MPI Global-Restart Fault Tolerance Specification
Version 0.1.2

Unofficial, for comment only

Ignacio Laguna and Giorgis Georgakoudis
ilaguna@llnl.gov, georgakoudis1@IInl.gov

Lawrence Livermore National Laboratory

March 8, 2021

Chapter 1

Global-Restart Fault Tolerance

1.1 Introduction

The traditional method to handle process failures in large-scale scientific applications is
periodic, global synchronous checkpoint/restart (CPR). When a process failure occurs in a
bulk synchronous MPI program, it quickly propagates to other processes so re-starting the
application from a previously-saved checkpoint is a simple solution to recover from failures.

A large number of MPI applications already use some form of global synchronous CPR.
The goal of global-restart fault tolerance is to provide an easy-to-use interface to improve
the efficiency of CPR in bulk synchronous applications by reducing as much as possible the
recovery time when failure occurs.

In this chapter, we refer to the global-restart fault tolerance model and interface as the
Reinit (i.e., re-initialization) model and interface, respectively.

< N v

s &
& Y

¥ © R né’}

A ’b@ \O N

NY : . @é’\o o° o

]

DA
o)

Checkpoint stored Checkpoint stored

Resources allocated Program data initialized

1
1
1
1
1
MPI is setup : MPI state is created,
H e.g., communicators
1
1
1

1

1

i

1

Recovery time !

Traditional :

CPR | Program checkpoint loaded :

1 1

Reinit :Recover time :

. 1 1
Failure Iﬁ Program checkpoint loaded l-

Recovery ' '

Figure 1.1: The global-restart fault tolerance model (Reinit) provides a mechanisms to
reduce the recovery time for bulk synchronous applications that use periodic synchronous
checkpoint /restart.

Unofficial Draft for Comment Only 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

1.2 Fault Model

The Reinit model provides a pre-defined fault-tolerance mechanism to survive MPI process
failures. We use the definition of process failures used in Section 2.8, i.e., a process failure
occurs when an MPI process unexpectedly and permanently stops communicating (e.g., a
software or hardware crash results in an MPI process terminating unexpectedly). In the rest
of the chapter, when we refer to failures we mean MPI process failures. The Reinit model
assumes that the application’s data will be recovered after a failure using a checkpoint that
was saved before the failure occurred.

1.3 Reinit MPI Interface

The Reinit interface for global-restart fault tolerance is composed of two MPI functions:
MPI_REINIT and MPI_TEST_FAILURE. This section describes the syntax of these MPI func-
tions.

MPI_Reinit

int MPI_Reinit(resilient_fn, void *data)

IN resilient_fn user defined procedure (function)
IN data pointer to user defined data

The user-defined procedure should be in C, a function of type MPI_Reinit_function
which is defined as:

typedef MPI_Reinit_fn void (%) (void *data));

The first argument is a user defined procedure, resilient_fn, which is called by the
MPI_Reinit procedure. The second argument is a pointer to user defined data. This pointer
is passed as an argument to the user defined procedure, resilient_fn, when the procedure
is called. A wvalid MPI program must contain at most one call to the MPI_Reinit procedure.
Calling MPI_Reinit more than one time results in undefined behavior.

The purpose of the user defined resilient_fn procedure is to specify a rollback loca-
tion, i.e., a program location to resume execution after a process failure occurs. Depending
on the error handler being used, upon the detection of a process failure, MPI will cause
the execution of the program to resume at the resilient_fn procedure synchronously or
asynchronously (see the Error Handling section for more details).

After the resilient_fn procedure is re-executed due to failure recovery, the only valid
communication objects are the communicators MPI_.COMM_WORLD, MPI_COMM _SELF, MPI_-
COMM_NULL.

Advice to users. MPI objects that are created before MPI_Reinit is called will not
be valid when the resilient_fn procedure is re-executed due to a failure. (End of
advice to users.)

