FA-MPI Discussion
[MPI1-3 FT Group]

May 23, 2012

Tony Skjellum, tony@cis.uab.edu
University of Alabama at Birmingham

This work is supported in part by NSF #CCF-1239962

Outline

Overview of FA-MPI proposal as it stands

Key ideas

— What

— Requirements
— Features

Motivation to read the 55-page report ©
Status of implementation effort starting

Will present in more detail in Japan next week,
and in July meeting

FA-MPI

Support fault awareness with low fault free overhead and low jitter

Expand application space for MPI to faulty environments and to
transactional environments (e.g., business space)

Support hierarchical recovery, fail back and forward

Offer a complementary [not competitive] technology to the existing MPI-3
proposals — you can have this too, not instead of current FT WG efforts

Targets only non-blocking APIs as first class targets

Designed to be used by hand or by aspecting engines such as Rose to
allow nominal and fault-aspected MPI programs

Relies on: ABFT, replay, CPR, and other means for user-driven recovery;
FA-MPI provides the MPI piece of the technology only... also includes
potential ability to “signal” other transactional technologies (file systems,
transactional memories etc) in future, advanced implementations

Main ideas

Timeout is only new MPI type introduced
Work with non-blocking MPI-3 APIs

Two-levels of completion : normal, transactional for
requests

Two-way flow of errors : to/from app and MPI

Two levels of errors: local (normal MPI) and globalized
at transaction point

Not limited to process failure as the fault model (left
as implementation and venue specific, although
process and data errors are obvious ones)

Main ideas

Timeout is only new MPI type introduced
Work with non-blocking MPI-3 APIs

Two-levels of completion : normal, transactional for
requests

Two-way flow of errors : to/from app and MPI

Two levels of errors: local (normal MPI) and globalized
at transaction point

Not limited to process failure as the fault model (left
as implementation and venue specific, although
process and data errors are obvious ones)

“Fear, Uncertainty, Doubt”

55-page proposal means it is complex — no, just
long and has examples... ideas straightforward

Transactions mean this is expensive and not very
scalable — no, we have to do synchronizations as
with any other data parallel program from time
to time, our synchronizations are allgathers on
error state under user control

Doesn’t support blocking functions — can be
supported with layered library approach, our
audience is non-blocking MPI programs

etc.

Transaction

Split-phase collective operation, with fault-awareness (non-blocking or
blocking)

Supports entry and exit conditions from sequences of nominal MPI code
(running at no to low fault free overhead)

Fault-aware allreduce and allgather type operation

Propagates error across surviving members of communications/windows/files.
Works with bundles of MPI requests

Slots for communicators, files, windows in transactional scope for error
propagation too

Fail forward or fail backward, depending on outcome and application strategy

“Signal other systems of rollbacks” and other components that are
transactional in nature or could be made transactional or idempotent in
nature to “go back”... this creates the middle-out requirements we talk about
in tech report... future optimization for scalability in moderate fault
environments.

Requirements Addressed (Briefly)

A transactional programming model for MPI
Friendly to 2-sided, DPM, 1-sided, and I/O
Users set granularity of transactions

Low added jitter

No/Low fault-free overhead within transactions

Minimum impact on scalability (allow apps to
tradeoff transaction granularity + recover + etc
to minimize time to completion)

Transactions propagate errors to “surviving
group of comm, file, win (s)”

Mechanism for app to tell MPI which messages
to cancel (messages in flight issue)

Fault injection by app to MPI where needed
(observability and testability)

Minimal new opaque types for MPI-3
Easy to convert apps/aspect/use
No multiplicative number of new APIs (additive)

Support all MPI-3 non-blocking operations [the
new probe mechanism and message type are a
problem since not using a request ... shows the
design divergence in this MPI-3 feature to non-
request for handling/describing an operation]

Designed to support hierarchical recovery
Specify no policies for fault recovery

Identify operations not directly supportable
(e.g., blocking)

No period of fault freeness assumed between
“test and do” (race)

Communicators/groups etc treated as single-
assignment objects

Enable “fault engineer” to handle different fault
models, even those un-modeled by MPI

