
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

November 12, 2013
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).



This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii



Chapter 17

Process Fault Tolerance

17.1 Introduction

Long running and large scale applications are at increased risk of encountering process
failures during normal execution . We consider a process failure

::
In

:::::::::::
distributed

:::::::::
systems

::::
with

::::::::::
numerous

:::
or

:::::::::
complex

:::::::::::::
components,

::::
the

::::
risk

:::::
that

::::
the

:::::
fault

:::
of

::
a

:::::::::::
component

::::::::::
manifests

::
as

::
a
::::::::
process

:::::::
failure

:::::
that

:::::::::
disrupts

::::
the

:::::::
normal

::::::::::
execution

:::
of

::
a
:::::

long
:::::::::

running
:::::::::::
application

:::
is

:::::::
serious.

:::
A

::::::::
process

:::::::
failure

::
is

::
a
:::::::::
common

:::::::::
ultimate

:::::::::
outcome

:::
for

::::::
many

::::::::::
hardware,

:::::::::
network

:::
or

::::::::
software

::::::
faults

:::::
that

:::::
cause

::
a
::::::::
process

:::
to

::::::
crash;

::
It

::::
can

:::
be

::::::
more

::::::::
formally

::::::::
defined

:
as a fail-stop

failure; failed processes become
:
:
::::
the

::::::
failed

:::::::
process

:::::::::
becomes

:
permanently unresponsive to

communications. This chapter introduces the MPI features that support the development
of applicationsand libraries,

:::::::::
libraries,

::::
and

::::::::::::::
programming

::::::::::
languages that can tolerate process

failures. The approach described in this chapter is intended to prevent the deadlock of
processes while avoiding impact on the failure-free execution of an application.

::::::::
primary

::::
goal

::
is
:::

to
::::::::

specify
::::::
error

:::::::
classes

::::
and

::::::::::
interfaces

:::::
that

::::::::
permit

::::::
users

:::
to

:::::::::
continue

:::::::
simple

:
MPI

:::::::::::::::
communication

:::::::::::
operations

:::::
after

::::::::
failures

:::::
have

::::::::::
impacted

::::
the

:::::::::::
execution,

:::::
and

::::::::
rebuild

:
MPI

:::::::
objects

::::::::::::::::
(communicators,

:::::
files,

:::::
etc.)

:::
as

::::::::
needed

::
to

::::::::
restore

:::
the

::::
full

::::::::::
capability

:::
of MPI

::
to

::::::
carry

:::::::::
elaborate

:::::::::::::::
communication

:::::::::::
operations

:::::
(like

::::::::::
collective

::::::::::::::::::
communications.)

::::::
This

:::::::::::::
specification

::::
does

::::
not

::::::::
include

::::::::::::
mechanisms

:::
to

:::::::
restore

::::
the

::::
lost

::::::
data

:::::
from

::::::
failed

::::::::::
processes;

::::
the

::::::::::
literature

:
is
:::::

rich
:::::
with

:::::::
wildly

:::::::
varied

:::::
fault

::::::::::
tolerance

:::::::::::
techniques

:::::
that

::::
the

::::::
users

:::::
may

:::::::
employ

:::
at

::::::
their

::::::::::
discretion,

:::::::::
including

:::::::::::::::::::
checkpoint-restart,

:::::::::::
algorithmic

:::::::
dataset

:::::::::
recovery,

:::
or

::::::::::::
continuation

::::::::
ignoring

:::::
failed

::::::::::
processes.

:::::
All

:::::
these

::::::
fault

:::::::::
tolerance

:::::::::::
approaches

::::::::
benefit

::::::
from,

::::
and

::::::
often

::::::::
require,

::::
the

::::::::::
definitions

::::
and

::::::::::
interfaces

:::::::::
specified

::
in

::::
this

::::::::
chapter

:::
to

:::::::
resume

:::::::::::::::
communicating

::::::
after

:
a
::::::::
failure.

The expected behavior of MPI in the case of a process failure is defined by the following
statements: any MPI operation that involves a failed process must not block indefinitely,
but either succeed or raise an MPI exception (see Section 17.2); an MPI operation that
does not involve the

:
a
:
failed process will complete normally, unless interrupted by the user

through provided functionality.
::::::::::
Exceptions

:::::
only

:::::::::
indicate

::::
the

:::::
local

::::::::
impact

:::
of

::::
the

:::::::
failure

::
on

:::
an

:::::::::::
operation.

