

 1

A PROPOSAL FOR HYBRID PROGRAMMING

SUPPORT ON HPC PLATFORMS

MARC SNIR

8/5/2009

1 Introduction

1.1 Current State

In the next few years, supercomputers will be built of nodes with a increasingly large number

of cores. Indeed, much of the increase in performance will come from an increase in the

number of cores per node, while the number of nodes will increase at a more modest rate. This

increases the interest in good support for hybrid programming models that take advantage of

shared memory inside shared memory nodes, while using message passing across nodes.

We assume that such future systems will have hardware support for multiple, concurrent

communication channels at a node: they may have multiple network interfaces, and each

network interface may support multiple independent communication channels. This has

already been the case on existing systems.

The two most prevalent approaches to handle large SMP nodes are:

MPI only: One associates a process with each core; processes communicate using MPI, both

between nodes and within a node.

MPI+OpenMP: One associates one multithreaded process with each node (each OS image) –

typically with one (kernel) thread running on each core. MPI is used for communication across

nodes, while OpenMP is used for handling threads within a node; the threads communicate

using shared memory.

The first model leads to an inefficient use of shared memory communication, as MPI forces an

additional copy, going from address space to address space. The second model may lead to other

inefficiencies: If only one thread makes MPI calls (the MPI_THREAD_FUNELLED model)

then the single thread making theses calls becomes a bottleneck. If, on the other hand, we allow

all threads to make MPI calls, then we have to use the MPI_THREAD_MULTIPLE model that

requires a thread safe MPI implementation; such implementation is often less performing than a

lock-free implementation [11].

In addition, OpenMP encourages a programming style with heavy use of fine-grain dynamic

resource allocation (e.g., dynamic scheduling of the iterates of a parallel loop). It is easy to write

code that has high scheduling overheads, and bad locality [3].

 2

1.2 Goals

We seek a way of supporting a hybrid programming model, with the following properties:

1. Intranode communication uses shared memory

2. Internode communication uses-message passing

3. The number of MPI end-points per node can be larger than one, but need not be equal

to the number of cores / executing threads

4. MPI end-points can be dedicated, to avoid the overhead of a thread-safe MPI library

1.3 Possible Approaches

One possible solution is to use memory segments shared across multiple processes. Some, or

all of these processes would be MPI processes. The UNIX V IPC shared memory segment calls

shmget, shmat, shmadt, and shmatctl provide mechanisms for allocating memory

segments that are shared by multiple processes running on the same node [12, Section 2.1];

Windows provide similar capabilities. A current proposal [2] suggests extensions to MPI that

will provide a portable syntax for the creation of memory segments shared by multiple MPI

processes on one node.

Process parallelism was used quite frequently several decades ago, since thread support was

rudimentary. As operating system support for threads improved, process parallelism has been

discarded in favor of thread parallelism. Thread parallelism provides more flexibility, as all

variable can be shared; it facilitates resource management, since each node is associated with one

user process. (Shared memory segments persist even if the attached processes have died, and

have to be reclaimed separately.) Shared memory languages such as OpenMP [4], or frameworks

such as TBB [9], provide a higher-level task abstraction, and handle the mapping of tasks to

threads in the run-time. It is not clear that there are compelling reasons to reverse this

evolution. True, task parallel constructs in OpenMP or TBB are focused on load balancing and

often encourage a programming style that leads to poor locality. We believe this is better

handled by defining an OpenMP programming style that promotes locality, rather than by

reverting to lower level, less flexible sharing mechanisms.

Another approach is to improve multithreading support on MPI implementations, so that the

overhead of sharing communication resources becomes insignificant. Note, however, that as the

number of cores per node increases, systems are becoming more “NUMA-ish”: there is a

significant difference in access time to local and remote memory; and cache-to-cache transfer

time also varies. We may want to have more algorithmic control on the association of threads to

MPI endpoints to computational threads.

The approach we propose in this document is to provide support to a model where kernel

threads, rather than processes, serve as MPI endpoints. In this approach, each core (or a subset of

the cores) could function as “MPI processes”, while communicating with other cores on the

same node using shared memory, within the same address space.

The proposed solution consists of three parts:

 3

1. Proposed extensions to MPI to enable the association of multiple MPI end-points with

distinct threads within one process. These are described in Section 2. This proposal

modifies and expands the proposal presented at the MPI-3 forum by Alexander Supalov

[10] – with one key pragmatic difference: We do not focus on supporting an arbitrary

number of threads, each acting as an MPI process, within one OS process but, rather,

supporting a number of “MPI processes” equal to the number of distinct

communication channels that the hardware supports: The MPI endpoints will be created

at initialization time, and will not change during execution. The proposed approach does

not require changes on how “MPI processes” are identified, and does not even require a

thread-safe MPI library. Therefore, we expect that changes to current implementations

will be modest.

2. A proposed binding of these MPI extensions to OpenMP. This is described in Section

Error! Reference source not found..

3. A “manual of style” for the development of OpenMP codes with good locality. This is

outlined in Section Error! Reference source not found..

We also discuss in Section 5 extensions to this proposal.

2 MPI Support of Multiple Endpoints per Process

2.1 Proposed Model

To avoid confusion, we shall use the following definitions:

Process: OS process – i.e., an entity consisting of an address space, an executable program, and

other OS resources (such as file descriptors).

Thread: Kernel thread – i.e., a unit of execution consisting of a set of registers, a stack, etc.

Each process has at least one thread; if it has multiple threads, then they share the same address

space. Threads are preemptable and scheduled by the operating system.

Fiber: User thread – i.e., a unit of execution that is scheduled on a thread by the run-time. A

fiber is non preemptable (the OS can preempt the thread that executes the task, but cannot

preempt the task and allocate another task to the thread). Fiber scheduling is cooperative, and

fibers have to yield in order to enable another task to be scheduled on the executing thread.

Endpoint: A set of resources that supports the independent execution of MPI communications.

These can be physical resources (e.g., registers mapped into the address space of the process), or

logical resources. The “endpoint” concept replaces the “MPI process” concept, to avoid

confusion with OS processes. Each process is associated with one or more endpoints.