Use conventional non-blocking APIs within
transaction blocks

Allow MPI implementations to commit more
data or other non-control-flow-related errors if
this leads to a better overall fault scenario [can
add scalability in Shannon Information Theory
Sense]

Define a minimal number of error conditions
Enable MPI to say when it cannot continue

Avoid globalizing state beyond the groups
actively involved in the fault detection, isolation,
mitigation, recovery

Leverage new features of MPI-3

TryBlock start...TryBlock end

TryBlock start()

synchronizing collective operation
that admits or rejects the
transaction

Can be non-blocking

Version for comm, win, file, or
just use comm representing
group of all objects

Turns on transaction mode for all
requests related to comm, win,
file

Variants to allow for multiple and

single communicator-type
entities activated in a transaction

Timeout capability

TryBlock waitall ()

synchronizing collective operation
that reports consistent error state
to all survining participants

Can also have test variants for
non-blocking

Concludes a transaction with zero
or more global-to-group errors

Isolation, mitigation, recovery
can follow the sampling of these
global-to-group errors

Timeout capability

Example, 1 pt 1

int recovery_mode = 0;
do /* this is the soft retry loop. An ABFT fault only was raised,
simply redo the loop until we lose confidence in that
recovery approach */

int numerrors =0;

int error_injection = 0;

MPI_Timeout timeout;

MPI_Timeout_set_ticks(&timeout,1000000); /*specify
timeout */

/* Ex: 1000000 time periods in units of MPI_Wtick() */

/* locally move data into common buffers for Try_Block: */

/* now try to enter the TryBlock: */

sync_error = MPl_TryBlock_start(comm,
MPI_UNSIGNED_INT, local_error_injection, group_error_state,
timeout, &req); /* simplest form of TryBlock */

/* synchronous error outcome; a timeout of 0 = infinity */
if(sync_error == MP1_SUCCESS) {
block_entry = 1;
local_error |= MPI_Operation1(comm |
window | file, &req[0]);
ABFT_error_logicO(&error_injection);
/* user defined logic for their application */
local_error |= MPI_Operationl(comm |
window | file, &req[1]);
ABFT _error_logicl(&error_injection);
/* user defined logic for their application */

local_error |= MPI_Operation1(comm |
window | file, &req[N_requests-1]);
ABFT _error_logicN_1(&error_injection);
/* user defined logic for their application */

/* if we find an error in any operations, but
local_error is not asserted by any operation,
then we use fault injection to indicate the
error noted locally; this is a user-defined

value (0 is no-error): */

inttry_flag = 0;
sync_error = MPIl_TryBlock_waitall(req, &try_flag,
&try_status,
MPI_UNSIGNED_INT, &Ilocal_error_injection,
group_error_state,
timeout, N_requests, regs, statuses,
&numerrors, Error_indices);
MPI_Request_free(req);
}
else
block_entry = 0;

Example, 1 pt 2

/* Recovery Begins Here (this is exemplary, not mandatory): */

switch(sync_error)
{
case MPI_SUCCESS: /* no error */
if(block_entry == 1)
{

/* use completed buffers; note that
increment progress counter,
iterators, etc */

} else{
/* can't happen, unmodeled behavior */
}
break;
case MPI_LOCAL_ERROR_INJECTION;
/* one or more processes
raised a non-zero error_injection */
soft_retry++;
break;
case MPI_TIMEOUT:

/* can adapt timeout, can do soft retry if 0 or 1 */

if(block_entry == 0)

/* alternatively can treat timeout as a hard error,
such as if several backoffs have failed */

/* may or may not fall through here... */
case MPI_TASK_FAULT: /* CONST NAMES PRELIM! *,
case MPI_COMMUNICATION_FAULT:
case MPI_UNMODELED_FAULT:
case MPI_MULTIPLE_FAULTS: /*(see statuses)*/
default:
/* recovery requires repair of a communicator,
and possible backtrack to a checkpoint */
recovery_mode =1;
break;

} while((soft_retry &&
(soft_retry <soft_retry_max))
&& !recovery_mode);

MPI_Comm_split_sync

e Workhorse function for

mitigation/recovery

Provides the best set of
split groups of surviving
entities available to MPI
Code/keys set by
application [looking to
allow MPI to set some

colors and keys too as
generalization]

