
Chapter 17

Process Fault Tolerance

17.1 Introduction

Long running and large scale applications are at increased risk of encountering process
failures during normal execution. We consider a process failure as a fail-stop failure; failed
processes become permanently unresponsive to communications. This chapter introduces
theMPI features that support the development of applications and libraries that can tolerate
process failures. The approach described in this chapter is intended to prevent the deadlock
of processes while avoiding impact on the failure-free execution of an application.

The expected behavior of MPI in the case of a process failure is defined by the following
statements: any MPI operation that involves a failed process must not block indefinitely,
but either succeed or raise an MPI exception (see Section 17.2); an MPI operation that does
not involve the failed process will complete normally, unless interrupted by the user through
provided functionality. Asynchronous failure propagation is not required. If an application
needs global knowledge of failures, it can use the interfaces defined in Section 17.3 to
explicitly propagate locally detected failures.

This chapter does not define process failure semantics for the operations specified in
Chapters [10,][11][and 13], therefore they remain undefined by the MPI standard. ticket327.

ticket325.
ticket326.
ticket0.

An implementation that does not tolerate process failures must provide the interfaces
and semantics defined in this chapter, but must never raise an exception of class
MPI_ERR_PROC_FAILED or MPI_ERR_PENDING related to process failure (as defined below).

Advice to users. Many of the operations and semantics described in this chapter
are only applicable when the MPI application has replaced the default error handler
MPI_ERRORS_ARE_FATAL on, at least, MPI_COMM_WORLD. (End of advice to users.)

17.2 Failure Notification

This section specifies the behavior of an MPI communication operation when failures oc-
cur on processes involved in the communication. A process is considered involved in a
communication if any of the following is true:

1. the operation is collective and the process appears in one of the groups of the associ-
ated communication object;

Uno�cial Draft for Comment Only 537

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

538 CHAPTER 17. PROCESS FAULT TOLERANCE

2. the process is a specified or matched destination or source in a point-to-point com-
munication;

3. the operation is an MPI_ANY_SOURCE receive operation and the failed process belongs
to the source group.

Therefore, if an operation does not involve a failed process (such as a point-to-point
message between two non-failed processes), it must not return a process failure error.

Advice to implementors. A correct MPI implementation may provide failure detec-
tion only for processes involved in an ongoing operation, and postpone detection of
other failures until necessary. Moreover, as long as an implementation can complete
operations, it may choose to delay returning an error. Another valid implementation
might choose to return an error to the user as quickly as possible. (End of advice to
implementors.)

Non-blocking operations must not return an error about process failures during initia-
tion. All process failure errors are postponed until the corresponding completion function
is called.

17.2.1 Startup and Finalize

Advice to implementors. If a process fails during MPI_INIT but its peers are able to
complete the MPI_INIT successfully, then a high quality implementation will return
MPI_SUCCESS and delay the reporting of the process failure to a subsequent MPI
operation. (End of advice to implementors.)

MPI_FINALIZE will complete [succesfully]successfully even in the presence of processticket0.
failures.

Advice to users. Considering Example 8.7 in Section 8.7, the process with rank 0 in
MPI_COMM_WORLDmay have failed before, during, or after the call toMPI_FINALIZE.
MPI only provides failure detection capabilities up to when MPI_FINALIZE is in-
voked and provides no support for fault tolerance during or after MPI_FINALIZE.
Applications are encouraged to implement all rank-specific code before the call to
MPI_FINALIZE to handle the case where process 0 in MPI_COMM_WORLD fails. (End
of advice to users.)

17.2.2 Point-to-Point and Collective Communication
ticket0.

[When a failure prevents the MPI implementation from successfully completing a point-
to-point communication, the communication is marked as completed with an error of class
MPI_ERR_PROC_FAILED. Future point-to-point communication with the same process on
this communicator must also return MPI_ERR_PROC_FAILED.