The fundamental insight of the proposed design is that we are separating the concept of an

endpoint from the concepts of process or thread: A process may be associated with multiple

endpoints; the association of threads within this process with endpoints can be dynamic.

In a static MPI model, there is a one-to-one correspondence between endpoints and ranks in

 4

MPI_COMM_TWORLD
1
; we can index endpoints using the corresponding rank in

MPI_COMM_TWORLD. When new communicators are created, each rank in a newly created

communicator corresponds to a distinct rank in the input communicator. (In the old

terminology, when a new communicator is created, each “MPI process” is associated with a

unique new rank in the newly created communicator that contains it). Thus, by induction,

each rank in a communicator is associated with an endpoint – and distinct ranks within a

communicator correspond to distinct endpoints.

At any point in time a thread is associated with at most one endpoint; when this tread executes

MPI calls, it executes calls directed to that endpoint. Thus, if a thread is associated with

endpoint 5, then a call to MPI_SEND(…, MPI_COMM_TWORLD) will appear as a send by the

“MPI process” with rank 5 in MPI_COMM_TWORLD. Similarly, if a thread executes

MPI_Comm_Dup(MPI_COMM_TWORLD, newcomm);

MPI_Send(..., newcomm);

Then the send appears to be executed by the “MPI process” with rank 5 in newcomm.

Discussion: If we redesigned MPI from scratch then we could add to each MPI call an explicit

caller rank – thus explicitly identifying which endpoint is used by the call; the association of

threads to endpoints could change dynamically at each MPI call. But this would require a syntax

change for the large majority of MPI calls. To avoid this, we separate between the operation

that associates a thread with an endpoint and the subsequent MPI calls that use the endpoint;

the “endpoint” or “caller rank” argument is implicit in the MPI calls. We expect that the most

important use of the new design will be one where the association of threads to endpoints is not

changing during computation, or is changing rarely.

2.2 Initialization

Discussion: We have two possible designs. (a) Have a new MPI_INIT call that creates upfront

an “MPI_COMM_WORLD” with more than one port per process; or (b) start with one port

per process in MPI_COMM_WORLD, and add new ports afterward. We choose the second

design, in order to facilitate support for heterogeneous systems, where one might want to create

a different number of ports at different processes. To do so, we need to have a process id and/or

information on the processor name; these, in MPI, are associated with MPI_COMM_WORLD.

We add a new predefined attribute MPI_ENDPOINTS that has integer type and holds the

maximum number of MPI endpoints that can be created at the local process. This attribute is

handled as other predefined attributes in MPI – see [7, §16.3.7]

1

 We are not handling, for the time being, the dynamic process model, but the extension of the current proposal to support

dynamic endpoint creation is not conceptually hard. Note that the interaction between thread support model and dynamic

process creation is not clearly defined by the MPI standard: Do newly created processes inherit the same level of thread

support as the processes in the original communicator? This will need to be clarified, before we can discuss dynamic ebndpoint

creation.

 5

A program that uses multiple endpoints per process must initialize by calling

MPI_INIT_ENDPOINT, next calling MPI_ENDPOINT_CREATE.

MPI_INIT_ENDPOINT(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_Init_endpoint(int *argc, char *((*argv)[]), int required,

 int *provided)

MPI_INIT_ENDPOINT(REQUIRED, PROVIDED, IERROR)
INTEGER REQUIRED, PROVIDED, IERROR

int MPI::Init_endpoint(int& argc, char**& argv, int required)

int MPI::Init_endpoint(int required)

This first call has the same arguments as MPI_INIT_THREAD [7, §12.4.3]. This call sets the

thread support mode provided and creates MPI_COMM_WORLD with one endpoint at each

process. After this call, MPI_COMM_WORLD can be queried, e.g. to find the processor name,

or to find MPI_ENDPOINT, the number of supported endpoints.

As for MPI_THREAD_INIT(), the argument required specifies the required level of thread

support, while the argument provided returns the actual level of thread support provided.

The meaning of the possible values is as follows:

MPI_THREAD_SINGLE: Only one thread can be associated with each endpoint; each thread

is associated with an endpoint.

MPI_THREAD_FUNELLED: Only one thread can be associated with each endpoint; the

process may have additional threads that are not associated with any endpoint.

MPI_THREAD_SERIALIZED: Multiple threads may be associated with the same endpoint.

However, MPI calls using the same endpoint cannot be made concurrently by two distinct

threads.

MPI_THREAD_MULTIPLE: Multiple threads may be associated with the same endpoint and

make concurrent MPI calls.

Implementations can support only some of these modes.

 6

The second call has the following syntax:

MPI_ENDPOINT_CREATE(num_endpoints,array_of_endpoints)

 IN num_endpoints number of endpoints (integer)

 OUT array_of_endpoints array of endpoint handles (array of handles)

int MPI_Endpoint_create(int num_endpoints, MPI_Endpoint
 *array_of_endpoints)

MPI_ENDPOINT_CREATE(NUM_ENDPOINTS, ARRAY_OF_ENDPOINTS, IERROR)

 INTEGER NUM_ENDPOINTS
 INTEGER ARRAY_OF_ENDPOINTS(MPI_ENDPOINT_SIZE,*)
 INTEGER IERROR

int MPI::Endpoint_create(int num_endpoints,
 MPI::Endpoint array_of_endpoints[])

The second routine must be called before any communication occurs; it should be called at most

once on each process. The call generates num_endpoints MPI endpoints at the calling

process. It returns an array of handles to these endpoints in array_of_endpoints. This

argument should be an array of length at least num_endpoints. The call is erroneous if

num_endpoints > MPI_ENDPOINTS.

The call is collective; it will generate a communicator MPI_COMM_TWORLD that includes

all processes and has num_endpoints endpoints at each calling process. It will also create at

each process a communicator MPI_COMM_PROCESS that is local to the process and contains

all the endpoints at that process. At each process, the endpoint with rank 0 in

MPI_COMM_PROCESS is also an endpoint in MPI_COM_WORLD (i.e.

MPI_COMM_WORLD contains the first endpoint of each process).

Implementation notes:

1. Communication using the MPI_THREAD_SINGLE model, with k endpoints in one process

at a node, should be performing as well or better than communication with k single-

threaded processes at the node.