:
Asynchronous failure propagation is not required

::::::::::
guaranteed

:::
or

:::::::::
required

::::
and

:::::
users

::::::
must

::::::::
exercise

::::::::
caution

::::::
when

::::::::::
reasoning

:::
on

::::
the

::::
set

:::
of

::::::
ranks

:::::::
where

::
a

:::::::
failure

::::
has

::::
been

:::::::::
detected

::::
and

:::::::
raised

:::
an

:::::::::
exception. If an application needs

::::::::::
consistent global knowledge

of failures, it can use the interfaces defined in Section 17.3 to explicitly propagate
:::
the

:::::::::::
notification

::
of

:
locally detected failures.

An

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



2 CHAPTER 17. PROCESS FAULT TOLERANCE

:::::
Some

::::::::::
machines

:::::
may

:::
be

::::::::
reliable

::::::::
enough

:::::
that

:::::
fault

::::::::::
tolerance

::::::::
support

:::
is

:::::::::::::
unnecessary.

:::
An

:
MPI implementation that does not tolerate process failures must provide the interfaces

and semantics defined in this chapter as long as no failure occurred. It must never raise
an exception of class MPI_ERR_PROC_FAILED or MPI_ERR_PENDING because of

::
to

:::::::
report

:
a

process failure.
This chapter does not define process failure semantics for the operations specified in

Chapters , therefore they remain undefined by the / standard
:::::
Fault

::::::::
tolerant

:::::::::::::
applications

:::::
using

::::
the

:::::::::
interfaces

::::::::
defined

::
in

::::
this

::::::::
chapter

:::::
must

:::::::::
compile,

::::
link

::::
and

::::
run

::::::::::::
successfully

::
in

:::::::
failure

:::
free

:::::::::::
executions.

Advice to users. Many of the operations and semantics described in this chapter
are only applicable when the MPI application has replaced the default error handler
MPI_ERRORS_ARE_FATAL on, at least, MPI_COMM_WORLD. (End of advice to users.)

17.2 Failure Notification

This section specifies the behavior of an MPI communication operation when failures oc-
cur on processes involved in the communication. A process is considered involved in a
communication if any of the following is true:

1. the operation is collective and the process appears in one of the groups of the associ-
ated communication object;

2. the process is a specified or matched destination or source in a point-to-point com-
munication;

3. the operation is an MPI_ANY_SOURCE receive operation and the failed process belongs
to the source group.

Therefore, if an operation does not involve a failed process (such as a point-to-point
message between two non-failed processes), it must not raise a process failure exception.

Advice to implementors. A correct MPI implementation may provide failure detec-
tion only for processes involved in an ongoing operation, and postpone detection of
other failures until necessary. Moreover, as long as an implementation can complete
operations, it may choose to delay raising an error

:::::::::
exception. Another valid imple-

mentation might choose to raise an error
:::::::::
exception

:
as quickly as possible. (End of

advice to implementors.)

Non-blocking operations must not raise an exception about process failures during ini-
tiation. All process failure errors are postponed until the corresponding completion function
is called.

17.2.1 Startup and Finalize

Advice to implementors. If a process fails during MPI_INIT but its peers are able to
complete the MPI_INIT successfully, then a high quality implementation will return
MPI_SUCCESS and delay the reporting of the process failure to a subsequent MPI
operation. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



17.2. FAILURE NOTIFICATION 3

MPI_FINALIZE will complete successfully even in the presence of process failures.

Advice to users. Considering Example 8.10 in Section 8.7, the process with rank 0
in may have failed before, during, or after the call to .

MPI only provides failure detection capabilities up to when
:::::
raises

:::::::::::
exceptions

:::::
only

::::::
before

:
MPI_FINALIZE is invoked and

:::::::
thereby

:
provides no support for fault toler-

ance during or after MPI_FINALIZE. Applications are encouraged to implement all
rank-specific code before the call to MPI_FINALIZEto handle the case where process

:
.
:::::::::::::

Considering
:::::::::
Example

:::::
8.10

::
in

::::::::
Section

:::::
8.7,

::::
the

::::::::
process

:::::
with

:::::
rank

:
0 in

MPI_COMM_WORLD fails.
::::
may

:::::
have

::::::
failed

:::::::
before,

::::::::
during,

:::
or

:::::
after

::::
the

::::
call

:::
to

:

MPI_FINALIZE
:
,
::::::::
possibly

::::::::
leading

:::
to

::::
this

:::::
code

::::::
never

::::::
being

:::::::::
executed.