The completion of a nonblocking receive from MPI_ANY_SOURCE can return one of the
following three error codes due to process failure. MPI_SUCCESS is returned if the receive
was able to complete despite the failure. MPI_ERR_PROC_FAILED indicates that the request
has been matched with the send, but cannot complete [succesfully]successfully due to theticket0.
failure at the sender. MPI_ERR_PENDING indicates that while a process has failed, the
request is still pending and can be continued. To acknowledge a failure and discover which
processes failed, the user should call MPI_COMM_FAILURE_ACK.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

17.2. FAILURE NOTIFICATION 539

Advice to implementors.

MPI libraries can not determine if the completion of an unmatched reception operation
of type MPI_ANY_SOURCE can succeed when one of the potential senders has failed. If
the operation has matched, it is handled as a named receive. If the operation has not
yet matched and was initiated by a nonblocking communication call, then the request
is still valid and pending and it is marked with an error of class MPI_ERR_PENDING.
In all other cases, the operation must return MPI_ERR_PROC_FAILED.

(End of advice to implementors.)

] ticket0.
When the failure of a process involved in a communication operation is discovered by the

MPI implementation before the successful completion of the operation, the communication
completion function must raise one of the following error classes:

• MPI_ERR_PENDING indicates that the communication is a non-blocking operation and
neither the operation nor the request identifying the operation are completed. Two
circumstances can raise this exception: another communication raised an exception
(as defined in Section 3.7.5); or the communication is a receive operation from
MPI_ANY_SOURCE and no matching send has been posted.

• In all other cases, the operation must raise an exception of class
MPI_ERR_PROC_FAILED which indicates that the failure prevents the operation from
following its failure-free specification. If there is a request identifying the communi-
cation operation, it is completed.

Advice to users.

To acknowledge a failure and discover which processes failed, the user should call
MPI_COMM_FAILURE_ACK (as defined in Section 17.3.1).

(End of advice to users.)

When a communication operation raises an exception related to process failure, any
output bu↵ers are undefined.

When a collective operation cannot be completed because of the failure of an involved
process, the collective operation [eventually] returns an error of class ticket0.
MPI_ERR_PROC_FAILED. [The content of the output bu↵ers is undefined.] ticket0.

Advice to users.

Depending on how the collective operation is implemented and when a process fail-
ure occurs, some participating alive processes may raise an exception while other
processes return successfully from the same collective operation. For example, in
MPI_BCAST, the root process may succeed before a failed process disrupts the oper-
ation, resulting in some other processes returning an error. However, it is noteworthy
that for [non-rooted] collective operations on an intracommunicator in which all pro- ticket0.

ticket0.cesses contribute to the result and all processes receive the result, processes which do
not enter the operation due to process failure provoke all surviving ranks to return
MPI_ERR_PROC_FAILED. Similarly, for [a non-rooted]the same collective operations on ticket0.
an intercommunicator, a process in the remote group which failed before entering the
operation has the same e↵ect on all surviving ranks of the local group.

(End of advice to users.)

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

540 CHAPTER 17. PROCESS FAULT TOLERANCE

Advice to users.

Note that communicator creation functions (like MPI_COMM_DUP or
MPI_COMM_SPLIT) are collective operations. As such, if a failure happened during
the call, an error might be returned to some processes while others succeed and ob-
tain a new communicator. While it is valid to communicate between processes which
succeeded to create the new communicator, it is the responsibility of the user to en-
sure that all involved processes have a consistent view of the communicator creation,
if needed. A conservative solution is to have each process either revoke (see Sec-
tion 17.3.1) the parent communicator if the operation fails, or call anMPI_BARRIER on
the parent communicator and then revoke the new communicator if theMPI_BARRIER
fails.

(End of advice to users.)
ticket327.

17.2.3 Dynamic Process Management

Dynamic process management functions require some additional semantics from the MPI
implementation as detailed below.

1. If theMPI implementation returns an error related to process failure to the root process
of MPI_COMM_CONNECT or MPI_COMM_ACCEPT, at least the root processes of
both intracommunicators must return the same error of class MPI_ERR_PROC_FAILED

(unless required to return MPI_ERR_REVOKED as defined by 17.3.1).

