does not even require a 

thread-safe MPI library.  Therefore, we expect that changes to current implementations 

will be modest.  

2. A proposed binding of these MPI extensions to OpenMP. This is described in Section 

Error! Reference source not found.. 

3. A “manual of style” for the development of OpenMP codes with good locality. This is 

outlined in Section Error! Reference source not found.. 

We also discuss in Section 5 extensions to this proposal. 

2 MPI Support of Multiple Endpoints per Process 

2.1 Proposed Model  

To avoid confusion, we shall use the following definitions: 

Process: OS process – i.e., an entity consisting of an address space, an executable program, and 

other OS resources (such as file descriptors). 

Thread:  Kernel thread – i.e., a unit of execution consisting of a set of registers, a stack, etc. 

Each process has at least one thread; if it has multiple threads, then they share the same address 

space. Threads are preemptable and scheduled by the operating system.  

Fiber: User thread – i.e., a unit of execution that is scheduled on a thread by the run-time. A 

fiber is non preemptable (the OS can preempt the thread that executes the task, but cannot 

preempt the task and allocate another task to the thread). Fiber scheduling is cooperative, and 

fibers have to yield in order to enable another task to be scheduled on the executing thread. 

Endpoint: A set of resources that supports the independent execution of MPI communications. 

These can be physical resources (e.g., registers mapped into the address space of the process), or 

logical resources. The “endpoint” concept replaces the “MPI process” concept, to avoid 

confusion with OS processes.  Each process is associated with one or more endpoints. 

The fundamental insight of the proposed design is that we are separating the concept of an 

endpoint from the concepts of process or thread:  A process may be associated with multiple 

endpoints; the association of threads within this process with endpoints can be dynamic.   

 

In a static MPI model, there is a one-to-one correspondence between endpoints and ranks in 
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MPI_COMM_TWORLD
1
; we can index endpoints using the corresponding rank in 

MPI_COMM_TWORLD. When new communicators are created, each rank in a newly created 

communicator corresponds to a distinct rank in the input communicator. (In the old 

terminology, when a new communicator is created, each “MPI process” is associated with a 

unique new rank in the newly created communicator that contains it).  Thus, by induction, 

each rank in a communicator is associated with an endpoint – and distinct ranks within a 

communicator correspond to distinct endpoints.  

At any point in time a thread is associated with at most one endpoint; when this tread executes 

MPI calls, it executes calls directed to that endpoint.  Thus, if a thread is associated with 

endpoint 5, then a call to MPI_SEND(…, MPI_COMM_TWORLD) will appear as a send by the 

“MPI process” with rank 5 in MPI_COMM_TWORLD. Similarly, if a thread executes 

MPI_Comm_Dup(MPI_COMM_TWORLD, newcomm); 

MPI_Send(..., newcomm); 

Then the send appears to be executed by the “MPI process” with rank 5 in newcomm. 

 

Discussion: If we redesigned MPI from scratch then we could add to each MPI call an explicit 

caller rank – thus explicitly identifying which endpoint is used by the call; the association of 

threads to endpoints could change dynamically at each MPI call. But this would require a syntax 

change for the large majority of MPI calls. To avoid this, we separate between the operation 

that associates a thread with an endpoint and the subsequent MPI calls that use the endpoint; 

the “endpoint” or “caller rank” argument is implicit in the MPI calls. We expect that the most 

important use of the new design will be one where the association of threads to endpoints is not 

changing during computation, or is changing rarely. 

2.2 Initialization 

Discussion: We have two possible designs. (a) Have a new MPI_INIT call that creates upfront 

an “MPI_COMM_WORLD” with more than one port per process; or (b) start with one port 

per process in MPI_COMM_WORLD, and add new ports afterward. We choose the second 

design, in order to facilitate support for heterogeneous systems, where one might want to create 

a different number of ports at different processes. To do so, we need to have a process id and/or 

information on the processor name; these, in MPI, are associated with MPI_COMM_WORLD.   

We add a new predefined attribute MPI_ENDPOINTS that has integer type and holds the 

maximum number of MPI endpoints that can be created at the local process. This attribute is 

handled as other predefined attributes in MPI – see [7, §16.3.7] 

 

                                                

1

 We are not handling, for the time being, the dynamic process model, but the extension of the current proposal to support 

dynamic endpoint creation is not conceptually hard. Note that the interaction between thread support model and dynamic 

process creation is not clearly defined by the MPI standard: Do newly created processes inherit the same level of thread 

support as the processes in the original communicator? This will need to be clarified, before we can discuss dynamic ebndpoint 

creation. 



 

 5 

A program that uses multiple endpoints per process must initialize by calling 

MPI_INIT_ENDPOINT, next calling MPI_ENDPOINT_CREATE.  

 

MPI_INIT_ENDPOINT(required, provided)  

IN required  desired level of thread support (integer)  

OUT provided  provided level of thread support (integer)  

 
int MPI_Init_endpoint(int *argc, char *((*argv)[]), int required,  

      int *provided)  
 
MPI_INIT_ENDPOINT(REQUIRED, PROVIDED, IERROR)  
INTEGER REQUIRED, PROVIDED, IERROR  
 
int MPI::Init_endpoint(int& argc, char**& argv, int required)  

int MPI::Init_endpoint(int required)  
 

This first call has the same arguments as MPI_INIT_THREAD  [7, §12.4.3]. This call sets the 

thread support mode provided and creates MPI_COMM_WORLD with one endpoint at each 

process. After this call, MPI_COMM_WORLD can be queried, e.g. to find the processor name, 

or to find MPI_ENDPOINT,  the number of supported endpoints. 

As for MPI_THREAD_INIT(), the argument required specifies the required level of thread 

support, while the argument provided returns the actual level of thread support provided.  