:

(End of advice to users.)

17.2.2 Point-to-Point and Collective Communication

An MPI implementation raises the following error classes to notify users that a point-to-
point communication operation could not complete successfully because of the failure of
involved processes:

• MPI_ERR_PENDING indicates, for a non-blocking communication, that the communi-
cation is a receive operation from MPI_ANY_SOURCE and no matching send has been
posted, yet a potential sender process has failed. Neither the operation nor the request
identifying the operation are completed. Note that the same error class is also used
in status when another communication raises an exception during the same operation
(as defined in Section 3.7.5).

• In all other cases, the operation raises an exception of class MPI_ERR_PROC_FAILED

to indicate that the failure prevents the operation from following its failure-free spec-
ification. If there is a request identifying the point-to-point communication, it is
completed. Future point-to-point communication with the same process on this com-
municator must also raise MPI_ERR_PROC_FAILED.

Advice to users.

To acknowledge a failure and discover which processes failed, the user should call
MPI_COMM_FAILURE_ACK (as defined in Section 17.3.1).

(End of advice to users.)

When a collective operation cannot be completed because of the failure of an involved
process, the collective operation raises an error

:::::::::
exception

:
of class MPI_ERR_PROC_FAILED.

Advice to users.

Depending on how the collective operation is implemented and when a process failure
occurs, some participating alive processes may raise an exception while other processes
return successfully from the same collective operation. For example, in MPI_BCAST,
the root process may succeed before a failed process disrupts the operation, resulting
in some other processes raising an error

:::::::::
exception. However, it is noteworthy that for

collective operations on an intracommunicator in which all processes contribute to the
result and all processes receive the result, processes which do not enter the operation

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



4 CHAPTER 17. PROCESS FAULT TOLERANCE

due to process failure provoke all surviving ranks to raise MPI_ERR_PROC_FAILED.
Similarly, for the same collective operations on an intercommunicator, a process in
the remote group which failed before entering the operation has the same effect on all
surviving ranks of the local group.

(End of advice to users.)

Advice to users.

Note that communicator creation functions (like MPI_COMM_DUP or
MPI_COMM_SPLIT) are collective operations. As such, if a failure happened during
the call, an error

:::::::::
exception

:
might be raised at some processes while others succeed

and obtain a new communicator. While it is valid to communicate between processes
which succeeded to create the new communicator, it is the responsibility of the user
to ensure that all involved processes have a consistent view of the communicator
creation, if needed. A conservative solution is to have each process either revoke (see
Section 17.3.1) the parent communicator if the operation fails, or call an
MPI_BARRIER on the parent communicator and then revoke the new communicator
if the MPI_BARRIER fails.

(End of advice to users.)

When a communication operation raises an exception related to process failure, the
content of the output buffers is undefined.

17.2.3 Dynamic Process Management

Dynamic process management functions require some additional semantics from the MPI
implementation as detailed below.

1. If the MPI implementation raises an error
:::::::::
exception

:
related to process failure to

the root process of MPI_COMM_CONNECT or MPI_COMM_ACCEPT, at least the
root processes of both intracommunicators must raise the same error

:::::::::
exception

:
of

class MPI_ERR_PROC_FAILED (unless required to raise MPI_ERR_REVOKED as defined
by 17.3.1). The same is true if the implementation returns an error to

:::::
raises

:::
an

:::::::::
exception

:::
at any process in MPI_COMM_JOIN.

2. If the MPI implementation raises an error
:::::::::
exception

:
related to process failure to the

root process of MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE, no spawned
processes should be able to communicate on the created intercommunicator.

Advice to users. As with communicator creation functions, it is possible that if a
failure happens during dynamic process management operations, an error

:::::::::
exception

might be raised at some processes while others succeed and obtain a new communi-
cator. (End of advice to users.)

17.2.4 One-Sided Communication

One-Sided communication operations must provide failure notification in their synchroniza-
tion operations which may raise an error

:::::::::
exception

:
due to process failure (see Section 17.2).