2. If theMPI implementation returns an error related to process failure to the root process
of MPI_COMM_SPAWN, no spawned processes should be able to communicate on the
created intercommunicator.

Advice to users. As with communicator creation functions, it is possible that if a
failure happens during dynamic process management operations, an error might be
returned to some processes while others succeed and obtain a new communicator.
(End of advice to users.)

ticket325.

17.2.4 One-Sided Communication

As with all nonblocking operations, one-sided communication operations should delay all
failure notification until their synchronization operations which may return
MPI_ERR_PROC_FAILED (see Section 17.2). If the implementation returns an error related
to process failure from the synchronization function, the epoch behavior is unchanged from
the definitions in Section 11.4. As with collective operations over MPI communicators, it is
possible that some processes have detected a failure and returned MPI_ERR_PROC_FAILED,
while others returned MPI_SUCCESS.

Unless specified below, the state of memory targeted by any process in an epoch in
which operations completed with an error related to process failure is undefined.

1. If a failure is to be reported during active target communication functions
MPI_WIN_COMPLETE or MPI_WIN_WAIT (or the non-blocking equivalent
MPI_WIN_TEST), the epoch is considered completed and all operations not involving
the failed processes must complete successfully.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

17.3. FAILURE MITIGATION FUNCTIONS 541

2. If the target rank has failed, MPI_WIN_LOCK and MPI_WIN_UNLOCK operations
return an error of class MPI_ERR_PROC_FAILED. If the owner of a lock has failed, the
lock cannot be acquired again, and all subsequent operations on the lock must fail
with an error of class MPI_ERR_PROC_FAILED.

Advice to users. It is possible that request-based RMA operations complete suc-
cessfully while the enclosing epoch completes in error due to process failure. In this
scenario, the local bu↵er is valid but the remote targeted memory is undefined. (End
of advice to users.)

ticket326.

17.2.5 I/O

I/O error classes and their consequences are defined in [s]Section 13.7. The following section ticket0.
defines the behavior of I/O operations when MPI process failures prevent their successful
completion.

Since collective I/O operations may not synchronize with other processes, process fail-
ures may not be reported during a collective I/O operation. If a process failure prevents a
file operation from completing, an MPI exception of class MPI_ERR_PROC_FAILED is raised.

Once an MPI implementation has returned an error of class MPI_ERR_PROC_FAILED,
the state of the file pointer is undefined.

Advice to users.

Users are encouraged to use MPI_COMM_AGREE on a communicator containing the
same group as the file handle, to deduce the completion status of collective operations
on file handles and maintain a consistent view of file pointers.

(End of advice to users.)

17.3 Failure Mitigation Functions

17.3.1 Communicator Functions

MPI provides no guarantee of global knowledge of a process failure. Only processes involved
in a communication operation with the failed process are guaranteed to eventually detect
its failure (see Section 17.2). If global knowledge is required, MPI provides a function to
revoke a communicator at all members.

MPI_COMM_REVOKE(comm)

IN comm communicator (handle)

int MPI_Comm_revoke(MPI_Comm comm)

MPI_COMM_REVOKE(COMM, IERROR)

INTEGER COMM, IERROR

This function notifies all processes in the groups (local and remote) associated with
the communicator comm that this communicator is now considered revoked. This function

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

542 CHAPTER 17. PROCESS FAULT TOLERANCE

is not collective and therefore does not have a matching call on remote processes. It is ticket0.
erroneous to call MPI_COMM_REVOKE on a communicator for which no operation raised
an MPI exception related to process failure. All alive processes belonging to comm will be
notified of the revocation despite failures. Revocation of a communicator completes any
non-local MPI operations on comm with error and causes any new operations to complete
with error, with the exception of MPI_COMM_SHRINK and MPI_COMM_AGREE (and its
nonblocking equivalent). A communicator becomes revoked as soon as:

1. MPI_COMM_REVOKE is locally called on it;

2. Any MPI operation completed with an error of class MPI_ERR_REVOKED because an-
other process in comm has called MPI_COMM_REVOKE.