2. We chose to define a new function MPI_INIT_ENDPOINTS, rather than reuse

MPI_INIT_THREAD, to facilitate implementation on systems where it is inconvenient to

change the number of ports dynamically.

Discussion:

If the current design (two initialization functions) is considered ugly, then the alternative is to

have one combined initialization function, but have some predefined “load-time constants”

that provide information on the id and type of each process and the number of endpoints it

supports.

 7

2.3 Registration

Thread registration functions associate and disassociate a thread with an endpoint.

MPI_THREAD_REGISTER(endpoints, i)

 IN endpoints array of endpoint handles (array of handles)

 IN index index of endpoint to be used by thread

int MPI_Thread_Register(MPI_Endpoints *endpoints, int index)

MPI_THREAD_REGISTER (ENDPOINTS, INDEX, IERROR)
INTEGER ENDPOINTS(MPI_ENDPOINT_SIZE,*)
INTEGER INDEX, ENDPOINT

int MPI::Endpoint::Register(MPI::Endpoint endpoints[], int index)

The invocation of this call by a thread associates the invoking thread with the corresponding

endpoint. Each thread can be registered with at most one endpoint at any point in time. If the

thread support level is MPI_THREAD_SINGLE or MPI_THREAD_FUNELLED then each

endpoint can be registered by only one thread. If the thread support level is

MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE then multiple threads can be

registered with the same endpoint at the same time.

MPI_THREAD_UNREGISTER(endpoints, i)

 IN endpoints array of endpoint handles (array of handles)

 IN index index of endpoint to be disassociated from thread (integer)

int MPI_Thread_Unregister(MPI_Endpoints *endpoints, int index)

MPI_THREAD_UNREGISTER (ENDPOINTS, INDEX, IERROR)

INTEGER ENDPOINTS(MPI_ENDPOINT_SIZE,*)
INTEGER INDEX, ENDPOINT

int MPI::Endpoint::Unregister(MPI::Endpoint endpoints[], int
index)

This call disassociates the calling thread from the specified endpoint. This function should be

invoked only when there are no pending local MPI calls on the specified endpoint.

The rules and restrictions specified by the MPI standard [8, §12.4] for threads continue to

apply. In particular, when a thread executes a blocking MPI call, then the calling thread may be

descheduled, but other threads are not affected; two distinct threads should not block on the

same request, as the MPI runtime will wake up only one thread when a request is satisfied.

A thread must be registered with an endpoint before making MPI calls (other than queries on

the predefined attributes of MPI_COMM_WORLD); the MPI calls will use the corresponding

 8

endpoint. If an endpoint is the target of a communication (e.g., the receiver of a send, or a party

to a collective communication) then the communication operation (i.e. the send or the

collective operation) may not complete until a thread has registered with that endpoint.

A blocking collective call will block all the threads that execute the call. Note that since each

thread can be associated only with one endpoint, and cannot change its association while there

are pending calls, then each thread executes the call only once, so that deadlock situations do

not arise.

2.4 Example

_

... /* omit declarations */
MPI_Init_endpoint(argc, argv, MPI_THREAD_SINGLE, &provided);
MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_ENDPOINTS, &pnum, &flag);

#pragma omp parallel private(myid)
{
 #pragma omp master
 {
 /* find number of threads in current team */
 Nthreads = omp_get_num_threads();

 if (Nthreads != *pnum) abort();
 /* create endpoints */
 MPI_Endpoint_create(Nthreads, *endpoints);
 }

/* associate each thread with an endpoint */
myid = omp_get_thread_num();

MPI_Endpoint_register(mydi, *endpoints);

/* MPI communication involving all threads */
MPI_Comm_rank(MPI_COMM_TWORLD, &myrank);
MPI_Comm_size(MPI_COMM_TWORLD, &size);
MPI_Comm_rank(MPI_COMM_PROCESS, &mythreadid);

if (myid != mythreadid) abort();
if (myrank > 0)
 MPI_Isend(buff, count, MPI_INT, myrank-1, 3,
 MPI_COM_TWORLD, &req[mythreadid);
if (myrank < size)
 MPI_Recv(buff1, count, MPI_INT, myrank+1, 3,
 MPI_COMM_TWORLD);

MPI_Wait(&req[mythreadid], &status[mythreadid]);
}
...

2.5 Implementation Issues

The support of multiple MPI endpoints at a process should not be different than the support

of multiple processes at an SMP node. The only additional overhead is that, whenever a thread

 9

executes an MPI call, it needs to access the data structures that implement the endpoint the

thread is currently associated with. This requires an additional level of indirection for each MPI

call (to retrieve from the thread private data a pointer to the endpoint the thread is currently

associated with) and tests to check that the pointer is valid.

The missing parts of this proposal can be extended by keeping in mind this analogy. Thus,

MPI_FINALIZE() should be invoked by a thread attached to an endpoint exactly once for

each endpoint. Once the invocation occurred, no further MPI calls on this endpoint are

allowed.

Of course, there are many possible optimizations. In particular, communication between

endpoints in the same address space should require only one memory copy.

2.6 Missing items

A complete proposal needs additional items, including:

 MPI_FINALIZE() (obvious)

 mpiexec (easy)

 Dynamic processes (reasonably easy)

 Formalize relation of endpoint to (communicator, rank) pair (easy)

 One-sided (windows are per process – per address space, not per endpoint – will

probably want windows to be associated with processes – not endpoints).

 I/O (file descriptors are per process, not per endpoint – will probably want file

manipulation to be per process, not per end-point).

 New error codes

 A discussion of progress – in relation to thread scheduling

 Whatever constraints we need to impose on the use of thread synchronization

operations

 …

3 OpenMP Binding

3.1 OpenMP Scheduling

We briefly review the scheduling mechanism of OpenMP (references are to the V 3.0 standard

[8]) :

The execution model of OpenMP is a fork-join model: The program starts in a single thread; a

parallel construct forks a team of threads that execute in parallel (the team includes the

master thread that reached the parallel construct); they join back at the exit from the parallel

region. Parallel constructs can be nested. The exact number of threads allocated to a team is

 10

determined by a complex formula and depends on various environmental variables, the depth of

the parallel construct, the number of available threads, and arguments of the parallel construct

[8, Section 2.4.1]. Once a team is created, the team’s threads do not change. A thread is

associated with only one team at a time.

