
Fault Tolerant MPI 

Aurélien Bouteiller 
ICL “Friday lunch” 

Feb. 7, 2014 



Fault Tolerant MPI, Motivation 

• Failures are becoming more than a distant 
threat 
• Checkpoint/Restart (C/R) is good, but it could 

be better 
•  Even C/R can benefit from MPI support! 

• Even better FT models are available, but lack 
support from MPI 

Standardization of MPI behavior after failures is 
a key missing infrastructure 

2 



Targeted Application Domains 

3 

a 
b 

c 

d 

b 

e 

Master 

Worker0 
Worker1 
Worker2 

TIME 

P
ro

te
c
tio

n
 b

lo
c
k
s
 

F
a

cto
rize

d
 in

 
p

re
vio

u
s ite

ra
tio

n
s 

trailing matrix  
& protection 

update by 
applying the 

same 
operations 

F
a

cto
rize

d
 in

 
p

re
vio

u
s ite

ra
tio

n
s 

F
a

c
to

rize
 

ABFT

Coordinated Checkpoint/Restart, Automatic, 
Compiler Assisted, User-driven Checkpointing, etc.

ULFM makes these approaches portable across MPI implementations

Naturally Fault Tolerant Applications, Master-Worker, 
Domain Decomposition, etc.

ULFM allows for the deployment 
of  ultra-scalable, algorithm 
specific FT techniques.

ULFM MPI
Specification

Uncoordinated Checkpoint/Restart, 
Transactional FT, Migration, 
Replication, etc.

Algorithm Fault Tolerance

Application continues a simple communication pattern, 
ignoring failures

In-place restart (i.e., without disposing of non-failed processes) 
accelerates recovery, permits in-memory checkpoint



ULFM: Key Philosophy 

•  Flexibility 
•  No particular 

recovery model 
imposed or 
favored 

•  Application directs 
the recovery: it 
pays only for the 
level of protection 
it needs 

•  Recovery can be 
restricted to 
subgroups for 
scalability 

4 

•  Performance 
•  Protective actions 

are outside of 
critical MPI 
routines 

•  MPI implementors 
can uphold 
unmodified 
algorithms 
(collective, one-
sided, I/O)  

•  Encourages 
programs to be 
reactive to 
failures,  

•  Productivity 
•  Backward 

compatible with 
legacy, fragile 
applications 

•  Simple and 
familiar concepts 
to repair MPI 

•  Provides key MPI 
concepts to 
enable FT support 
from Libraries, 
runtime, language 
extensions 

User Level Failure Mitigation: a set of MPI interface extensions to enable MPI 
programs to restore MPI communication capabilities disabled by failures 

When FT is unnecessary (small, reliable cluster, short application runtime, etc), it can be disabled completely 



Failure Model 

• Process Failures 
•  Fail-stop failures: a process crash (dead, never comes back to life) 
•  Transient (network) failures are “upgraded” to fail-stop (may be revisited 

later) 

• Silent (memory errors) & Byzantine failures are 
outside of the scope 
•  Memory corruptions are better addressed at the application level 
•  Message corruptions can be addressed without standard modifications 

5 



Minimal Feature Set for FT 

• Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies require all of these 
features, that’s why the interface splits 
notification, propagation and recovery 

6 



Failure Notification 
• Notification of failures is local only 
•  New error MPI_ERR_PROC_FAILED Raised when a communication with a 

targeted process fails 

•  In an operation (collective), some process may 
succeed while other raise an error 
•  Bcast might succeed for the top of the tree, but fail for some subtree rooted 

on a failed process 

• ANY_SOURCE must raise an exception 
•  the dead could be the expected sender 
•  Raise error MPI_ERR_PROC_FAILED_PENDING, preserve matching order 
•  The application can complete the recv later (MPI_COMM_FAILURE_ACK()) 

• Exceptions indicate an operation failed 
•  To know what process failed, apps call MPI_COMM_FAILURE_ACK(), 

MPI_COMM_FAILURE_GET_ACKED() 