Once a communicator has been revoked, all subsequent non-local operations on that
communicator, with the exception of MPI_COMM_SHRINK and MPI_COMM_AGREE (and
its nonblocking equivalent), are considered local and must complete with an error of class
MPI_ERR_REVOKED.

Advice to users. High quality implementations are encouraged to do their best to
free resources locally when the user calls free operations on revoked communication
objects, or communication objects containing failed processes. (End of advice to
users.)

MPI_COMM_SHRINK(comm, newcomm)

IN comm communicator (handle)

OUT newcomm communicator (handle)

int MPI_Comm_shrink(MPI_Comm comm, MPI_Comm* newcomm)

MPI_COMM_SHRINK(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

This collective operation creates a new intra or inter communicator newcomm from the
revoked intra or inter communicator comm respectively by excluding its failed processes as
detailed below. It is erroneous MPI code to call MPI_COMM_SHRINK on a communicator
which has not been revoked (as defined above) and will return an error of class
MPI_ERR_ARG.

This function must not return an error due to process failures (error classes
MPI_ERR_PROC_FAILED and MPI_ERR_REVOKED). All processes that succeeded agreed on
the content of the group of processes that failed. This group includes at least every process
failure that has raised an MPI exception of class MPI_ERR_PROC_FAILED or
MPI_ERR_PENDING. The call is semantically equivalent to an MPI_COMM_SPLIT operation
that would succeed despite failures, and where living processes participate with the same
color, and a key equal to their rank in comm and failed processes implicitly contribute
MPI_UNDEFINED.

Advice to users. This call does not guarantee that all processes in newcomm are
alive. Any new failure will be detected in subsequent MPI operations. (End of advice
to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

17.3. FAILURE MITIGATION FUNCTIONS 543

MPI_COMM_FAILURE_ACK(comm)

IN comm communicator (handle)

int MPI_Comm_failure_ack(MPI_Comm comm)

MPI_COMM_FAILURE_ACK(COMM, IERROR)

INTEGER COMM, IERROR

This local operation gives the users a way to acknowledge all locally notified failures on
comm. After the call, unmatched MPI_ANY_SOURCE receptions that would have returned
an error code due to process failure (see Section 17.2.2) proceed without further reporting
of errors due to those acknowledged failures.

Advice to users. Calling MPI_COMM_FAILURE_ACK on a communicator with failed
processes does not allow that communicator to be used successfully for collective
operations. Collective communication on a communicator with acknowledged fail-
ures will continue to return an error of class MPI_ERR_PROC_FAILED as defined in
Section 17.2.2. To reliably use collective operations on a communicator with failed
processes, the communicator should first be revoked using MPI_COMM_REVOKE and
then a new communicator should be created using MPI_COMM_SHRINK. (End of
advice to users.)

MPI_COMM_FAILURE_GET_ACKED(comm, failedgrp)

IN comm communicator (handle)

OUT failedgrp group of failed processes (handle)

int MPI_Comm_failure_get_acked(MPI_Comm comm, MPI_Group* failedgrp)

MPI_COMM_FAILURE_GET_ACKED(COMM, FAILEDGRP, IERROR)

INTEGER COMM, FAILEDGRP, IERROR

This local operation returns the group failedgrp of processes, from the communicator
comm, which have been locally acknowledged as failed by preceding calls to
MPI_COMM_FAILURE_ACK. [The new group]failedgrp can be empty, that is, equal to ticket0.
MPI_GROUP_EMPTY.