On top of this thread model, OpenMP also has a fiber model. Work-sharing constructs, such

as parallel loops, define fibers that can be dynamically allocated to the threads of the team

associated with the innermost containing parallel construct. OpenMP has much flexibility in

chunking shared work into fibers and scheduling fibers to threads. For example OpenMP can

introduce arbitrary scheduling point in untied OpenMP tasks – i.e., have these tasks yield at

arbitrary points during their execution; such tasks can resume on any other thread in the team

[8, Section 2.7.1]. Therefore, it is safe to assume that code in a work-sharing construct is

executed by a thread in the team associated with the innermost containing parallel construct,

but unsafe to make any assumptions on the identify of that thread, or make assumptions that

pieces of code will execute on the same thread.

3.2 Binding

The preceding discussion informs the restrictions listed below:

3.2.1 MPI_THREAD_SINGLE Model

 OpenMP has to use a fixed number of threads – The Internal Control Variable (ICV)

dyn-var should be set to false, either externally, or using omp_set_dynamic().

 Each thread has to be bound to one endpoint.

 No MPI calls can occur within work sharing constructs.

3.2.2 MPI_THREAD_FUNELLED Model

 No MPI calls can occur within work sharing constructs

3.2.3 MPI_THREAD_SERIALIZED

 MPI calls occurring within work-sharing constructs must be within a critical or

master construct.

3.2.4 MPI_THREAD_MULTIPLE

No restriction (beyond those specified by MPI for threads).

Note that if a blocking MPI call is made then the call will block the calling thread; the thread

cannot be used to run other shared work.

 11

4 OpenMP Manual of Style

4.1 Static Model

A simple MPI_OpenMP model that is broadly consistent with current MPI programming

models is obtained by

 Using a fixed number of threads in OpenMP

 Having a fixed one-to-one mapping of MPI endpoints with OpenMP threads, using the

MPI_THREAD_SINGLE model.

 Refraining from using work sharing constructs (no parallel loops, sections, workshare

or tasks)

We further assume that the OS can bind threads to cores and ensure that the computing

threads are not preempted. With these assumptions, then each core will be associated with one

thread, and each thread will be associated with one MPI endpoint. From the MPI viewpoint,

this provides the same model (and should provide the same performance) as when one attaches

an MPI process to each core. However, the threads within one process can communicate using

shared memory. This model does not provide automatic load-balancing at the nodes – the

programmer manages resources directly.

In some cases it may be appropriate to have a number of endpoints that is smaller than the

number of cores. This, as the number of physical communication endpoints can be smaller than

the number of threads, and the addition of a larger number of virtual endpoints may harm

communication performance and stretch MPI scalability. For example, on cores that support a

large number of simultaneous threads, we could have one communication thread and multiple

computation threads; or we could have some computation cores and some communication

cores. In such a case, we shall obey the same constrains listed above, except that we shall use the

MPI_THREAD_FUNELLED mode and have only a subset of the threads associated with

endpoints.

4.2 Dynamic Model

Work sharing constructs do simplify programming, by taking care of load balancing, but can

lead to higher overheads and loss of locality. If one desires to use such constructs, then the usual

rules about tuning OpenMP codes should be obeyed:

 Make sure that the number of fibers is quite larger than the number of threads (a factor

of 2--5).

 Make sure that fibers are quite large (1000’s of instructions)

 Avoid the use of constructs that force serializations, such as critical, master

ordered and single.

 12

4.3 Examples

The examples have not (yet) been run – there are unlikely to be correct.

We illustrate the design with a schematic red-black parallel SOR code, illustrated in the figure

below: at odd iterations red values are updated using the neighboring black values, and at even

iterations black values are updated using the neighboring red values. We assume that the array is

partitioned into horizontal stripes – to simplify the example; a more communication efficient

algorithm would partition into subsquares. We show codes that do not use work sharng and

perform no load balancing.

 13

4.3.1 Sequential code

Pa g e 1 o f 1

s e q .c 8 /4 /0 9 1 1 :2 0 PM

d e fin e N 1 0 0 0 0 /*a r ra y s iz e * /

f lo a t a [N + 2][N + 2]; /*a r ra y * /

e n u m C o lo r {R E D , B L A C K };

e n u m C o lo r c o lo r = R E D ;

in t i, j;

in t m a in ()

{

 in it(a) ;

 w h ile (!c o n v e rg e d ())

 {

 fo r (i = 1 ; i < = N ; i+ +)

{

 fo r (j = 1 + (i% 2)^c o lo r ; j < = N ; j + = 2)

 a [i][j] = (a [i][j]+ a [i-1][j]+ a [i+ 1][j]+ a [i][j-1]+ a [i][j+ 1]) *0 .2 ;

 c o lo r = !c o lo r ;

}

 }

}

4.3.2 OpenMP code with no load balancing

This code uses the threaded OpenMP model, with no work sharing.

 14

Pa g e 1 o f 1

o p e n m p -b a rrie r.c 8 /4 /0 9 1 1 :2 0 PM

in c lu d e < o m p .h >

d e fin e N 1 0 0 0 0 /*a r ra y s iz e * /

f lo a t a [N + 2][N + 2]; /*a r ra y * /

e n u m C o lo r {R E D , B L A C K };

e n u m C o lo r c o lo r = R E D ;

in t i, j, ib e g in , ie n d , m y th re a d id , n th re a d s ;

p ra g m a o m p th re a d p r iv a te (i, j, ib e g in ,ie n d ,m y th re a d id ,n th re a d s ,c o lo r)

v o id s e t_ th re a d _ s tr ip e (in t m y th re a d id , in t n u m th re a d s , in t * ib e g in , in t * ie n d)

 /* c o m p u te th re a d s tr ip e b o u n d a r ie s * /

{

 * ib e g in = 1 + m y th re a d id *N /n u m th re a d s ;

 * ie n d = (m y th re a d id = = n u m th re a d s -1) ? N : (m y th re a d id + 1)*N /n u m th re a d s ;

}

in t m a in ()

{

 in it(a) ;