The meaning of the possible values is as follows: 

 

MPI_THREAD_SINGLE: Only one thread can be associated with each endpoint; each thread 

is associated with an endpoint. 

 

MPI_THREAD_FUNELLED: Only  one thread can be associated with each endpoint;  the 

process may have additional threads that are not associated with any endpoint. 

 

MPI_THREAD_SERIALIZED: Multiple threads may be associated with the same endpoint. 

However, MPI calls using the same endpoint cannot be made concurrently by two distinct 

threads. 

 

MPI_THREAD_MULTIPLE: Multiple threads may be associated with the same endpoint and 

make concurrent MPI calls. 

 

Implementations can support only some of these modes.  
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The second call has the following syntax: 

MPI_ENDPOINT_CREATE(num_endpoints,array_of_endpoints)  

         IN  num_endpoints   number of endpoints (integer)  

 OUT array_of_endpoints  array of endpoint handles (array of handles) 

 
int MPI_Endpoint_create( int num_endpoints, MPI_Endpoint  
     *array_of_endpoints)  
 
MPI_ENDPOINT_CREATE(NUM_ENDPOINTS, ARRAY_OF_ENDPOINTS, IERROR)  

 INTEGER NUM_ENDPOINTS  
 INTEGER ARRAY_OF_ENDPOINTS(MPI_ENDPOINT_SIZE,*)  
 INTEGER IERROR  
 
int MPI::Endpoint_create(int num_endpoints, 
  MPI::Endpoint array_of_endpoints[])  

 
 

The second routine must be called before any communication occurs; it should be called at most 

once on each process. The call generates num_endpoints MPI endpoints at the calling 

process. It returns an array of handles to these endpoints in array_of_endpoints. This 

argument should be an array of length at least num_endpoints. The call is erroneous if 

num_endpoints > MPI_ENDPOINTS. 

 

The call is collective; it will generate a communicator MPI_COMM_TWORLD that includes 

all processes and has num_endpoints endpoints at each calling process. It will also create at 

each process a communicator MPI_COMM_PROCESS that is local to the process and contains 

all the endpoints at that process. At each process, the endpoint with rank 0 in 

MPI_COMM_PROCESS is also an endpoint in MPI_COM_WORLD (i.e. 

MPI_COMM_WORLD contains the first endpoint of each process). 

 

Implementation notes: 

1. Communication using the MPI_THREAD_SINGLE model, with k endpoints in one process 

at a node, should be performing as well or better than communication with k single-

threaded processes at the node. 

2. We  chose to define a new function MPI_INIT_ENDPOINTS, rather than reuse 

MPI_INIT_THREAD, to facilitate implementation on systems where it is inconvenient to 

change the number of ports dynamically. 

 

Discussion: 

If the current design (two initialization functions) is considered ugly, then the alternative is to 

have one combined initialization function, but have some predefined “load-time constants” 

that provide information on  the id and type of each process and the number of endpoints it 

supports. 
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2.3 Registration 

Thread registration functions associate and disassociate a thread with an endpoint. 

MPI_THREAD_REGISTER(endpoints, i) 

 IN endpoints     array of endpoint handles (array of handles) 

 IN index       index of endpoint to be used by thread  

 

 

int MPI_Thread_Register(MPI_Endpoints *endpoints, int index)  
 
MPI_THREAD_REGISTER (ENDPOINTS, INDEX, IERROR) 
INTEGER ENDPOINTS(MPI_ENDPOINT_SIZE,*) 
INTEGER INDEX, ENDPOINT 
 
int MPI::Endpoint::Register(MPI::Endpoint endpoints[], int index) 

 

The invocation of this call by a thread associates the invoking thread with the corresponding 

endpoint. Each thread can be registered with at most one endpoint at any point in time. If the 

thread support level is MPI_THREAD_SINGLE or MPI_THREAD_FUNELLED then each 

endpoint can be registered by only one thread.  If the thread support level is 

MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE then multiple threads can be 

registered with the same endpoint at the same time.  

 

MPI_THREAD_UNREGISTER(endpoints, i) 

 IN endpoints     array of endpoint handles (array of handles) 

 IN index       index of endpoint to be disassociated from thread (integer) 

 

 

int MPI_Thread_Unregister(MPI_Endpoints *endpoints, int index)  
 
MPI_THREAD_UNREGISTER (ENDPOINTS, INDEX, IERROR) 

INTEGER ENDPOINTS(MPI_ENDPOINT_SIZE,*) 
INTEGER INDEX, ENDPOINT 
 
int MPI::Endpoint::Unregister(MPI::Endpoint endpoints[], int 
index) 

 

This call disassociates the calling thread from the specified endpoint. This function should be 

invoked only when there are no pending local MPI calls on the specified endpoint. 

The rules and restrictions specified by the MPI standard [8, §12.4] for threads continue to 

apply. In particular, when a thread executes a blocking MPI call, then the calling thread may be 

descheduled, but other threads are not affected; two distinct threads should not block on the 

same request, as the MPI runtime will wake up only one thread when a request is satisfied.  

A thread must be registered with an endpoint before making MPI calls (other than queries on 

the predefined attributes of MPI_COMM_WORLD); the MPI calls will use the corresponding 
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endpoint. If an endpoint is the target of a communication (e.g., the receiver of a send, or a party 

to a collective communication) then the communication operation (i.e. the send or the 

collective operation) may not complete until a thread has registered with that endpoint.  

A blocking collective call will block all the threads that execute the call. Note that since each 

thread can be associated only with one endpoint, and cannot change its association while there 

are pending calls, then each thread executes the call only once, so that deadlock situations do 

not arise. 