Functions with _sync are
among the handful of
hardened FA-MPI
operations designed to
work through Faults

Provides synchronized
error state to surviving
processes

Blocking/nonblocking
options
Has timeout capability

MPI Comm_spawn _and merge sync()

* Provides a robust e Offers to grow size of
means to spawn and the net group (at least
merge to form a new temporarily) on success

intra communicator

* Surviving group
members get notified of
what went on with
synchronized error info

Timeout is only new type

MPI Timeout timeout; /* a timeout opaque object,
measured in units of MPI Wtick() */

int MPI Timeout set ticks (MPI Timeout *timeout, MPI Aint ticks);
/* set in units of MPI Wtick() */

int MPI Timeout set seconds (MPI Timeout *timeout, double *usec);
/* set in usec */

int MPI Timeout get ticks (MPI Timeout timeout, MPI Aint &ticks);
/* set in units of MPI Wtick() */
int MPI Timeout get time (MPI Timeout timeout, double *usec);
/* read in usec */

Waiting is at two-levels; local provided
to support intra-transaction wait only

int MPI_Test_local(MPI_Request *request, int *flag, MPl_Timeout timeout,
MPI_Status *status);

int MPI_Testall_local(int count, MPI_Request array_of requests[], int *flag,
MPI_Timeout timeout, MP|_Status array_of_statuses]])

int MPI_Testsome_local(MPI_Timeout timeout, int incount,
MPI_Request array_of requests[],
int *outcount, int array_of indices[],
MPI_Status array_of statuses[])

int MPI_Wait_local(MPI_Timeout timeout, MPI_Request *request,
MPI_Status *status);

int MPI_Waitall_local(MPI_Timeout timeout, int count,
MPI_Request array_of requests|],
MPI_Status array_of statuses[]);

int MPI_Waitsome_local(MPI_Timeout timeout, int incount,
MPI_Request array_of_requests[], int *outcount,
int array_of indices[], MPI_Status array_of_statuses]]);

 KEY IDEAS: Requests not destroyed, can still be sampled for global error later; timeouts
supported

MPI-2-style 1-sided Support

Win_fence mode is well understood

MPI_Put and MPI_Get have to timeout (but
we add no explicit timeout) in an FA-MPI
implementation

We are still figuring out how to support
Win_Start, Win_Put, Win_Complete

Still reviewing the MPI-3 improvements to 1-
sided and how to support

MPI /O support

Collective non-blocking I/O
We understand how to use TryBlocks with these

The user program will have to have a way to backup changes in a file since last
transaction

We are just providing the error detection, and allowing the MPIl implementation to
give errors to the application, and the application to give errors to MPI, and MPI to
give info on possible rollback to a transactionally aware file system

You often may need to rollback the file even without a file error, so this is mainly
about communication of error state

If the filesystem within MPI takes an error, then MPI will signal the application of
that at the transaction close. Those errors may cause deeper recovery (less
desirable).

It seems like we need an interface to parallel file systems underneath MPI 1/0 to
describe errors, recovery, mitigation to optimize implementations.

If single parallel files / file systems cannot continue, currently the MPI application
cannot continue. But the app could use a replicated storage approach as its
mitigation method with the infrastructure we provide.

Implementation Work

FA-MPI-Protol

Implementation starting
— OpenMPI, NBC libraries being considered as vectors

Team has been assembled at UAB
Design/prototyping starting now

Header files for APl will be among first
deliverables to allow dry compiles

Will report on implementation progress at BOF at
SC2012 as well as earlier to MPI Forums

Documentation/Write-ups

55-page tech report (lightly updated recently)
— Has been distributed in February/March
— Ask me for latest if interested

Developing conference paper (50%)

— Seeking appropriate venue (ideas ?)

API| reference to be developed once API
finalized for proposing to forum/impl. (20%)

MPI ticket documentation and chapterware to
be developed (.5%)

Conclusions

FA-MPI Introduces Transactions

Transactional programming model as affordable
as other FT programming models

Regions of no/low fault-free overhead possible
Minimal new concepts

Support for parts of 1-sided and MPI 1/0 (non-
blocking)

Aspect friendly
More next week in Japan!