 # p ra g m a o m p p a ra lle l

 {

 n th re a d s = o m p _ g e t_ n u m _ th re a d s () ;

 m y th re a d id = o m p _ g e t_ th re a d _ n u m () ;

 s e t_ th re a d _ s tr ip e (m y th re a d id , n th re a d s , & ib e g in , & ie n d) ;

 w h ile (!c o n v e rg e d ())

 {

 fo r (j = (i% 2)^c o lo r ; j < = N ; j + = 2)

 a [i][j] = (a [i][j]+ a [i-1][j]+ a [i+ 1][j]+ a [i][j-1]+ a [i][j+ 1]) *0 .2 ;

c o lo r = !c o lo r ;

 # p ra g m a o m p b a r r ie r

 }

 }

}

 15

4.3.3 Single threaded MPI code

Pa g e 1 o f 2

m p i.c 8 /4 /0 9 1 1 :1 9 PM

in c lu d e < m p i.h >

in c lu d e < s td lib .h >

d e fin e N 1 0 0 0 0 /* a r ra y s iz e * /

in t s tr ip e _ s iz e ; /* lo c a l s tr ip e s iz e * /

f lo a t a [][N + 2]; /* p ro c e s s s tr ip e , w ith a s iz e o n e g h o s t ro w

 o n e a c h s id e * /

e n u m C o lo r {R E D , B L A C K };

e n u m C o lo r c o lo r = R E D ;

in t n u m p ro c s , m y ra n k , k ;

in t b o u n d a ry ;

/* f irs t re d c e ll in f irs t a n d la s t ro w * /

c h a r fre d , lre d ;

in t la s tro w ;

M P I_ D a ta ty p e d ty p e [2]; /* d a ta ty p e fo r ro w o f s in g le c o lo r c e lls * /

M P I_ R e q u e s t re q [4];

M P I_ S ta tu s s ta tu s [4];

v o id c o m p u te (in t ib e g in , in t ie n d , in t f irs tc e ll)

{

/* p e r fo rm ite ra tio n s o n ro w s ib e g inÉ ie n d * /

 in t i, j ;

 fo r (i = ib e g in ; i < ie n d ; i+ +)

 {

 fo r (j = firs tc e ll; j < = N ; j + = 2)

a [i][j] = (a [i][j]+ a [i-1][j]+ a [i+ 1][j]+ a [i][j-1]+ a [i][j+ 1]) *0 .2 ;

firs tc e ll = !f irs tc e ll;

 }

}

in t m a in ()

{

 M P I_ C o m _ s iz e (M P I_ C O M M _ W O R L D , & n u m p ro c s) ;

 M P I_ C o m m _ ra n k (M P I_ C O M M _ W O R L D , & m y ra n k) ;

 b o u n d a ry = (m y ra n k = = 0) | | (m y ra n k = = n u m p ro c s -1) ;

 /* d a ta ty p e s fo r re d a n d fo r b la c k s q u a re s * /

 M P I_ T y p e _ v e c to r ((N + 1) /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [0]) ;

 M P I_ T y p e _ v e c to r (N /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [1]) ;

 /* c o m p u te p ro c e s s s tr ip e s iz e , F irs t a n d la s t s tr ip e s s h o u ld b e s lig h tly

 la rg e r a s th e y c o m m u n ic a te le s s * /

 16

Pa g e 2 o f 2

m p i.c 8 /4 /0 9 1 1 :1 9 PM

 s e t_ p ro c e s s _ s tr ip e (m y ra n k , n u m p ro c s , & s tr ip e _ s iz e) ;

 f lo a t a [s tr ip e _ s iz e + 2][N + 2];

 in it(a) ;

 /* c o m p u te lo c a tio n o f f irs t c e ll o f re d c o lo r * /

 M P I_ S c a n (& s tr ip e _ s iz e , & la s tro w , 1 , M P I_ IN T , M P I_ S U M , M P I_ C O M M _ W O R L D);

 fre d = (la s tro w -s tr ip e _ s iz e)% 2 ;

 lre d = la s tro w % 2 ;

 w h ile (!c o n v e rg e d ())

 {

 k = 0 ;

 /* c o m p u te 1 s t ro w * /

 c o m p u te (1 ,1 ,fre d ^c o lo r) ;

 if (m y ra n k > 0)

{

 M P I_ Is e n d (& a [1][fre d ^c o lo r], 1 , d ty p e [fre d ^c o lo r], m y ra n k -1 , 0 ,

M P I_ C O M M _ W O R L D , & re q [k + +]) ;

 M P I_ Ire c (& a [0][!fre d ^c o lo r],1 , d ty p e [!fre d ^c o lo r], m y ra n k -1 , 0 ,

 M P I_ C O M M _ W O R L D ,& re q [k + +]) ;

}

/* c o m p u te la s t ro w * /

 c o m p u te (s tr ip e _ s iz e ,s tr ip e _ s iz e ,lre d ^c o lo r) ;

 if (m y ra n k < n u m p ro c s -1)

{

 M P I_ Is e n d (& a [s tr ip e _ s iz e][lre d ^c o lo r], 1 , d ty p e [lre d ^c o lo r], m y ra n k + 1 , 0 ,

 M P I_ C O M M _ W O R L D , & re q [k + +]) ;

 M P I_ Ire c (& a [s tr ip e _ s iz e + 1][!fre d ^c o lo r],1 , d ty p e [!lre d ^c o lo r], m y ra n k + 1 , 0 ,

 M P I_ C O M M _ W O R L D ,& re q [k]) ;

}

 /* c o m p u te m id d le ro w s * /

 c o m p u te (2 , s tr ip e _ s iz e -1 , !fre d ^c o lo r) ;

 M P I_ W a ita ll(4 -2 *b o u n d a ry , re q , s ta tu s) ;

 c o lo r = !c o lo r ;

 }

}

4.3.4 OpenMP code with no load balancing and no barrier

A thread proceeds to compute the red (resp. black) iteration on its stripe if the one or two

neighbor threads finished the black (resp. red) iteration. The avoidance of global

synchronization makes code more resilient to jitter. This code has the same logic as the MPI

code above: Point-to-point communications are replaced by thread-to-thread synchronizations.