If the implementation does not raise an error
:::::::::
exception

:
related to process failure in the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



17.2. FAILURE NOTIFICATION 5

synchronization function, the epoch behavior is unchanged from the definitions in Sec-
tion 11.5. As with collective operations over MPI communicators, it is possible that some
processes have detected a failure and raised MPI_ERR_PROC_FAILED, while others returned
MPI_SUCCESS. Once the implementation returns an error

:::::
raises

:::
an

:::::::::
exception

:
related to pro-

cess failure on a specific window in a synchronization function, all subsequent operations on
that window much also return an error code

::::
must

:::::
also

:::::
raise

:::
an

:::::::::
exception

:
related to process

failure.
Unless specified below, the state of memory targeted by any process in an epoch in

which operations raised an error
:::::::::
exception

:
related to process failure is undefined, with

the exception of memory targeted by remote read operations (and operations which are
semantically equivalent to read operations, such as an MPI_ACCUMULATE with MPI_NO_OP

as the operation). All other window locations are valid.

1. If a failure is to be reported during active target communication functions
MPI_WIN_COMPLETE or MPI_WIN_WAIT (or the non-blocking equivalent
MPI_WIN_TEST), the epoch is considered completed and all operations not involving
the failed processes must complete successfully.

2. If the MPI_WIN_LOCK
:::
and

:
MPI_WIN_UNLOCK

::::
may

::::::
raise

:
MPI_ERR_PROC_FAILED

:::::
when

::::
any

:::::::
process

:::
in

:::
the

::::::::
window

::::
has

::::::
failed.

::::
An

:::::::::::::::
implementation

:::::::
cannot

:::::
block

::::::::::::
indefinitely

::
in

::
a

:::::::
correct

:::::::::
program

::::::::
waiting

:::
for

::
a
:::::
lock

:::
to

:::
be

:::::::::
acquired;

:::
If

::::
the

::::::
owner

:::
of

::::
the

::::
lock

::::
has

::::::
failed,

::::::
some

::::::
other

::::::::
process

:::::::
trying

:::
to

::::::::
acquire

::::
the

:::::
lock

::::::
either

:::::::::
succeeds

:::
or

:::::::
raises

:::
an

:::::::::
exception

:::
of

:::::
class

:
MPI_ERR_PROC_FAILED

:
.
:::

If
::::
the

:
target rank has failed,

MPI_WIN_LOCK and MPI_WIN_UNLOCK operations raise an error
::::
must

::::::
raise

:::
an

:::::::::
exception

:
of class MPI_ERR_PROC_FAILED. The lock cannot be acquired again at

any target in the window, and all subsequent operations on the lock must raise
MPI_ERR_PROC_FAILED. As with communicator-based operations, an implementation
cannot block indefinitely in a correct program waiting for a lock to be acquired. If
the owner of the lock has failed, some other process should be notified via the return
code .

Advice to implementors. If a non-target rank in the window fails, it is possible that
the implementation will

:
a

:::::
high

:::::::
quality

::::::::::::::::
implementation

::::
may

:
be able to mask such an

error
::
a

:::::
fault

:
inside the locking algorithm and continue to allow the remaining ranks

to acquire the lock
:::::::
without

:::::::
raising

::::::
errors. (End of advice to implementors.)

After a process failure has been detected, MPI_WIN_FREE, as with all other collective
operations, may not complete successfully on all ranks. For any rank which receives the
return code MPI_SUCCESS, the behavior is defined as in Section 11.2.5. If a rank receives
a return code related to process failure, the implementation makes no guarantee about the
success or failure of the MPI_WIN_FREE operation remotely, though it should still attempt
to clean up any local data used by the Window object. This will be signified by returning
MPI_WIN_NULL when the object has successfully been freed locally.

It is possible that request-based RMA operations complete successfully (via operations
such as MPI_TEST or MPI_WAIT) while the enclosing epoch completes by raising error due
to

::
an

::::::::::
exception

::::
due

:::
to

::
a

:
process failure. In this scenario, the local buffer is valid but the

remote targeted memory is undefined.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



6 CHAPTER 17. PROCESS FAULT TOLERANCE

17.2.5 I/O

I/O
::::::::
backend

:::::::
failure

:
error classes and their consequences are defined in Section 13.7. The

following section defines the behavior of I/O operations when MPI process failures prevent
their successful completion.