2.4 Example 

_ 

... /* omit declarations */ 
MPI_Init_endpoint(argc, argv, MPI_THREAD_SINGLE, &provided); 
MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_ENDPOINTS, &pnum, &flag); 

#pragma omp parallel private(myid) 
{ 
   #pragma omp master 
 {  
 /* find number of threads in current team */ 
 Nthreads = omp_get_num_threads(); 

 if (Nthreads != *pnum) abort(); 
 /* create endpoints */ 
 MPI_Endpoint_create(Nthreads, *endpoints);  
 } 
 
/* associate each thread with an endpoint */ 
myid = omp_get_thread_num(); 

MPI_Endpoint_register(mydi, *endpoints); 
 
/* MPI communication involving all threads */ 
MPI_Comm_rank(MPI_COMM_TWORLD, &myrank); 
MPI_Comm_size(MPI_COMM_TWORLD, &size); 
MPI_Comm_rank(MPI_COMM_PROCESS, &mythreadid); 

if (myid != mythreadid) abort(); 
if (myrank > 0) 
 MPI_Isend(buff, count, MPI_INT, myrank-1, 3, 
     MPI_COM_TWORLD, &req[mythreadid); 
if (myrank < size) 
 MPI_Recv(buff1, count, MPI_INT, myrank+1, 3, 
     MPI_COMM_TWORLD); 

MPI_Wait(&req[mythreadid], &status[mythreadid]); 
}  
... 

 

2.5 Implementation Issues 

The support of multiple MPI endpoints at a process should not be different than the support 

of multiple processes at an SMP node. The only additional overhead is that, whenever a thread 
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executes an MPI call, it needs to access the data structures that implement the endpoint the 

thread is currently associated with. This requires an additional level of indirection for each MPI 

call (to retrieve from the thread private data a pointer to the endpoint the thread is currently 

associated with) and tests to check that the pointer is valid. 

The missing parts of this proposal can be extended by keeping in mind this analogy. Thus, 

MPI_FINALIZE() should be invoked by a thread attached to an endpoint exactly once for 

each endpoint. Once the invocation occurred, no further MPI calls on this endpoint are 

allowed. 

Of course, there are many possible optimizations. In particular, communication between 

endpoints in the same address space should require only one memory copy.  

2.6 Missing items 

A complete proposal needs additional items, including: 

 MPI_FINALIZE() (obvious) 

 mpiexec (easy) 

 Dynamic processes (reasonably easy) 

 Formalize relation of endpoint to (communicator, rank) pair  (easy) 

 One-sided (windows are per process – per address space, not per endpoint – will 

probably want windows to be associated with processes – not endpoints). 

 I/O (file descriptors are per process, not per endpoint – will probably want file 

manipulation to be per process, not per end-point). 

 New error codes 

 A discussion of progress – in relation to thread scheduling 

 Whatever constraints we need to impose on the use of thread synchronization 

operations 

 … 

3 OpenMP Binding 

3.1 OpenMP Scheduling 

We briefly review the scheduling mechanism of OpenMP (references are to the V 3.0 standard 

[8]) : 

The execution model of OpenMP is a fork-join model: The program starts in a single thread; a 

parallel construct forks a team of threads that execute in parallel (the team includes the 

master thread that reached the parallel construct); they join back at the exit from the parallel 

region. Parallel constructs can be nested. The exact number of threads allocated to a team is 
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determined by a complex formula and depends on various environmental variables, the depth of 

the parallel construct, the number of available threads, and arguments of the parallel construct 

[8, Section 2.4.1]. Once a team is created, the team’s threads do not change. A thread is 

associated with only one team at a time.  

On top of this thread model, OpenMP also has a fiber model. Work-sharing constructs, such 

as parallel loops, define fibers that can be dynamically allocated to the threads of the team 

associated with the innermost containing parallel construct.  OpenMP has much flexibility in 

chunking shared work into fibers and scheduling fibers to threads. For example OpenMP can 

introduce arbitrary scheduling point in untied OpenMP tasks – i.e., have these tasks yield at 

arbitrary points during their execution; such tasks can resume on any other thread in the team 

[8, Section 2.7.1].  Therefore, it is safe to assume that code in a work-sharing construct is 

executed by a thread in the team associated with the innermost containing parallel construct, 

but unsafe to make any assumptions on the identify of that thread, or make assumptions that 

pieces of code will execute on the same thread.  

3.2 Binding 

The preceding discussion  informs the restrictions listed below: 

3.2.1 MPI_THREAD_SINGLE Model 

 OpenMP has to use a fixed number of threads – The Internal Control Variable (ICV) 

dyn-var should be set to false, either externally, or using omp_set_dynamic(). 

 Each thread has to be bound to one endpoint. 

 No MPI calls can occur within work sharing constructs. 

3.2.2 MPI_THREAD_FUNELLED Model 

 No MPI calls can occur within work sharing constructs 

3.2.3 MPI_THREAD_SERIALIZED 

 MPI calls occurring within work-sharing constructs must be within a critical or 

master construct.  

3.2.4 MPI_THREAD_MULTIPLE 

No restriction (beyond those specified by MPI for threads).  

Note that if a blocking MPI call is made then the call will block the calling thread; the thread 

cannot be used to run other shared work.   
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4 OpenMP Manual of Style 

4.1 Static Model 

A simple MPI_OpenMP model that is broadly consistent with current MPI programming 

models is obtained by  

 Using a fixed number of threads in OpenMP 

 Having a fixed one-to-one mapping of MPI endpoints with OpenMP threads, using the 

MPI_THREAD_SINGLE model.  

 Refraining from using work sharing constructs (no parallel loops, sections, workshare 

or tasks) 

We further assume that the OS can bind threads to cores and ensure that the computing 

threads are not preempted. With these assumptions, then each core will be associated with one 

thread, and each thread will be associated with one MPI endpoint. From the MPI viewpoint, 

this provides the same model (and should provide the same performance) as when one attaches 

an MPI process to each core. However, the threads within one process can communicate using 

shared memory. This model does not provide automatic load-balancing at the nodes – the 

programmer manages resources directly. 

