
Hybrid Parallel Programming
with MPI and Unified Parallel C

James Dinan

PhD Student, The Ohio State University
Advisor: Prof. Sadayappan

Intern, MCS Division
Host: Pavan Balaji

2

Want to launch multiple UPC groups
How many groups?
How many MPI ranks per group?

 SPMD 1:1 MPMD N:1 MPMD 1:1

Hybrid MPI+UPC Execution Model

Hybrid MPI+UPC Process
UPC Process

3

SPMD Hybrid Model

UPC Threads ↔ MPI Ranks 1:1
– Every process can do both UPC and MPI

Benefit: Use UPC and MPI features in the same program
Some support from Berkeley UPC for this model

– “upcc -uses-mpi” tells BUPC to initialize/play nice with MPI
UPC Thread IDs and MPI ranks may differ

– MPI_Comm_split(key = MYTHREAD)

4

SPMD Hybrid Example: Vector dot product
#include <upc.h>

#include <mpi.h>

#define N 100*THREADS

shared double v1[N], v2[N];

int main(int argc, char **argv) {

 int i, rank;

 double sum = 0.0, dotp;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 upc_forall(i = 0; i < N; i++, i)

 sum += v1[i]*v2[i];

 upc_barrier;

 MPI_Reduce(&sum, &dotp, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 if (rank == 0) printf(“Dot product = %f\n”, dotp);.

 MPI_Finalize();

 return 0;

}

5

Caveat: Communication Deadlock

MPI only guarantees progress if you make MPI calls
UPC spec not specific on progress model

– Berkeley UPC needs you make UPC calls to make progress
• Compiler/user may inject bupc_poll() calls

Mixing MPI/UPC introduces deadlock situations
Could be solved by enforcing independent progress

– Needs to be done for both MPI and UPC
– Has performance implications for non-hybrid codes

Workaround: Barrier synchronization between phases
– Ensure completion of communication

6

Deadlock Example

x MPI_Recv()

UPC_Memget()

MPI_Send() x

Process 0 Process 1

Stuck in
UPC

Stuck in
MPI

7

Passing Buffers Between UPC and MPI

MPI doesn't know how to handle shared pointers
– Can't change this in MPI
– Don't want to require UPC compiler to build MPI

User gives MPI a local buffer
– Cast away sharedness if buf is local
– or Get/Put remote data to/from a local buffer

8

MPMD Hybrid Model

Launch multiple UPC groups
– Multiple global address spaces connected by MPI

Useful for:
– Scaling a UPC program that suffers from low locality
– Scaling problem size of an MPI program

Consider two cases:
– Only thread 0 may perform MPI communication
– All threads may perform MPI communcation

9

Mapping UPC Thread Ids to MPI Ranks

 How to identify a process?
– Group ID
– Group rank

 Group ID = MPI rank of thread 0
 Group rank = MYTHREAD

 Thread IDs not contiguous
– Must be renumbered

 MPI_Comm_split(0, key)
 Key = MPI rank of thread 0 *

THREADS + MYTHREAD
 Result is contiguous renumbering

– MYTHREAD = MPI rank %
THREADS

– Group ID = Thread 0 rank =
MPI rank/THREADS

10

Launching MPMD Hybrid Applications

 Example: launch hybrid app with two UPC groups of size 8

$ mpiexec -env HOSTS=hosts.0 upcrun -n 8 hybrid-app
: -env HOSTS=hosts.1 upcrun -n 8 hybrid-app

 Mpiexec launches two tasks
– Each MPI task runs UPC's launcher
– Provide different arguments (host file) to each task

 MPMD with all hybrid processes
– Each instance of hybrid_app calls MPI_Init(), requests a rank

 Problem: MPI thinks it launched a two-task job!
 Solution:

– Flag: --ranks-per-proc=8
– Added to Hydra process manager in MPICH2

11

Random Access Benchmark

P
0

P
n

...

P
0

P
n/2

... P
0

P
n/2

...

 UPC: Threads access random elements of distributed shared array

 Hybrid: Array is replicated on every group

shared double data[N]:

shared double data[N]: shared double data[N]:

12

Impact of Data Locality on Performance

1 2 4 8 16 32 64 128
0

100

200

300

400

500

600

700

800

900

1000
UPC
Hybrid-4
Hybrid-8
Hybrid-16

Number of Cores (quad-core nodes)

T
im

e
(s

ec
)

Each process performs 1,000,000 random accesses
Weak scaling ideal: Flat line

13

Percent Local References

1 2 4 8 16 32 64 128
-20%

0%

20%

40%

60%

80%

100%

UPC
Hybrid-4
Hybrid-8
Hybrid-16

Number of Cores

P
e

rc
e

n
t

L
o

ca
l D

a
ta

14

Random Access Benchmark Takeaway

Hybridization creates UPC groups
– Improves locality, decreases communication
– Replicate shared data on each group
– Data replication is controlled by UPC group size

Gap: UPC does not provide groups
– UPC Teams have been proposed
– Only in context of proposed collectives
– Challenge: Teams are dynamic but data is static
• e.g. shared double data[N];

– Hybrid Model: Creates static groups, allowing grouping of
static structures

15

Barnes-Hut n-Body Cosmological Simulation

 Simulates gravitational interactions of a system of n bodies
 Represents 3-d space using an oct-tree
 Summarize distant interactions using center of mass

for i in 1..t_max
t <- new octree()

forall b in bodies
insert(t, b)

summarize_subtrees(t)

forall b in bodies
compute_forces(b, t)

forall b in bodies
advance(b)

Credit: Lonestar Benchmarks (Pingali et al)

16

Hybrid Barnes Algorithm

 for i in 1..t_max
t <- new octree()

forall b in bodies
insert(t, b)

summarize_subtrees(t)
our_bodies <- partion(group id, bodies)

forall b in our_bodies
compute_forces(b, t)

forall b in bodies
advance(b)

Allgather(bodies)

Smaller distribution
improves O(our_bodies)
tree traversals

Tree is distributed across
group

17

Barnes Force Computation

0 64 128 192 256
0

32

64

96

128

160

192

224

256

UPC
Hybrid-4
Hybrid-8
Hybrid-16

Number of Cores

S
pe

ed
up

Strong scaling: 100,000 body system

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