 17

Pa g e 1 o f 2

o m p -n o b a rrie r.c 8 /4 /0 9 1 1 :1 7 PM

in c lu d e < s td lib .h >

in c lu d e < o m p .h >

d e fin e N 1 0 0 0 0 /*a r ra y s iz e * /

in t n u m th re a d s ; /* n u m b e r o f th re a d s u s e d * /

in t s tr ip e _ s iz e ;

f lo a t a [N + 2][N + 2]; /*a r ra y * /

e x te rn in t d o n e [][2]; /* u s e d to c o u n t n u m b e r o f re a d y p re d e c e s s o rs . A lte rn a tiv e

 s e ts a re u s e d to a v o id ra c e s . * /

e n u m C o lo r {R E D , B L A C K };

e n u m C o lo r c o lo r = R E D ;

in t ib e g in ,ie n d ,m y th re a d id ;

p ra g m a o m p th re a d p r iv a te (ib e g in , ie n d , m y th re a d id)

v o id m y s ig n a l(in t id , e n u m C o lo r c o lo r)

{

 /* s ig n a ls a p re d e c e s s o r is re a d y * /

 if ((id > = 0) & & (id < n u m th re a d s))

 {

 # p ra g m a o m p a to m ic

 d o n e [id][c o lo r]+ + ;

 }

}

v o id m y w a it(in t id , e n u m C o lo r c o lo r)

{

 /* b u s y w a its u n til d e p e n d e n c ie s a re s a tis fie d * /

 in t b o u n d a ry = ((id = = 0) | | (id = = n u m th re a d s -1)) ;

 w h ile (d o n e [id][c o lo r] + b o u n d a ry < 2)

 {

 # p ra g m a o m p flu s h (d o n e [id][c o lo r])

 }

}

v o id c o m p u te (in t ib e g in , in t ie n d , e n u m C o lo r c o lo r)

{

 /* p e r fo rm ite ra tio n s o n ro w s ib e g in ... ie n d * /

 in t i, j ;

 fo r (i = ib e g in ; i < ie n d ; i+ +)

 fo r (j = 1 + (i% 2)^c o lo r ; j < = N ; j + = 2)

 a [i][j] = (a [i][j]+ a [i-1][j]+ a [i+ 1][j]

 + a [i][j-1]+ a [i][j+ 1]) *0 .2 ;

}

 18

Note that the OpenMP code is similar in size to the MPI code: The simple barrier

synchronization has been replaced with detailed point-to-point synchronization.
Pa g e 2 o f 2

o m p -n o b a rrie r.c 8 /4 /0 9 1 1 :1 7 PM

v o id s e t_ th re a d _ s tr ip e (in t m y th re a d id , in t n u m th re a d s , in t * ib e g in , in t * ie n d)

 /* c o m p u te th re a d s tr ip e b o u n d a r ie s * /

{

 * ib e g in = 1 + m y th re a d id *N /n u m th re a d s ;

 * ie n d = (m y th re a d id = = n u m th re a d s -1) ? N : (m y th re a d id + 1)*N /n u m th re a d s ;

}

in t m a in ()

{

 in t i, j;

 in it(a) ;

 # p ra g m a o m p p a ra lle l

 {

 /* in it ia liz a tio n * /

 m y th re a d id = o m p _ g e t_ th re a d _ n u m () ;

 n u m th re a d s = o m p _ g e t_ n u m _ th re a d s () ;

 s e t_ th re a d _ s tr ip e (m y th re a d id , n u m th re a d s , & ib e g in , & ie n d) ;

 }

 in t d o n e [n u m th re a d s][2];

 fo r (i= 0 ; i< n u m th re a d s ; i+ +)

 fo r (j= 0 ; j< 2 ; j+ +)

 d o n e [i][j] = 0 ;

 # p ra g m a o m p p a ra lle l

 {

 w h ile (!c o n v e rg e d ()) {

 /* c o m p u te firs t ro w * /

 c o m p u te (ib e g in ,ib e g in ,c o lo r) ;

 m y s ig n a l(c o lo r , m y th re a d id -1) ;

 /* c o m p u te la s t ro w * /

 c o m p u te (ie n d ,ie n d ,c o lo r) ;

 m y s ig n a l(m y th re a d id + 1 , c o lo r) ;

 /* c o m p u te m id d le * /

 c o m p u te (ib e g in + 1 , ie n d -1 , c o lo r) ;

 m y w a it(m y th re a d id ,c o lo r) ;

 d o n e [m y th re a d id][c o lo r] = 0 ;

 c o lo r = !c o lo r ;

 }

 }

}

 19

4.3.5 Hybrid OpenMP+MPI code with no load balancing

We combine the logic of the two previous codes: Some communications use shared memory,

while others use message passing.

Pa g e 1 o f 4

h y b rid .c 8 /4 /0 9 1 1 :1 9 PM

in c lu d e < s td lib .h >

in c lu d e < m p i.h >

in c lu d e < o m p .h >

ty p e d e f in t M P I_ E n d p o in t;

d e fin e N 1 0 0 0 0 /* a r ra y s iz e * /

f lo a t a [][N + 2]; /* p ro c e s s a r ra y s tr ip e * /

e n u m D ire c tio n {U P , D O W N };

e n u m C o lo r {R E D , B L A C K };

in t s tr ip e _ s iz e ; /* n o d e lo c a l s tr ip e s iz e . S h o u ld b e la rg e r fo r f irs t a n d la s t n o d e

* /

in t m y ra n k , n u m th re a d s , m y th re a d id , ib e g in , ie n d , n u m p o r ts , n u m p ro c s , m y p ro c id , *p n u m ,

f la g , la s tro w , firs tro w p a r ity ;

e n u m C o lo r c o lo r = R E D ;

in t d o n e [][2];

in t fre d , lre d ;

M P I_ D a ta ty p e d ty p e [2];

M P I_ R e q u e s t re q [2][2];

M P I_ S ta tu s s ta tu s [2];

M P I_ E n d p o in t e n d p o in ts [2];

in t p ro v id e d ;

p ra g m a o m p th re a d p r iv a te (ib e g in , ie n d , fre d , lre d , n u m th re a d s , m y th re a d id , re q , s ta tu s)

;

v o id c o m p u te (in t ib e g in , in t ie n d , in t f irs tc e ll)