In some cases it may be appropriate to have a number of endpoints that is smaller than the 

number of cores. This, as the number of physical communication endpoints can be smaller than 

the number of threads, and the addition of a larger number of virtual endpoints may harm 

communication performance and stretch MPI scalability. For example, on cores that support a 

large number of simultaneous threads, we could have one communication thread and multiple 

computation threads; or we could have some computation cores and some communication 

cores. In such a case, we shall obey the same constrains listed above, except that we shall use the 

MPI_THREAD_FUNELLED mode and have only a subset of the threads associated with 

endpoints. 

4.2 Dynamic Model 

Work sharing constructs do simplify programming, by taking care of load balancing, but can 

lead to higher overheads and loss of locality. If one desires to use such constructs, then the usual 

rules about tuning OpenMP codes should be obeyed: 

 Make sure that the number of fibers is quite larger than the number of threads (a factor 

of 2--5). 

 Make sure that fibers are quite large (1000’s of instructions) 

 Avoid the use of constructs that force serializations, such as critical, master 

ordered and single. 
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4.3 Examples 

The examples have not (yet) been run – there are unlikely to be correct. 

We illustrate the design with a schematic red-black parallel SOR code, illustrated in the figure 

below: at odd iterations red values are updated using the neighboring black values, and at even 

iterations black values are updated using the neighboring red values. We assume that the array is 

partitioned into horizontal stripes – to simplify the example; a more communication efficient 

algorithm would partition into subsquares. We show codes that do not use work sharng and 

perform no load balancing. 
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4.3.1 Sequential code 

Pa g e  1  o f 1

s e q .c 8 /4 /0 9  1 1 :2 0  PM

# d e fin e  N   1 0 0 0 0  /*a r ra y  s iz e  * /

f lo a t a [N + 2 ][N + 2 ]; /*a r ra y * /

e n u m  C o lo r  {R E D , B L A C K }; 

e n u m  C o lo r  c o lo r  =  R E D ;

in t i, j;

in t m a in ( )

{

  in it(a ) ; 

  w h ile ( !c o n v e rg e d ( ) )  

    {

      fo r ( i =  1 ; i < =  N ; i+ + )

{

  fo r ( j =  1 + ( i% 2 )^c o lo r ; j < =  N ; j + = 2 )

    a [i][ j] =  (a [i][ j]+ a [i-1 ][j]+ a [i+ 1 ][j]+ a [i][ j-1 ]+ a [i][ j+ 1 ]) *0 .2 ;

  c o lo r  =  !c o lo r ;

}

    }

}

 

 

 

 

4.3.2 OpenMP code with no load balancing 

This code uses the threaded OpenMP model, with no work sharing.  
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Pa g e  1  o f 1

o p e n m p -b a rrie r.c 8 /4 /0 9  1 1 :2 0  PM

# in c lu d e  < o m p .h >

# d e fin e  N   1 0 0 0 0  /*a r ra y  s iz e  * /

f lo a t a [N + 2 ][N + 2 ]; /*a r ra y * /

e n u m  C o lo r  {R E D , B L A C K }; 

e n u m  C o lo r  c o lo r  =  R E D ;

in t i, j, ib e g in , ie n d , m y th re a d id , n th re a d s ;

# p ra g m a  o m p  th re a d p r iv a te ( i, j, ib e g in ,ie n d ,m y th re a d id ,n th re a d s ,c o lo r )

v o id  s e t_ th re a d _ s tr ip e ( in t m y th re a d id , in t n u m th re a d s , in t * ib e g in , in t * ie n d )  

  /*  c o m p u te  th re a d  s tr ip e  b o u n d a r ie s  * /

{

  * ib e g in  =  1 + m y th re a d id *N /n u m th re a d s ; 

  * ie n d  =  (m y th re a d id  = =  n u m th re a d s -1 )  ?  N  : (m y th re a d id + 1 )*N /n u m th re a d s ;

}

in t m a in ( )

{

  in it(a ) ;

  # p ra g m a  o m p  p a ra lle l

  {

    n th re a d s  =  o m p _ g e t_ n u m _ th re a d s ( ) ;

    m y th re a d id  =  o m p _ g e t_ th re a d _ n u m () ;

    s e t_ th re a d _ s tr ip e (m y th re a d id , n th re a d s , & ib e g in , & ie n d ) ;

   

    w h ile  ( !c o n v e rg e d ( ) )  

      {

  fo r ( j =  ( i% 2 )^c o lo r ; j < =  N ; j + = 2 )

    a [i][ j] =  (a [i][ j]+ a [i-1 ][j]+ a [i+ 1 ][j]+ a [i][ j-1 ]+ a [i][ j+ 1 ]) *0 .2 ;

c o lo r  =  !c o lo r ;

       # p ra g m a  o m p  b a r r ie r

      }

  }

}
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4.3.3 Single threaded MPI code 

Pa g e  1  o f 2

m p i.c 8 /4 /0 9  1 1 :1 9  PM

# in c lu d e  < m p i.h >

# in c lu d e  < s td lib .h >

# d e fin e  N  1 0 0 0 0 /*  a r ra y  s iz e   * /

in t s tr ip e _ s iz e ;       /*  lo c a l s tr ip e  s iz e  * /

f lo a t a [][N + 2 ]; /*  p ro c e s s  s tr ip e , w ith  a  s iz e  o n e  g h o s t ro w  

   o n  e a c h  s id e  * /

e n u m  C o lo r  {R E D , B L A C K };

e n u m  C o lo r  c o lo r  =  R E D ;

in t  n u m p ro c s , m y ra n k , k ;

in t b o u n d a ry ;