Calling the MPI_Reinit procedure sets the resilient_fn procedure to be a rollback
location and makes this rollback location active. After activating the rollback location,
MPI_Reinit calls the resilient_fn procedure. After the MPI_Reinit procedure returns, the
rollback location becomes inactive. If a failure occurs during an inactive rollback location,
MPI cannot resume execution at the rollback location, and as a result cannot recover from
failures using the Reinit model.

Unofficial Draft for Comment Only

1.4. ERROR HANDLING 3

Advice to users. To able to survive most of the process failures that can occur during
the execution of the program, most calls to MPI and computation should be executed
before MPI_Reinit returns. (End of advice to users.)

An MPI process must invoke MPI_FINALIZE only after MPI_Reinit returns.

MPI_Test_failure

int MPI_Test_failure()

The MPI_Test_failure procedure causes the program to resume execution at the rollback
point that was activated by MPI_Reinit when two conditions occur: (1) the MPI_ERRORS_-
REINIT_SYNC handler is associated with MPI_.COMM_WORLD, and (2) a failure has been
detected before MPI_Test failure is called.

If no failures were detected before MPI_Test_failure is called, the return code value is
MPI_SUCCESS and the procedure performs no operations. If on the other hand failures are
detected before the procedure is called, the procedure does not return and it immediately
resumes execution at the rollback point.

1.4 Error Handling

MPI provides two predefined error handlers that can be used to handle failures using the
Reinit model. These error handlers are intended to be used to handle failures when the
World Model is used to initialize MPI. The Reinit error handlers have no effect when the
Sessions Model is used.

Unlike other predefined error handlers, such as MPI_ ERRORS_ARE_FATAL, that can
be associated to communicator, window, file, and session objects, the Reinit error han-
dlers must be associated only to the predefined MPI_.COMM_WORLD communicator in
the World Model. Associating the Reinit error handlers to window, file, session objects, or
communicators other than MPI_COMM_WORLD is undefined.

Rationale. Associating the Reinit error handler to MPI_COMM _SELF would have no
effect if a failure occurs because the process that contains MPI_.COMM _SELF failed
and the error handler cannot be called. Since a process failure during the handling of
MPI objects, such as windows, files and sessions eventually manifest itself as a process
failure in MPI_COMM_WORLD, it makes sense to associate a Reinit error handler to
MPI_.COMM_WORLD only. (End of rationale.)

The following Reinit error handlers are available in MPI:

e MPI_LERRORS_REINIT_ASYNC: The handler is called by MPI immediately af-
ter a process failure is detected. The handler, when called, causes the execution of
the program to resume at (or jump back to) the active rollback location that was
activated by MPI_Reinit.

e MPI_ ERRORS _REINIT _SYNC: The handler has two effects. The first effect is
that it enables the MPI_Test_failure function to cause the execution of the program
to resume at (or jump back to) the active rollback location when MPI Test_failure is
called. The second effect is that it returns the error code to the user.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

© 4] ~ =] [oy)

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

Using the MPI_LERRORS_REINIT_ASYNC handler causes MPI to resume execution
of the program when an error is detected whether or not the error is detected during a call
to MPIL. On the other hand, using the MPI_ ERRORS_REINIT_SYNC handler causes MPI
to resume execution only after MPI_Test_failure function is called if an error was detected.

1.4.1 Association of Error Handlers

The Reinit error handlers must be associated to MPI_.COMM_WORLD before the MPI_-
Reinit procedure is called. Calling MPI_Reinit before associating any of the Reinit error
handlers produces undefined behavior.

After a Reinit error handler has been associated to MPI_.COMM_WORLD, it is invalid
to associate a different Reinit error handler to MPI_.COMM_WORLD.

1.4.2 Behavior for Specific Error Conditions

If an error occurs and one of the Reinit error handlers has been set but there is no ac-
tive Reinit rollback location, MPI will behave as if the MPI_ ERRORS_ARE _FATAL error
handler is set.