Since collective I/O operations may not synchronize with other processes, process fail-
ures may not be reported during a collective I/O operation. If a process failure prevents a
file operation from completing, an MPI exception of class MPI_ERR_PROC_FAILED is raised.
Once an MPI implementation has raised an error

:::::::::
exception of class MPI_ERR_PROC_FAILED,

the state of the file pointer involved in the operation which returned the error code
::::::
raised

:::
the

::::::::::
exception

:
is undefined.

Advice to users.

Users are encouraged to use MPI_COMM_AGREE on a communicator containing the
same group as the file handle, to deduce the completion status of collective operations
on file handles and maintain a consistent view of file pointers. The file pointer can be
reset using MPI_FILE_SEEK with the MPI_SEEK_SET update mode.

(End of advice to users.)

After a process failure has been detected, MPI_FILE_CLOSE, as with all other collective
operations, may not complete successfully on all ranks. For any rank which receives the
return code MPI_SUCCESS, the behavior is defined as in Section 11.2.5. If a rank receives
a return code related to process failure, the implementation makes no guarantee about
the success or failure of the MPI_FILE_CLOSE operation remotely, though it should still
attempt to clean up any local data used by the File object. This will be signified by
returning MPI_FILE_NULL when the object has successfully been freed locally.

17.3 Failure Mitigation Functions

17.3.1 Communicator Functions

MPI provides no guarantee of global knowledge of a process failure. Only processes involved
in a communication operation with the failed process are guaranteed to eventually detect
its failure (see Section 17.2). If global knowledge is required, MPI provides a function to
revoke a communicator at all members.

MPI_COMM_REVOKE( comm )

IN comm communicator (handle)

int MPI_Comm_revoke(MPI_Comm comm)

MPI_COMM_REVOKE(COMM, IERROR)

INTEGER COMM, IERROR

This function notifies all processes in the groups (local and remote) associated with
the communicator comm that this communicator is now considered revoked. This function
is not collective and therefore does not have a matching call on remote processes. It is
erroneous to call MPI_COMM_REVOKE on a communicator for which no operation raised

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



17.3. FAILURE MITIGATION FUNCTIONS 7

an MPI exception related to process failure. All alive processes belonging to comm will be
notified of the revocation despite failures. The revocation of a communicator completes any
non-local MPI operations on comm by raising an error

:::::::::
exception of class MPI_ERR_REVOKED,

with the exception of MPI_COMM_SHRINK and MPI_COMM_AGREE (and its nonblocking
equivalent). A communicator becomes revoked as soon as:

1. MPI_COMM_REVOKE is locally called on it;

2. Any MPI operation raised an error
:::::::::
exception

:
of class MPI_ERR_REVOKED because

another process in comm has called MPI_COMM_REVOKE.

Once a communicator has been revoked, all subsequent non-local operations on that
communicator, with the exception of MPI_COMM_SHRINK and MPI_COMM_AGREE (and
its nonblocking equivalent), are considered local and must complete by raising an error

:::::::::
exception

:
of class MPI_ERR_REVOKED.

Advice to users. High quality implementations are encouraged to do their best to
free resources locally when the user calls free operations on revoked communication
objects, or communication objects containing failed processes. (End of advice to
users.)

MPI_COMM_SHRINK( comm, newcomm )

IN comm communicator (handle)

OUT newcomm communicator (handle)

int MPI_Comm_shrink(MPI_Comm comm, MPI_Comm* newcomm)

MPI_COMM_SHRINK(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

This collective operation creates a new intra or inter communicator newcomm from the
intra or inter communicator comm respectively by excluding its failed processes as detailed
below. It is valid MPI code to call MPI_COMM_SHRINK on a communicator which has
been revoked (as defined above).

This function must not raise an error
:::::::::
exception

:
due to process failures (error classes

MPI_ERR_PROC_FAILED and MPI_ERR_REVOKED). All processes agree on the content of the
group of processes that failed. This group includes at least every process failure that has
raised an MPI exception of class MPI_ERR_PROC_FAILED or MPI_ERR_PENDING. The call
is semantically equivalent to an MPI_COMM_SPLIT operation that would succeed despite
failures, and where living processes participate with the same color, and a key equal to their
rank in comm and failed processes implicitly contribute MPI_UNDEFINED.