/*  f irs t re d  c e ll in  f irs t a n d  la s t ro w  * /

c h a r  fre d , lre d ; 

in t la s tro w ;

M P I_ D a ta ty p e  d ty p e [2 ]; /*  d a ta ty p e  fo r  ro w  o f s in g le  c o lo r  c e lls  * /

M P I_ R e q u e s t re q [4 ];

M P I_ S ta tu s  s ta tu s [4 ];

v o id  c o m p u te ( in t ib e g in , in t ie n d , in t f irs tc e ll)  

{

/*  p e r fo rm  ite ra tio n s  o n  ro w s  ib e g inÉ ie n d  * /

  in t i, j ;

  fo r ( i =  ib e g in ; i <  ie n d ; i+ + )  

    {

      fo r ( j =  firs tc e ll; j < =  N ; j + =  2 )

a [i][ j] =  (a [i][ j]+ a [i-1 ][j]+ a [i+ 1 ][j]+ a [i][ j-1 ]+ a [i][ j+ 1 ]) *0 .2 ;

firs tc e ll =  !f irs tc e ll;

    }

}

in t m a in ( )  

{

  M P I_ C o m _ s iz e (M P I_ C O M M _ W O R L D , & n u m p ro c s ) ;

  M P I_ C o m m _ ra n k (M P I_ C O M M _ W O R L D , & m y ra n k ) ;

  b o u n d a ry  =  (m y ra n k  = =  0 )  | |  (m y ra n k  = =  n u m p ro c s  -1 ) ;

  /*  d a ta ty p e s  fo r  re d  a n d  fo r  b la c k  s q u a re s  * /

  M P I_ T y p e _ v e c to r ( (N + 1 ) /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [0 ]) ;

  M P I_ T y p e _ v e c to r (N /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [1 ]) ;

  /*  c o m p u te  p ro c e s s  s tr ip e  s iz e , F irs t a n d  la s t s tr ip e s  s h o u ld  b e  s lig h tly  

     la rg e r  a s  th e y  c o m m u n ic a te  le s s  * /
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  s e t_ p ro c e s s _ s tr ip e (m y ra n k , n u m p ro c s , & s tr ip e _ s iz e ) ;

  f lo a t a [s tr ip e _ s iz e + 2 ][N + 2 ];

  in it(a ) ;

  /*  c o m p u te  lo c a tio n  o f f irs t c e ll o f re d  c o lo r  * /

  M P I_ S c a n  (  & s tr ip e _ s iz e , & la s tro w , 1 , M P I_ IN T , M P I_ S U M , M P I_ C O M M _ W O R L D );

  fre d  =  ( la s tro w -s tr ip e _ s iz e )% 2 ; 

  lre d  =  la s tro w % 2 ;

  w h ile  ( !c o n v e rg e d () )

    {

      k = 0 ;

      /*  c o m p u te  1 s t ro w  * /

      c o m p u te (1 ,1 ,fre d ^c o lo r ) ;

      if (m y ra n k  >  0 )  

{

  M P I_ Is e n d (& a [1 ][fre d ^c o lo r ], 1 , d ty p e [fre d ^c o lo r ], m y ra n k -1 , 0 , 

M P I_ C O M M _ W O R L D , & re q [k + + ]) ;

  M P I_ Ire c (& a [0 ][!fre d ^c o lo r ],1 , d ty p e [!fre d ^c o lo r ], m y ra n k -1 , 0 , 

   M P I_ C O M M _ W O R L D ,& re q [k + + ]) ;

}

/*  c o m p u te  la s t ro w  * /

      c o m p u te (s tr ip e _ s iz e ,s tr ip e _ s iz e ,lre d ^c o lo r ) ;

      if (m y ra n k  <  n u m p ro c s -1 )  

{

  M P I_ Is e n d (& a [s tr ip e _ s iz e ][lre d ^c o lo r ], 1 , d ty p e [lre d ^c o lo r ], m y ra n k + 1 , 0 , 

    M P I_ C O M M _ W O R L D , & re q [k + + ]) ;

  M P I_ Ire c (& a [s tr ip e _ s iz e + 1 ][!fre d ^c o lo r ],1 , d ty p e [!lre d ^c o lo r ], m y ra n k + 1 , 0 ,

   M P I_ C O M M _ W O R L D ,& re q [k ]) ;

}

      /*  c o m p u te  m id d le  ro w s  * /

      c o m p u te (2 , s tr ip e _ s iz e -1 , !fre d ^c o lo r ) ;

      M P I_ W a ita ll(4 -2 *b o u n d a ry , re q , s ta tu s ) ;

      c o lo r  =  !c o lo r ;

    }

}

 
 

 

4.3.4 OpenMP code with no load balancing and no barrier 

A thread proceeds to compute the red (resp. black) iteration on its stripe if the one or two 

neighbor threads finished the black (resp. red) iteration.  The avoidance of global 

synchronization makes code more resilient to jitter. This code has the same logic as the MPI 

code above: Point-to-point communications are replaced by thread-to-thread synchronizations. 
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# in c lu d e  < s td lib .h >

# in c lu d e  < o m p .h >

# d e fin e  N   1 0 0 0 0   /*a r ra y  s iz e  * /

in t n u m th re a d s ;         /*  n u m b e r  o f th re a d s  u s e d  * /

in t s tr ip e _ s iz e ;

f lo a t a [N + 2 ][N + 2 ]; /*a r ra y * /

e x te rn  in t d o n e [][2 ]; /*  u s e d  to  c o u n t n u m b e r  o f re a d y  p re d e c e s s o rs . A lte rn a tiv e  

   s e ts  a re  u s e d  to  a v o id  ra c e s . * /

e n u m  C o lo r   {R E D , B L A C K };

e n u m  C o lo r  c o lo r  =  R E D ;

in t ib e g in ,ie n d ,m y th re a d id ;

