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Summary of activities

• Default error handlers and error/abort behavior
• Non-catastrophic errors
• Integration between global C/R and scoped recovery models
• User Level Failure Mitigation
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Default and Fatal Errors

• In Section 8.3, the above statement is self contradictory
• It aborts “all” executing processes, but MPI_ABORT has a communicator argument
• The later is more useful to contain errors in domains

• Proposed changes:
• MPI_ERRORS_ARE_FATAL will by default be attached to MPI_COMM_WORLD, MPI_COMM_SELF and the communicator 

obtained from MPI_COMM_GET_PARENT;
• It is fatal at all connected processes

• New handler MPI_ERRORS_ABORT aborts (only) the communicator (window/file)

• MPI errors during operations that are not attached to a communicator/window/file will be raised on MPI_COMM_SELF (instead 
of MPI_COMM_WORLD)

• Clarification of the inheritance rules: after MPI_COMM_DUP(comm1, &comm2), comm2 has the same error handler as comm1

• More info on the MPI Forum ticket #1:
• https://github.com/mpi-forum/mpi-issues/issues/1
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(Non-)Catastrophic Errors

• After an error is detected, the state of MPI is undefined if the error is 
catastrophic, that is …
• MPI is in a correct, defined state after a “non-catastrophic” error 
• MPI_Get_state(OUT state)
• When state is MPI_IS_OK, the application may continue to use MPI (that is, communicating with MPI will 

yield correct results).
• When state is MPI_IS_CATASTROPHIC, continued use of MPI interfaces may result in undefined behavior.

• Motivating examples
• When an error is returned during MPI_WIN_ALLOCATE_SHARED, the user can try to use non-shared memory 

window, or resort to 2-sided MPI instead.
• Posting multiple iRecv, creating multiple communicators, etc, running out of MPI resources

• More information on the MPI Forum ticket #28: 
https://github.com/mpi-forum/mpi-issues/issues/28
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Interactions between multiple recovery models

• Global C/R recovery proposed by I. Laguna & friends
• Simpler to program and deploy
• Limited to global C/R, no support for localized or scoped recovery
• Full text not produced yet (devil is in the details J)

• ULFM
• Expressive support for localized and communicator scoped recovery
• Support for user CR and non-CR models
• Implementing global recovery over ULFM is possible but requires more work from the user level

• WG tasked with evaluating if these models may coexist in the standard
• WG confident that these may coexist and may be selected at runtime
• WG still working to understand if/how an application may switch over time from one mode to the other and forth
• WG investigating if an application may use simplified C/R on a subgroup of the processes, ULFM on another 
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ULFM MPI Crash Recovery
• Failure Notification
• Error Propagation
• Error Recovery
• Respawn of nodes
• Dataset restoration

Not all recovery strategies
require all of these 
features,
that’s why the interface 
should split notification, 
propagation and recovery.

What is the scope of a failure? 
Who should be notified about?
What actions should be taken?

• Some applications can continue w/o recovery
• Some applications are maleable
• Shrink creates a new, smaller communicator on which collectives 

work

• Some applications are not maleable
• Spawn can recreate a “same size” communicator
• It is easy to reorder the ranks according to the original ordering
• Pre-made code snippets available

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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• Adds 3 error codes and 5 
functions to manage process 
crash
• Error codes: interrupt operations 

that may block due to process 
crash

• MPI_COMM_FAILURE_ACK / 
GET_ACKED: continued operation 
with ANY-SOURCE RECV and 
observation known failures

• MPI_COMM_REVOKE lets 
applications interrupt operations 
on a communicator

• MPI_COMM_AGREE: synchronize 
failure knowledge in the 
application

• MPI_COMM_SHRINK: create a 
communicator excluding failed 
processes

• More info on the MPI Forum ticket 
#20: https://github.com/mpi-
forum/mpi-issues/issues/20



WG Researching ULFM Expansions

• Simplification of “global” recovery patterns
• ULFM designed to provide “scoped” recovery
• Addition of function “REVOKE_ALL” to revoke all communicators at once

• Automations
• In many cases, one wants to discard failed communicators and requests
• Addition of error handler “MPI_ERRORS_REVOKE, MPI_ERRORS_FREE” to automate these common 

usage patterns

• Run-through failures RMA
• ULFM current design limited to ”stopping” RMA operations on a window impacted by a failure (the 

window may be rebuild from a communicator later)
• Investigating more ambitious recovery models with continued operation on windows

7



User Level Failure Mitigation: 
Implementation status
• ULFM available in Open 

MPI and MPICH
• ULFM in MPICH release
• Open MPI ULFM implementation 

updated in-sync with Open MPI 
master

• Scalable fault tolerant 
algorithms 
• Research on algorithms dedicated 

to HPC resilience bearing fruits
• New algorithms demonstrated in 

practice (SC’14, EuroMPI’15, SC’15, 
SC’16)
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User Level Failure Mitigation:
User Adoption

• Fortran CoArrays “failed images”
uses ULFM-RMA to support Fortran 
TS 18508 in gcc-7.29

Resilient X10 over Fault Tolerant MPI

Sara Hamouda1, Benjamin Herta2, Josh Milthorpe1,2, David Grove2, Olivier Tardieu2
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Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 

synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 

the happens before relationship 

between statements at the 

remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.

References:

[1] D. Cunningham, D. Grove, B. Herta, A. Iyengar, K. Kawachiya, H. Murata, V. Saraswat, M. Takeuchi, and O. Tardieu. "Resilient X10: Efficient failure-aware programming." ACM SIGPLAN 

Notices 49, no. 8 (2014): 67-80.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An evaluation of user-level failure mitigation support in MPI. Springer Berlin Heidelberg, 2012.

[3] J. Milthorpe, D. Grove, B. Herta, and O. Tardieu. Exploring the APGAS programming model using the LULESH proxy application. In Runtime Systems for Extreme Scale Programming Models 

and Architectures Workshop, SC 2015.
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Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF ) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.
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Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).
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Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities

We have found that we can force all processes of an MPI
program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by o↵ering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and e�cient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN

FT-MRMPI is a fault tolerant MapReduce framework im-
plemented on MPI. It tracks a consistent state during job
execution and supports e�cient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model o↵ers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more e�cient job execu-
tion engine.

3.1 Overview

Figure 2 shows the structure of a MapReduce application
using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner

The lifespan of a MapReduce job can be divided into
three phases: map, shu✏e, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.
FT-MRMPI’s task runner provides a set of user-customizable

interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.
Table 1 shows the interfaces for map and reduce phases

in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.
After delegating the I/O operations to the library, the im-

plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.
With the interfaces, FT-MRMPI generalizes the workflow

of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.
The state tracing in the shu✏e phase is relatively simple

because no user code is involved. FT-MRMPI traces the
send and receive for each memory bu↵er in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters

Although a process-local consistent state is su�cient for
fault tolerance in the map and reduce phases. It is not
enough for the shu✏e phase. Unlike the other phases that
have no inter-process coordination, the shu✏e phase has col-
lective communication between all processes. In the shu✏e
phase, all processes in the MapReduce job exchange interme-

And many more…
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Figure 5.23: Optimization: Reduce Runtime

Figure 5.24: Optimization: Runtime of TPC-H Benchmark Query 3 with Failure in Phase 4 (1GB Data per
Process)
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Thanks

Participate!
• WG mailing list 
• https://lists.mpi-forum.org/mailman/listinfo/mpiwg-ft

• WG issue tracker
• https://github.com/mpiwg-ft/ft-issues

• WG meeting notes, documents, and telecon info 
• https://github.com/mpiwg-ft/ft-issues/wiki
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