{

/* p e r fo rm ite ra tio n s o n ro w s ib e g in ... ie n d * /

 in t i, j ;

 fo r (i = ib e g in ; i < ie n d ; i+ +) {

 fo r (j = firs tc e ll; j < = N ; j + = 2)

 a [i][j] = (a [i][j]+ a [i-1][j]+ a [i+ 1][j]

 + a [i][j-1]+ a [i][j+ 1]) *0 .2 ;

 f irs tc e ll = !f irs tc e ll;

 }

}

v o id m y s ig n a l(in t f irs tc e ll, e n u m D ire c tio n d ir , e n u m C o lo r c o lo r)

{

 if (d ir = = D O W N)

 20

Pa g e 2 o f 4

h y b rid .c 8 /4 /0 9 1 1 :1 9 PM

 {

 if (m y th re a d id = = 0)

 {

if (m y ra n k > 0) {

 /* c o m m u n ic a te d o w n v ia m e s s a g e p a s s in g * /

 M P I_ Is e n d (& a [1][f irs tc e ll], 1 , d ty p e [firs tc e ll], m y ra n k -1 , 0 , M P I_ C O M M _ W O R L D , & re q

[c o lo r][0]) ;

 M P I_ Ire c (& a [0][!f irs tc e ll],1 , d ty p e [!f irs tc e ll], m y ra n k -1 , 0 , M P I_ C O M M _ W O R L D ,& re q

[c o lo r][1]) ;

}

 }

 e ls e /* m y th re a d id > 0 * /

 {

/* s h a re d m e m o ry c o m m u n ic a tio n * /

 # p ra g m a a to m ic

d o n e [m y th re a d id -1][c o lo r]+ + ;

 }

 }

 e ls e /* d ir = = U P * /

 if (m y th re a d id = = n u m th re a d s -1)

 {

if (m y ra n k < n u m p o r ts)

 {

 /* c o m m u n ic a te u p v ia m e s s a g e p a s s in g * /

 M P I_ Is e n d (& a [s tr ip e _ s iz e][f irs tc e ll], 1 , d ty p e [f irs tc e ll], m y ra n k + 1 , 0 ,

M P I_ C O M M _ W O R L D , & re q [c o lo r][0]) ;

 M P I_ Ire c (& a [0][!f irs tc e ll],1 , d ty p e [!f irs tc e ll], m y ra n k -1 , 0 , M P I_ C O M M _ W O R L D ,& re q

[c o lo r][1]) ;

 }

 }

 e ls e /* m y th re a d id < n u m th re a d s -1 * /

 {

/* s h a re d m e m o ry c o m m u n ic a tio n * /

 # p ra g m a a to m ic

d o n e [c o lo r][m y th re a d id + 1]+ + ;

 }

}

v o id m y w a it(e n u m C o lo r c o lo r)

{

 if (((m y th re a d id = = 0) & & (m y ra n k = = 0)) | | ((m y th re a d id = = n u m th re a d s -1) & & (m y ra n k =

= n u m p o r ts -1)))

 /* b o u n d a ry s tr ip e * /

 d o n e [c o lo r][m y th re a d id]+ + ;

 if (((m y th re a d id = = 0) & & (m y ra n k > 0)) | | ((m y th re a d id = = n u m th re a d s -1) & & (m y ra n k <

n u m p o r ts -1)))

 {

 /* n e e d to c o m p le te s e n d & re c e iv e * /

 21

Pa g e 3 o f 4

h y b rid .c 8 /4 /0 9 1 1 :1 9 PM

 M P I_ W a ita ll(2 ,re q [c o lo r],s ta tu s) ;

 d o n e [c o lo r][m y th re a d id]+ + ;

 }

 w h ile (d o n e [c o lo r][m y th re a d id] < 2)

 {

 # p ra g m a o m p flu s h (d o n e [c o lo r][m y th re a d id])

 }

}

in t m a in (in t a rg c , c h a r * *a rg v)

{

 /* p ro c e s s in it ia liz a tio n * /

 M P I_ In it_ e n d p o in t(a rg c , a rg v , M P I_ T H R E A D _ S IN G L E , & p ro v id e d) ;

 M P I_ C o m m _ g e t_ a ttr (M P I_ C O M M _ W O R L D , M P I_ E N D P O IN T S , & p n u m , & fla g) ;

 if (*p n u m < 2) a b o r t() ;

 M P I_ C o m m _ s iz e (M P I_ C O M M _ W O R L D , & n u m p ro c s) ;

 M P I_ C o m m _ ra n k (M P I_ C O M M _ W O R L D , & m y p ro c id) ;

 /* c o m p u te s iz e o f p ro c e s s s tr id e ; f irs t a n d la s tp ro c e s s e s s h o u ld

 h a v e la rg e r s tr ip e s * /

 s e t_ p ro c e s s _ s tr ip e (N , n u m p ro c s , & s tr ip e _ s iz e) ;

 f lo a t a [s tr ip e _ s iz e + 2][N + 2];

 in it(a) ;

 /* c re a te o n e o r tw o e n d p o in ts a t e a c h p ro c e s s * /

 if ((m y p ro c id = = 0) | | (m y p ro c id = = n u m p ro c s -1))

 M P I_ E n d p o in t_ c re a te (1 , e n d p o in ts) ;

 e ls e

 M P I_ E n d p o in t_ c re a te (2 , e n d p o in ts) ;

 /* d a ta ty p e s fo r re d a n d fo r b la c k s q u a re s * /

 M P I_ T y p e _ v e c to r ((N + 1) /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [0]) ;

 M P I_ T y p e _ v e c to r (N /2 , 1 , 2 , M P I_ F L O A T , & d ty p e [1]) ;

 /* c o m p u te p a r ity o f e a c h p ro c e s s s tr ip e * /

 M P I_ S c a n (& s tr ip e _ s iz e , & la s tro w , 1 , M P I_ IN T , M P I_ S U M , M P I_ C O M M _ W O R L D);

 f irs tro w p a r ity = (la s tro w -s tr ip e _ s iz e)% 2 ;

 /* s ta r t th re a d p a ra lle l c o m p u ta tio n * /

 # p ra g m a o m p p a ra lle l

 /* th re a d in it ia liz a tio n * /

 {

 n u m th re a d s = o m p _ g e t_ th re a d s _ n u m () ;

 m y th re a d id = o m p _ g e t_ n u m _ th re a d () ;

 }

 in t d o n e [n u m th re a d s][c o lo r];

 22

The last code is much longer than the the sequential code and twice as long as the MPI code. It

would be nice to have such a code automatically or semi-automatically generated by a compiler.