# p ra g m a  o m p  th re a d p r iv a te ( ib e g in , ie n d , m y th re a d id )

v o id  m y s ig n a l( in t id , e n u m  C o lo r  c o lo r )

{

  /*  s ig n a ls  a  p re d e c e s s o r  is  re a d y  * /

  if ( ( id  > =  0 )  & &  ( id  <  n u m th re a d s ) )  

    {

      # p ra g m a  o m p  a to m ic  

      d o n e [id ][c o lo r ]+ + ;

    }

}

v o id  m y w a it( in t id , e n u m  C o lo r  c o lo r )  

{

  /*  b u s y  w a its  u n til d e p e n d e n c ie s  a re  s a tis fie d  * /

  in t b o u n d a ry  =  ( ( id  = =  0 )  | |  ( id  = =  n u m th re a d s -1 ) ) ;

  w h ile  (d o n e [id ][c o lo r ] +  b o u n d a ry  <  2 )  

    {

    # p ra g m a  o m p  flu s h  (d o n e [id ][c o lo r ])

    }

}  

v o id  c o m p u te ( in t ib e g in , in t ie n d , e n u m  C o lo r  c o lo r )  

{

 /*  p e r fo rm  ite ra tio n s  o n  ro w s  ib e g in ... ie n d  * /

  in t i, j ;

  fo r  ( i =  ib e g in ; i <  ie n d ; i+ + )

    fo r  ( j =  1 + ( i% 2 )^c o lo r ; j < =  N ; j + =  2 )

      a [i][ j] =  (a [i][ j]+ a [i-1 ][ j]+ a [i+ 1 ][j]

 + a [i][ j-1 ]+ a [i][ j+ 1 ]) *0 .2 ;

}
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Note that the OpenMP code is similar in size to the MPI code: The simple barrier 

synchronization has been replaced with detailed point-to-point synchronization. 
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v o id  s e t_ th re a d _ s tr ip e ( in t m y th re a d id , in t n u m th re a d s , in t * ib e g in , in t * ie n d )  

  /*  c o m p u te  th re a d  s tr ip e  b o u n d a r ie s  * /

{

  * ib e g in  =  1 + m y th re a d id *N /n u m th re a d s ; 

  * ie n d  =  (m y th re a d id  = =  n u m th re a d s -1 )  ?  N  : (m y th re a d id + 1 )*N /n u m th re a d s ;

}

in t  m a in ( )

{

  in t i, j;

  in it(a ) ;

  # p ra g m a  o m p  p a ra lle l 

  {

    /*  in it ia liz a tio n  * /

    m y th re a d id  =  o m p _ g e t_ th re a d _ n u m () ;

    n u m th re a d s  =  o m p _ g e t_ n u m _ th re a d s ( ) ;

    s e t_ th re a d _ s tr ip e (m y th re a d id , n u m th re a d s , & ib e g in , & ie n d ) ;

  }

  in t d o n e [n u m th re a d s ][2 ]; 

  fo r  ( i= 0 ; i< n u m th re a d s ; i+ + )

    fo r  ( j= 0 ; j< 2 ; j+ + )

      d o n e [i][ j] =  0 ;

  # p ra g m a  o m p  p a ra lle l

  {

    w h ile  ( !c o n v e rg e d ( ) )  {

      /*  c o m p u te  firs t ro w  * /

      c o m p u te ( ib e g in ,ib e g in ,c o lo r ) ;

      m y s ig n a l(c o lo r , m y th re a d id -1 ) ;

      /*  c o m p u te  la s t ro w  * /

      c o m p u te ( ie n d ,ie n d ,c o lo r ) ;

      m y s ig n a l(m y th re a d id + 1 , c o lo r ) ;

      /*  c o m p u te  m id d le  * /

      c o m p u te ( ib e g in + 1 , ie n d -1 , c o lo r ) ;

      

      m y w a it(m y th re a d id ,c o lo r ) ;

      d o n e [m y th re a d id ][c o lo r ] =  0 ;

      c o lo r  =  !c o lo r ;

    }

  }

}
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4.3.5 Hybrid OpenMP+MPI code with no load balancing 

We combine the logic of the two previous codes: Some communications use shared memory, 

while others use message passing. 
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# in c lu d e  < s td lib .h >

# in c lu d e  < m p i.h >

# in c lu d e  < o m p .h >

ty p e d e f in t M P I_ E n d p o in t;

# d e fin e  N  1 0 0 0 0          /*  a r ra y  s iz e  * /

f lo a t a [][N + 2 ];    /*  p ro c e s s  a r ra y  s tr ip e  * /

e n u m  D ire c tio n   {U P , D O W N };

e n u m  C o lo r  {R E D , B L A C K };

in t s tr ip e _ s iz e ;     /*  n o d e  lo c a l s tr ip e  s iz e . S h o u ld  b e  la rg e r  fo r  f irs t a n d  la s t n o d e  

* /

in t m y ra n k , n u m th re a d s , m y th re a d id , ib e g in , ie n d , n u m p o r ts , n u m p ro c s , m y p ro c id , *p n u m , 

f la g , la s tro w , firs tro w p a r ity ;

e n u m  C o lo r  c o lo r  =  R E D ;

in t d o n e [][2 ];

in t fre d , lre d ; 

M P I_ D a ta ty p e  d ty p e [2 ];

M P I_ R e q u e s t re q [2 ][2 ];

M P I_ S ta tu s  s ta tu s [2 ];

M P I_ E n d p o in t e n d p o in ts [2 ];

in t p ro v id e d ;