7 



App using notification only 

8 

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

• Error notifications do not break MPI 
•  App can continue to communicate on the communicator 
•  More errors may be raised if the op cannot complete (typically, most collective 

ops are expected to fail), but p2p between non-failed processes works 

•  In this Master-Worker example, we can continue 
w/o recovery! 
•  Master sees a worker failed 
•  Resubmit the lost work unit onto another worker 
•  Quietly continue 



Error Propagation 

•  Errors are local, processes have a different view of failures 
•  We need a tool to resolve potential inconsistent behavior 

•  When necessary, app can manually propagate an error 
•  MPI_COMM_REVOKE(comm) 
•  Interrupts all non-local MPI calls at all ranks on comm 
•  Once revoked, any non-local operation on comm raises MPI_ERR_REVOKED (except 

recovery functions, duh)  

9 

0

1

2

3

Recv(1) Failed

Recv(3)

Send(2)Recv(0)

Revoked
RevokedRevoked

Revoke



App using propagation only 

•  Application does only p2p communications 
•  P1 fails, P2 raises an error and wants to change comm 

pattern to do application recovery 
•  but P3..Pn are stuck in their posted recv 
•  P2 unlocks them with Revoke 
•  P3..Pn join P2 in the new recovery p2p communication 

pattern 

10 

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery



Error Agreement 

• When in need to decide if there is a failure and 
if the condition is recoverable (collectively) 
•  MPI_COMM_AGREE(comm, flag) 

•  Fault tolerant agreement over boolean flag 
•  Unexpected failures (not acknowledged before the call) 

raise MPI_ERR_PROC_FAILED 
•  The flag can be used to compute a user condition, even 

when there are failures in comm 

• Can be used as a global failure detector 

11 



Error Recovery 

• Restores full communication capability (all 
collective ops, etc). 
• MPI_COMM_SHRINK(comm, newcomm) 
•  Creates a new communicator excluding failed processes 
•  New failures are absorbed during the operation 

12 

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast



Also supported 

• Remote Memory Access Window objects 
•  The window becomes unusable after a failure, but 
•  State of memory window is defined after an error (except for write 

regions) 
•  The window can be recreated (by repairing the parent communicator) 

• Files 
•  The file pointer is scrambled after a failure, but 
•  It can be reset by the application, and resume 
•  The file can be recreated (by repairing the parent communicator) 

13 



Standardization progress 

• Draft document is complete 
• First reading in 3 weeks from now (San Jose 

MPI forum meeting) 
• Probably first vote in june 
 
Document design participants: 
UTK (lead), Argonne (Wesley), Intel (J. Dinan), 
ORNL (T. Naughton & friends), other friendly 
reviewers  

14 



Implementation in Open MPI 

•  It works! Performance is good! 

15 

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I
N

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i
s
 f

a
s
te

r
U

L
F

M
 i
s
 f

a
s
te

r

Thanks for CREST, Rinken support 



User activities 

•  ORNL: Molecular Dynamic simulation 
•  Employs coordinated user-level C/R, in place 

restart with Shrink 

•  UAB: transactional FT programming model 
•  Tsukuba: Phalanx Master-worker 

framework 
•  Georgia University: Wang Landau Polymer 

Freezing and Collapse  
•  Employs two-level communication scheme 

with group checkpoints 
•  Upon failure, the tightly coupled group 

restarts from checkpoint, the other distant 
groups continue undisturbed 

•  Sandia: Sparse solver 
•  ??? 

•  Others… 

16 

•  Cray: CREST miniapps, PDE solver Schwartz, 
PPStee (Mesh, automotive), HemeLB (Lattice 
Boltzmann) 

•  UTK: FTLA (dense Linear Algebra) 
•  Employs ABFT 
•  FTQR returns an error to the app, App calls new 

BLACS repair constructs (spawn new processes 
with MPI_COMM_SPAWN), and re-enters FTQR to 
resume (ABFT recovery embedded) 

•  ETH Zurich: Monte-Carlo 
•  Upon failure, shrink the global communicator 

(that contains spares) to recreate the same 
domain decomposition, restart MC with same 
rank mapping as before 

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich 



Thank you 

To know more… 
http://fault-tolerance.org/ulfm/ 

17 