Errors can occur between the moment the MPI_ ERRORS_REINIT_SYNC handler is
set and the MPI_Test_failure function is called. If an error occurs in such period of time,
MPI behaves as if the MPI_ ERRORS_RETURN handler is set.

1.4.3 State

1.5 Examples

Example 1.1 Using Reinit with asynchronous error handling to recover from process
failures

typedef struct {
int argc;
char **argv;
} data_t;

void resilient_function(void *arg)
{
data_t *data = (data_t *)arg;
// Cleanup library, if needed
cleanup_library_state();
// Resume computation from checkpoint
// or initialize application data
if (load_checkpoint())
printf ("Resume from checkpoint\n");
else
init_app_data(data->argc, data->argv);
bool done = false;
while(!done) {

Unofficial Draft for Comment Only

1.5.

int

EXAMPLES)

done = compute();
store_checkpoint () ;

main(int argc, char *argv[])

// Initialize user defined data type
data_t data = { argc, argv };

MPI_Init(argc, argv);

MPI_Comm_set_errhandler (MPI_COMM_WORLD, MPI_ERRORS_REINIT_ASYNC) ;
// MPI_Reinit sets the rollback location

// to resilient_function and calls it.

// In asynchronous error handling, the program

// will go to the rollback location as soon a

// failure is detected

MPI_Reinit(&data, resilient_function);

MPI_Finalize();

return O;

Example 1.2 Using Reinit with synchronous error handling to recover from process
failures

void resilient_function(void *arg)

{

data_t *data = (data_t *)arg;
// Cleanup library, if needed
cleanup_library_state();
// Resume computation from checkpoint
// or initialize application data
if (load_checkpoint())
printf ("Resume from checkpoint\n");
else
init_app_data(data->argc, data->argv);
bool done = false;
while(!done) {
done = compute();
MPI_Test_failure();
store_checkpoint () ;
// Calling MPI_Test_failure will go to the
// rollback location, that is resilient_function,
// in case of a failure
// MPI + computation
compute () ;

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.6

1.

2.

CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

MPI_Test_failure();
// MPI + computation
compute () ;
MPI_Test_failure();

Changes of this Version

Added text to specify behavior under the sessions model.

Defined that Reinit has a fallback mode of errors_abort, which specifies what happens
when one is outside the Reinit function. We mention that outside of the Reinit
function the behavior is as if the default handler is set.

. Question: What happens if you call Reinit before setting the error handler? We

handled the case when we are outside the Reinit section. We specify that that we
must call the error handler before calling Reinit; otherwise it is undefined behavior.

. Question: Can you change the error handler from synch to asynch? We specify that

we don’t support this. You choose a handler and use it in the entire program.

. We specify that that the only valid way to set the Reinit error handlers is to pass

MPI_.COMM _WORLD; otherwise it is not a valid program and it should return an
error.

. Question: What happens when we set the error handler, we execute code and a failure

occurs, but we didn’t call Reinit? We specify that in this case, we the previously set
error handler.

Added that we assume that the application’s state will be recovered using CPR.

. Modified Example 1.2: (1) put test_failure before C/R; (2) added compute() functions.

. We define the state of MPI calls when a failure happens before test_failure is called.

In this case Reinit behaves as if MPI_ ERRORS_RETURN is set so the user is notified
of the error but later when test_failure is called the error is recovered.

To-Do List

. Define FORTRAN bindings
. Define what happens with MPI state in tools (e.g., PMPI tools).

. Why not having multiple rollback locations? Consider supporting multiple protected

blocks. Interesting addition, but it will be considered in future work.

Unofficial Draft for Comment Only

	1 Global-Restart Fault Tolerance
	1.1 Introduction
	1.2 Fault Model
	1.3 Reinit MPI Interface
	1.4 Error Handling
	1.4.1 Association of Error Handlers
	1.4.2 Behavior for Specific Error Conditions
	1.4.3 State

	1.5 Examples
	1.6 Changes of this Version
	1.7 To-Do List