# p ra g m a  o m p  th re a d p r iv a te ( ib e g in , ie n d , fre d , lre d , n u m th re a d s , m y th re a d id , re q , s ta tu s )

;

v o id  c o m p u te ( in t ib e g in , in t ie n d , in t f irs tc e ll)  

{

/*  p e r fo rm  ite ra tio n s  o n  ro w s  ib e g in ... ie n d  * /

  

  in t i, j ;

  fo r ( i =  ib e g in ; i <  ie n d ; i+ + )  {

    fo r ( j =  firs tc e ll; j  < =  N ; j + =  2 )

      a [i][ j] =  (a [i][ j]+ a [i-1 ][ j]+ a [i+ 1 ][j]

 + a [i][ j-1 ]+ a [i][ j+ 1 ]) *0 .2 ;

    f irs tc e ll =  !f irs tc e ll;

    }

}

v o id  m y s ig n a l( in t f irs tc e ll, e n u m  D ire c tio n  d ir , e n u m  C o lo r  c o lo r )  

{

  if (d ir  = =  D O W N ) 
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    {

    if  (m y th re a d id  = =  0 )

      {

if (m y ra n k  >  0 )  {

  /*  c o m m u n ic a te  d o w n  v ia  m e s s a g e  p a s s in g  * /

  M P I_ Is e n d (& a [1 ][f irs tc e ll], 1 , d ty p e [firs tc e ll], m y ra n k -1 , 0 , M P I_ C O M M _ W O R L D , & re q

[c o lo r ][0 ]) ;

  M P I_ Ire c (& a [0 ][!f irs tc e ll],1 , d ty p e [!f irs tc e ll], m y ra n k -1 , 0 , M P I_ C O M M _ W O R L D ,& re q

[c o lo r ][1 ]) ;

}

      }

    e ls e   /*  m y th re a d id  >  0  * /

      {  

/*  s h a re d  m e m o ry  c o m m u n ic a tio n  * /

        # p ra g m a  a to m ic

d o n e [m y th re a d id -1 ][c o lo r ]+ + ;

      }

    }

  e ls e  /*  d ir  = =  U P  * /

    if  (m y th re a d id  = =  n u m th re a d s -1 )

      {

if (m y ra n k  <  n u m p o r ts )  

  {

  /*  c o m m u n ic a te  u p  v ia  m e s s a g e  p a s s in g  * /

  M P I_ Is e n d (& a [s tr ip e _ s iz e ][f irs tc e ll],  1 , d ty p e [f irs tc e ll], m y ra n k + 1 , 0 , 

M P I_ C O M M _ W O R L D , & re q [c o lo r ][0 ]) ;

  M P I_ Ire c (& a [0 ][!f irs tc e ll],1 , d ty p e [!f irs tc e ll], m y ra n k -1 , 0 , M P I_ C O M M _ W O R L D ,& re q

[c o lo r ][1 ]) ;

  }

      }

    e ls e   /*  m y th re a d id   <  n u m th re a d s -1  * / 

      {

/*  s h a re d  m e m o ry  c o m m u n ic a tio n  * /

        # p ra g m a  a to m ic

d o n e [c o lo r ][m y th re a d id + 1 ]+ + ;

      }

}

v o id  m y w a it(e n u m  C o lo r  c o lo r )

{

  if ( ( (m y th re a d id  = =  0 )  & &  (m y ra n k  = =  0 ) )  | |  ( (m y th re a d id  = =  n u m th re a d s -1 )  & &  (m y ra n k  =

=  n u m p o r ts -1 ) ) )

    /*  b o u n d a ry  s tr ip e  * /

    d o n e [c o lo r ][m y th re a d id ]+ + ;

  if ( ( (m y th re a d id  = =  0 )  & &  (m y ra n k  >  0 ) )  | |  ( (m y th re a d id  = =  n u m th re a d s -1 )  & &  (m y ra n k  <  

n u m p o r ts -1 ) ) )  

    {

      /*  n e e d  to  c o m p le te  s e n d  &  re c e iv e  * /
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      M P I_ W a ita ll(2 ,re q [c o lo r ],s ta tu s ) ;

      d o n e [c o lo r ][m y th re a d id ]+ + ;

    }

  w h ile  (d o n e [c o lo r ][m y th re a d id ] <  2 )

    {

    # p ra g m a  o m p  flu s h  (d o n e [c o lo r ][m y th re a d id ])

    }

}

in t m a in ( in t a rg c , c h a r  * *a rg v )  

{

  

  /*  p ro c e s s  in it ia liz a tio n  * /

  M P I_ In it_ e n d p o in t(a rg c , a rg v , M P I_ T H R E A D _ S IN G L E , & p ro v id e d ) ;

  M P I_ C o m m _ g e t_ a ttr (M P I_ C O M M _ W O R L D , M P I_ E N D P O IN T S , & p n u m , & fla g ) ;

  if ( *p n u m  <  2 )  a b o r t( ) ;

  M P I_ C o m m _ s iz e (M P I_ C O M M _ W O R L D , & n u m p ro c s ) ;

  M P I_ C o m m _ ra n k (M P I_ C O M M _ W O R L D , & m y p ro c id ) ;

  

 /*  c o m p u te  s iz e  o f p ro c e s s  s tr id e ; f irs t a n d  la s tp ro c e s s e s  s h o u ld

    h a v e  la rg e r  s tr ip e s  * /

  s e t_ p ro c e s s _ s tr ip e (N , n u m p ro c s , & s tr ip e _ s iz e ) ;    

  f lo a t a [s tr ip e _ s iz e + 2 ][N + 2 ];

  in it(a ) ;

  /*  c re a te  o n e  o r  tw o  e n d p o in ts  a t e a c h  p ro c e s s  * /

  if ( (m y p ro c id  = =  0 )  | |  (m y p ro c id  = =  n u m p ro c s -1 ) )