Advice to users. This call does not guarantee that all processes in newcomm are
alive. Any new failure will be detected in subsequent MPI operations. (End of advice
to users.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



8 CHAPTER 17. PROCESS FAULT TOLERANCE

MPI_COMM_FAILURE_ACK( comm )

IN comm communicator (handle)

int MPI_Comm_failure_ack(MPI_Comm comm)

MPI_COMM_FAILURE_ACK(COMM, IERROR)

INTEGER COMM, IERROR

This local operation gives the users a way to acknowledge all locally notified failures on
comm. After the call, unmatched MPI_ANY_SOURCE receptions that would have raised an
error code

:::::::::
exception

:
MPI_ERR_PENDING due to process failure (see Section 17.2.2) proceed

without further reporting of errors
::::::
raising

:::::::::::
exceptions

:
due to those acknowledged failures.

Advice to users. Calling MPI_COMM_FAILURE_ACK on a communicator with failed
processes does not allow that communicator to be used successfully for collective
operations. Collective communication on a communicator with acknowledged failures
will continue to raise an error

:::::::::
exception

:
of class MPI_ERR_PROC_FAILED as defined in

Section 17.2.2. To reliably use collective operations on a communicator with failed
processes, the communicator should first be revoked using MPI_COMM_REVOKE and
then a new communicator should be created using MPI_COMM_SHRINK. (End of
advice to users.)

MPI_COMM_FAILURE_GET_ACKED( comm, failedgrp )

IN comm communicator (handle)

OUT failedgrp group of failed processes (handle)

int MPI_Comm_failure_get_acked(MPI_Comm comm, MPI_Group* failedgrp)

MPI_COMM_FAILURE_GET_ACKED(COMM, FAILEDGRP, IERROR)

INTEGER COMM, FAILEDGRP, IERROR

This local operation returns the group failedgrp of processes, from the communicator
comm, which have been locally acknowledged as failed by preceding calls to
MPI_COMM_FAILURE_ACK. The failedgrp can be empty, that is, equal to
MPI_GROUP_EMPTY.

MPI_COMM_AGREE( comm, flag )

IN comm communicator (handle)

INOUT flag boolean flag

int MPI_Comm_agree(MPI_Comm comm, int * flag)

MPI_COMM_AGREE(COMM, FLAG, IERROR)

LOGICAL FLAG

INTEGER COMM, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



17.3. FAILURE MITIGATION FUNCTIONS 9

This function performs a collective operation on the group of living processes in comm.
On completion, all still living processes must agree to set the output value of flag to the
result of a logical ’AND’ operation over the contributed input values of flag. Processes
that failed before entering the call do not contribute to the operation. This function never
raise

:::::
raises

:
an exception of class MPI_ERR_PROC_FAILED. It may raise an exception of class

MPI_ERR_REVOKED, in which case, all processes will also raise that same exception.
If comm is an intercommunicator, the value of flag is a logical ’AND’ operation over

the values contributed by the remote group (where failed processes do not contribute to the
operation).

Advice to users. MPI_COMM_AGREE maintains its collective behavior even if the
comm is revoked. (End of advice to users.)

MPI_COMM_IAGREE( comm, flag, req )

IN comm communicator (handle)

INOUT flag boolean flag

OUT req request (handle)

int MPI_Comm_iagree(MPI_Comm comm, int* flag, MPI_Request* req)

MPI_COMM_IAGREE(COMM, FLAG, REQ, IERROR)

LOGICAL FLAG

INTEGER COMM, REQ, IERROR

This function has the same semantics as MPI_COMM_AGREE except that it is non-
blocking.

17.3.2 One-Sided Functions

MPI_WIN_REVOKE( win )

IN win window (handle)

int MPI_Win_revoke(MPI_Win win)

MPI_WIN_REVOKE(WIN, IERROR)

INTEGER WIN, IERROR

This function notifies all processes within the window win that this window is now
considered revoked. A revoked window completes any non-local MPI operations on win
with error and causes any new operations to complete with error. Once a window has been
revoked, all subsequent non-local operations on that window are considered local and must
fail with an error

:::::::::
exception

:
of class MPI_ERR_REVOKED.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10 CHAPTER 17. PROCESS FAULT TOLERANCE

MPI_WIN_GET_FAILED( win, failedgrp )

IN win window (handle)

OUT failedgrp group of failed processes (handle)

int MPI_Win_get_failed(MPI_Win win, MPI_Group* failedgrp)

MPI_WIN_GET_FAILED(WIN, FAILEDGRP, IERROR)

INTEGER COMM, FAILEDGRP, IERROR

This local operation returns the group failedgrp of processes from the window win which
are locally known to have failed.