A good compiler for UPC or CAF should be able to do so.

Pa g e 4 o f 4

h y b rid .c 8 /4 /0 9 1 1 :1 9 PM

 # p ra g m a o m p p a ra lle l

 {

 /* re g is te r e n d p o in ts w ith firs t o r la s t th re a d * /

 if ((m y th re a d id = = 0) & & (m y p ro c id > 0))

M P I_ T h re a d _ re g is te r (0 , e n d p o in ts) ;

 e ls e if (m y th re a d id = = n u m th re a d s -1)

{

 if (m y p ro c id = = 0)

 M P I_ T h re a d _ re g is te r (0 , e n d p o in ts) ;

 e ls e if (m y p ro c id < n u m p ro c s -1)

 M P I_ T h re a d _ re g is te r (1 , e n d p o in ts) ;

}

 /* a s s o c ia te th re a d s tr ip e w ith e a c h th re a d ; m e s s a g e p a s s in g th re a d s h a v e s m a lle r

s tr ip e s * /

 s e t_ th re a d _ s tr ip e (& ib e g in , & ie n d) ;

 /* c o m p u te lo c a tio n o f f irs t c e ll o f re d c o lo r * /

 fre d = (firs tro w p a r ity + ib e g in)% 2 ;

 lre d = (firs tro w p a r ity + ie n d)% 2 ;

 w h ile (1)

{

 /* c o m p u te firs t ro w * /

 c o m p u te (ib e g in , ib e g in , fre d ^c o lo r) ;

 m y s ig n a l(fre d ^c o lo r , U P , c o lo r) ;

 /* c o m p u te la s t ro w * /

 c o m p u te (ie n d , ie n d , lre d ^c o lo r) ;

 m y s ig n a l(lre d ^c o lo r , D O W N , c o lo r) ;

 /* c o m p u te m id d le * /

 c o m p u te (ib e g in + 1 , ie n d -1 , !fre d ^c o lo r) ;

 m y w a it(c o lo r) ;

 c o lo r = !c o lo r ;

}

 }

}

 23

5 Extensions

The proposal outlined in the paper extends the MPI model from a “process model” to a “thread

model”. OpenMP is a hybrid model, with support both for threads and for fibers; the current

proposal essentially matches MPI to the OpenMP thread support.

Increasingly, shared memory parallel programming languages and framework use a “fiber

model”; this is true of TBB [9], .NET Task Parallel Library [6], Java fork-join framework [5],

Cilk [1], etc. future parallel shared memory languages are likely to hide threads from the user

and provide only a view of fibers – with no control on the number of threads or the scheduling

of fibers to threads. This is because one does not need the protection and fairness provided by

the OS scheduler – at the cost of some overhead; and the fiber scheduler can implement

scheduling policies that are more appropriate to tightly coupled, cooperating fibers.

A more elegant design would be to fully integrate MPI with a fiber model. By this, we mean

that when a fiber executes a blocking MPI call, then the fiber yields and is descheduled, but the

thread that was executing the fiber is not descheduled, and can pick another fiber for execution.

This would require coordination between the MPI library and the language runtime:

 When a fiber executes a blocking MPI call, then the MPI library will call the fiber

scheduler to indicate that the fiber yielded.

 When the call completes, the MPI library will mark the fiber as runnable.

 Progress can be ensured by the fiber scheduler by periodically scheduling an MPI

progress fiber.

Such a scheme would integrate MPI with any of the languages above mentioned, and could

lead to a lighter MPI infrastructure.

It is likely that such a scheme could be of more general user – to support “blocking user calls”

for a variety of purposes. In particular, such interface could be used to interface parallel codes

that use distinct fiber run-times (and possibly run on distinct sets of threads). The basic

functions required are:

 A callback to mark a fiber as blocked and associate it with an event.

 A call to mark an event as complete.

 A mechanism to split resources (statically or dynamically) among distinct subsystems.

Such a design would require changes both on the MPI side and on the language runtime side,

hence is beyond the scope of the MPI 3 forum – but should be considered as a research

direction.

 24

References

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall and Y.

Zhou, Cilk: An efficient multithreaded runtime system, ACM SigPlan Notices, 30 (1995),

pp. 207-216.

[2] R. Brightwell, MPI Runtime and Affinity Enhancements for Multi-Core Processors,

[3] F. Cappello and D. Etiemble, MPI versus MPI+ OpenMP on the IBM SP for the NAS

Benchmarks, 2000, pp. 12-12,

[4] B. Chapman, G. Jost and R. van der Pas, Using OpenMP: Portable Shared Memory

Parallel Programming, The MIT Press, 2007.

[5] D. Lea, A Java fork/join framework, ACM New York, NY, USA, 2000, pp. 36-43,

[6] D. Leijen and J. Hall, Optimize Managed Code For Multi-Core Machines, 2007,

http://msdn.microsoft.com/en-us/magazine/cc163340.aspx

[7] MPI Forum, MPI: A Message-Passing Interface Standard V2.1, 2008, http://www.mpi-

forum.org/docs/mpi21-report.pdf

[8] OpenMP Architecture Review Board, OpenMP Application Program Interface Version

3.0., 2008, http://www.openmp.org/mp-documents/spec30.pdf

[9] J. Reinders, Intel Threading Building Blocks Outfitting C++ for Multi-core Processor

Parallelism, O'Reilly, 2007.

[10] A. Supalov, Treating threads as MPI processes thru registration/deregistration.

[11] R. Thakur and W. Gropp, Test suite for evaluating performance of MPI implementations

that support MPI_THREAD_MULTIPLE, Springer, 2007, pp. 46,

[12] The Open Group, The Single Unix Specification Version 3.,

http://www.unix.org/single_unix_specification/

http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.unix.org/single_unix_specification/