    M P I_ E n d p o in t_ c re a te (1 , e n d p o in ts ) ;

  e ls e

    M P I_ E n d p o in t_ c re a te (2 , e n d p o in ts ) ;

  /*  d a ta ty p e s  fo r  re d  a n d  fo r  b la c k  s q u a re s  * /

  M P I_ T y p e _ v e c to r ( (N + 1 ) /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [0 ]) ;

  M P I_ T y p e _ v e c to r (N /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [1 ]) ;

  /*  c o m p u te   p a r ity  o f e a c h  p ro c e s s  s tr ip e  * /

  M P I_ S c a n  (  & s tr ip e _ s iz e , & la s tro w , 1 , M P I_ IN T , M P I_ S U M , M P I_ C O M M _ W O R L D );

  f irs tro w p a r ity  =  ( la s tro w -s tr ip e _ s iz e )% 2 ;

  /*  s ta r t th re a d  p a ra lle l c o m p u ta tio n  * /

  # p ra g m a  o m p  p a ra lle l

    /*  th re a d  in it ia liz a tio n  * /

    {

      n u m th re a d s  =  o m p _ g e t_ th re a d s _ n u m () ;

      m y th re a d id  =  o m p _ g e t_ n u m _ th re a d ( ) ;

    }

    

    in t d o n e [n u m th re a d s ][c o lo r ];
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The last code is much longer than the the sequential code and twice as long as the MPI code. It 

would be nice to have such a code automatically or semi-automatically generated by a compiler. 

A good compiler for UPC or CAF should be able to do so.  
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   # p ra g m a  o m p  p a ra lle l

    {   

      /*  re g is te r  e n d p o in ts  w ith  firs t o r  la s t th re a d  * /

      if ( (m y th re a d id  = =  0 )  & &  (m y p ro c id  >  0 ) )

M P I_ T h re a d _ re g is te r (0 , e n d p o in ts ) ;

      e ls e  if (m y th re a d id  = =  n u m th re a d s -1 )  

{

  if (m y p ro c id  = =  0 )

    M P I_ T h re a d _ re g is te r (0 , e n d p o in ts ) ;

  e ls e  if (m y p ro c id  <  n u m p ro c s -1 )

    M P I_ T h re a d _ re g is te r (1 , e n d p o in ts ) ;

}

      /*  a s s o c ia te  th re a d  s tr ip e  w ith  e a c h  th re a d ; m e s s a g e  p a s s in g  th re a d s  h a v e  s m a lle r  

s tr ip e s  * /

      s e t_ th re a d _ s tr ip e (& ib e g in , & ie n d ) ;

      /*  c o m p u te  lo c a tio n  o f f irs t c e ll o f re d  c o lo r  * /

      fre d  =  ( firs tro w p a r ity + ib e g in )% 2 ; 

      lre d  =  ( firs tro w p a r ity + ie n d )% 2 ;

      w h ile  (1 )  

{

  /*  c o m p u te  firs t ro w  * /

  c o m p u te ( ib e g in , ib e g in , fre d ^c o lo r ) ;

  m y s ig n a l( fre d ^c o lo r , U P , c o lo r ) ;

  /*  c o m p u te  la s t ro w  * /

  c o m p u te ( ie n d , ie n d , lre d ^c o lo r ) ;

  m y s ig n a l( lre d ^c o lo r , D O W N , c o lo r ) ;

  /*  c o m p u te  m id d le  * /

  c o m p u te ( ib e g in + 1 , ie n d -1 , !fre d ^c o lo r ) ;

  m y w a it(c o lo r ) ;

  c o lo r  =  !c o lo r ;

}

    }

}
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5 Extensions  

The proposal outlined in the paper extends the MPI model from a “process model” to a “thread 

model”.  OpenMP is a hybrid model, with support both for threads and for fibers; the current 

proposal essentially matches MPI to the OpenMP thread support.   

Increasingly, shared memory parallel programming languages and framework use a “fiber 

model”; this is true of TBB [9], .NET Task Parallel Library [6],  Java fork-join framework [5], 

Cilk [1], etc. future parallel shared memory languages are likely to hide threads from the user 

and provide only a view of fibers – with no control on the number of threads or the scheduling 

of fibers to threads.  This is because one does not need the protection and fairness provided by 

the OS scheduler – at the cost of some overhead; and the fiber scheduler can implement 

scheduling policies that are more appropriate to tightly coupled, cooperating fibers. 

A more elegant design would be to fully integrate MPI with a fiber model. By this, we mean 

that when a fiber executes a blocking MPI call, then the fiber yields and is descheduled, but the 

thread that was executing the fiber is not descheduled, and can pick another fiber for execution. 

This would require coordination between the MPI library and the language runtime:  

 When a fiber executes a blocking MPI call, then the MPI library will call the fiber 

scheduler to indicate that the fiber yielded. 

 When the call completes, the MPI library will mark the fiber as runnable.   

 Progress can be ensured by the fiber scheduler by periodically scheduling an MPI 

progress fiber. 

Such a scheme would integrate MPI with any of the languages above mentioned, and could 

lead to a lighter MPI infrastructure. 

It is likely that such a scheme could be of more general user – to support “blocking user calls” 

for a variety of purposes. In particular, such interface could be used to interface parallel codes 

that use distinct fiber run-times (and possibly run on distinct sets of threads). The basic 

functions required are: 

 A callback to mark a fiber as blocked and associate it with an event. 

 A call to mark an event as complete. 

 A mechanism to split resources (statically or dynamically) among distinct subsystems. 

 

Such a design would require changes both on the MPI side and on the language runtime side, 

hence is beyond the scope of the MPI 3 forum – but should be considered as a research 

direction. 
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