Advice to users. MPI makes no assumption about asynchronous progress of the
failure detection. A valid MPI implementation may choose to only update the group
of locally known failed processes when it enters a synchronization function. (End of
advice to users.)

Advice to users. It is possible that only the calling process has detected the reported
failure. If global knowledge is necessary, processes detecting failures should use the
call MPI_WIN_REVOKED. (End of advice to users.)

17.3.3 I/O Functions

MPI_FILE_REVOKE( fh )

IN fh file (handle)

int MPI_File_revoke(MPI_File fh)

MPI_FILE_REVOKE(FH, IERROR)

INTEGER FH, IERROR

This function notifies all ranks within file fh that this file handle is now considered
revoked.

Ongoing non-local completion operations on a revoked file handle raise an exception
of class MPI_ERR_REVOKED. Once a file handle has been revoked, all subsequent non-local
operations on the file handle must raise an MPI exception of class MPI_ERR_REVOKED.

17.4 Error Codes and Classes

The following error classes are added to those defined in Section 8.4:

17.5 Examples

17.5.1 Master/Worker

The example below presents a master code that handles failures by ignoring failed pro-
cesses and resubmitting requests. It demonstrates the different failure cases that may occur

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



17.5. EXAMPLES 11

MPI_ERR_PROC_FAILED The operation could not complete because
of a process failure (a fail-stop failure).

MPI_ERR_REVOKED The communication object used in the op-
eration has been revoked.

Table 17.1: Additional process fault tolerance error classes

when posting receptions from MPI_ANY_SOURCE as discussed in the advice to users in Sec-
tion 17.2.2.

Example 17.1 Fault-Tolerant Master Example

int master(void)

{

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);

MPI_Comm_size(comm, &size);

/* ... submit the initial work requests ... */

MPI_Irecv( buffer, 1, MPI_INT, MPI_ANY_SOURCE, tag, comm, &req );

/* Progress engine: Get answers, send new requests,

and handle process failures */

while( (active_workers > 0) && work_available ) {

rc = MPI_Wait( &req, &status );

if( (MPI_ERR_PROC_FAILED == rc) || (MPI_ERR_PENDING == rc) ) {

MPI_Comm_failure_ack(comm);

MPI_Comm_failure_get_acked(comm, &g);

MPI_Group_size(g, &gsize);

/* ... find the lost work and requeue it ... */

active_workers = size - gsize - 1;

MPI_Group_free(&g);

/* repost the request if it matched the failed process */

if( rc == MPI_ERR_PROC_FAILED )

MPI_Irecv( buffer, 1, MPI_INT, MPI_ANY_SOURCE,

tag, comm, &req );

}

continue;

}

/* ... process the answer and update work_available ... */

MPI_Irecv( buffer, 1, MPI_INT, MPI_ANY_SOURCE, tag, comm, &req );

}

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



12 CHAPTER 17. PROCESS FAULT TOLERANCE

/* ... cancel request and cleanup ... */

}

17.5.2 Iterative Refinement

The example below demonstrates a method of fault-tolerance to detect and handle failures.
At each iteration, the algorithm checks the return code of the MPI_ALLREDUCE. If the
return code indicates a process failure for at least one process, the algorithm revokes the
communicator, agrees on the presence of failures, and later shrinks it to create a new
communicator. By calling MPI_COMM_REVOKE, the algorithm ensures that all processes
will be notified of process failure and enter the MPI_COMM_AGREE. If a process fails, the
algorithm must complete at least one more iteration to ensure a correct answer.

Example 17.2 Fault-tolerant iterative refinement with shrink and agreement

while( gnorm > epsilon ) {

/* Add a computation iteration to converge and

compute local norm in lnorm */

rc = MPI_Allreduce( &lnorm, &gnorm, 1, MPI_DOUBLE, MPI_MAX, comm);

if( (MPI_ERR_PROC_FAILED == rc) ||

(MPI_ERR_COMM_REVOKE == rc) ||

(gnorm <= epsilon) ) {

if( MPI_ERR_PROC_FAILED == rc )

MPI_Comm_revoke(comm);

/* About to leave: let’s be sure that everybody

received the same information */

allsucceeded = (rc == MPI_SUCCESS);

MPI_Comm_agree(comm, &allsucceeded);

if( !allsucceeded ) {

/* We plan to join the shrink, thus the communicator

should be marked as revoked */

MPI_Comm_revoke(comm);

MPI_Comm_shrink(comm, &comm2);

MPI_Comm_free(comm); /* Release the revoked communicator */

comm = comm2; gnorm = epsilon + 1.0; /* Force one more iteration */

}

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



Index

CONST:MPI_ANY_SOURCE, 2, 3, 8, 11
CONST:MPI_Comm, 6–9
CONST:MPI_COMM_WORLD, 2, 3
CONST:MPI_ERR_PENDING, 2, 3, 7, 8
CONST:MPI_ERR_PROC_FAILED, 2–10
CONST:MPI_ERR_REVOKED, 4, 6, 7, 9,

10
CONST:MPI_ERRORS_ARE_FATAL, 2
CONST:MPI_File, 10
CONST:MPI_FILE_NULL, 6
CONST:MPI_Group, 8, 9
CONST:MPI_GROUP_EMPTY, 8
CONST:MPI_NO_OP, 5
CONST:MPI_Request, 9
CONST:MPI_SEEK_SET, 6
CONST:MPI_SUCCESS, 2, 5, 6
CONST:MPI_UNDEFINED, 7
CONST:MPI_Win, 9
CONST:MPI_WIN_NULL, 5

EXAMPLES:Fault-tolerant iterative refine-
ment with shrink and agreement, 12

EXAMPLES:Master example, 11
EXAMPLES:MPI_COMM_AGREE, 12
EXAMPLES:MPI_COMM_FAILURE_ACK,

11
EXAMPLES:MPI_COMM_FAILURE_GET_ACKED,

11
EXAMPLES:MPI_COMM_FREE, 12
EXAMPLES:MPI_COMM_REVOKE, 12
EXAMPLES:MPI_COMM_SHRINK, 12

MPI_ACCUMULATE, 5
MPI_ALLREDUCE, 12
MPI_BARRIER, 4
MPI_BCAST, 3
MPI_COMM_ACCEPT, 4
MPI_COMM_AGREE, 6, 7, 9, 12
MPI_COMM_AGREE( comm, flag ), 8
MPI_COMM_CONNECT, 4

MPI_COMM_DUP, 4
MPI_COMM_FAILURE_ACK, 3, 8
MPI_COMM_FAILURE_ACK( comm ), 7
MPI_COMM_FAILURE_GET_ACKED( comm,

failedgrp ), 8
MPI_COMM_IAGREE( comm, flag, req ), 9
MPI_COMM_JOIN, 4
MPI_COMM_REVOKE, 6–8, 12
MPI_COMM_REVOKE( comm ), 6
MPI_COMM_SHRINK, 7, 8
MPI_COMM_SHRINK( comm, newcomm ),

7
MPI_COMM_SPAWN, 4
MPI_COMM_SPAWN_MULTIPLE, 4
MPI_COMM_SPLIT, 4, 7
MPI_FILE_CLOSE, 6
MPI_FILE_REVOKE( fh ), 10
MPI_FILE_SEEK, 6
MPI_FINALIZE, 3
MPI_INIT, 2
MPI_TEST, 5
MPI_WAIT, 5
MPI_WIN_COMPLETE, 5
MPI_WIN_FREE, 5
MPI_WIN_GET_FAILED( win, failedgrp ),

9
MPI_WIN_LOCK, 5
MPI_WIN_REVOKE( win ), 9
MPI_WIN_REVOKED, 10
MPI_WIN_TEST, 5
MPI_WIN_UNLOCK, 5
MPI_WIN_WAIT, 5

13


	Process Fault Tolerance
	Introduction
	Failure Notification
	Startup and Finalize
	Point-to-Point and Collective Communication
	Dynamic Process Management
	One-Sided Communication
	I/O

	Failure Mitigation Functions
	Communicator Functions
	One-Sided Functions
	I/O Functions

	Error Codes and Classes
	Examples
	Master/Worker
	Iterative Refinement