MPI_COMM_AGREE(comm, flag)

IN comm communicator (handle)

INOUT flag boolean flag

int MPI_Comm_agree(MPI_Comm comm, int * flag)

MPI_COMM_AGREE(COMM, FLAG, IERROR)

LOGICAL FLAG

INTEGER COMM, IERROR

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

544 CHAPTER 17. PROCESS FAULT TOLERANCE

This function performs a collective operation on the group of living processes in comm.
On completion, all living processes must agree to set the output value of flag to the result of
a logical ’AND’ operation over the in[t]put values of flag. This function must not return anticket0.
error due to process failure (error classes MPI_ERR_PROC_FAILED and MPI_ERR_REVOKED),
and processes that failed before entering the call do not contribute to the operation.

If comm is an intercommunicator, the value of flag is a logical ’AND’ operation over
the values contributed by the remote group (where failed processes do not contribute to the
operation).

Advice to users. MPI_COMM_AGREE maintains its collective behavior even if the
comm is revoked. (End of advice to users.)

MPI_COMM_IAGREE(comm, flag, req)

IN comm communicator (handle)

INOUT flag boolean flag

OUT req request (handle)

int MPI_Comm_iagree(MPI_Comm comm, int* flag, MPI_Request* req)

MPI_COMM_IAGREE(COMM, FLAG, REQ, IERROR)

LOGICAL FLAG

INTEGER COMM, REQ, IERROR

This function has the same semantics as MPI_COMM_AGREE except that it is non-
blocking.ticket325.

17.3.2 One-Sided Functions

MPI_WIN_REVOKE(win)

IN win window (handle)

int MPI_Win_revoke(MPI_Win win)

MPI_WIN_REVOKE(WIN, IERROR)

INTEGER WIN, IERROR

This function notifies all processes within the window win that this window is now
considered revoked. A revoked window completes any non-local MPI operations on win
with error and causes any new operations to complete with error. Once a window has been
revoked, all subsequent non-local operations on that window are considered local and must
fail with an error of class MPI_ERR_REVOKED.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

17.4. ERROR CODES AND CLASSES 545

MPI_WIN_GET_FAILED(win, failedgrp)

IN win window (handle)

OUT failedgrp group of failed processes (handle)

int MPI_Win_get_failed(MPI_Win win, MPI_Group* failedgrp)

MPI_WIN_GET_FAILED(WIN, FAILEDGRP, IERROR)

INTEGER COMM, FAILEDGRP, IERROR

This local operation returns the group failedgrp of processes from the window win which
are locally known to have failed.

Advice to users. MPI makes no assumption about asynchronous progress of the
failure detection. A valid MPI implementation may choose to only update the group
of locally known failed processes when it enters a synchronization function. (End of
advice to users.)

Advice to users. It is possible that only the calling process has detected the reported
failure. If global knowledge is necessary, processes detecting failures should use the
call MPI_WIN_REVOKED. (End of advice to users.)

ticket326.

17.3.3 I/O Functions

MPI_FILE_REVOKE(fh)

IN fh file (handle)

int MPI_File_revoke(MPI_File fh)

MPI_FILE_REVOKE(FH, IERROR)

INTEGER FH, IERROR

This function notifies all ranks within file fh that this file handle is now considered
revoked.

Ongoing non-local completion operations on a revoked file handle raise an exception
of class MPI_ERR_REVOKED. Once a file handle has been revoked, all subsequent non-local
operations on the file handle must raise an MPI exception of class MPI_ERR_REVOKED.

17.4 Error Codes and Classes

The following error classes are added to those defined in Section 8.4:

17.5 Examples

17.5.1 Master/Worker

The example below presents a master code that handles failures by ignoring failed pro-
cesses and resubmitting requests. It demonstrates the di↵erent failure cases that may occur

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

546 CHAPTER 17. PROCESS FAULT TOLERANCE

MPI_ERR_PROC_FAILED The operation could not complete because
of a process failure (a fail-stop failure).

MPI_ERR_REVOKED The communication object used in the op-
eration has been revoked.

Table 17.1: Additional process fault tolerance error classes

when posting receptions from MPI_ANY_SOURCE as discussed in the advice to users in Sec-
tion 17.2.2.

Example 17.1 Fault-Tolerant Master Example

int master(void)

{

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);

MPI_Comm_size(comm, &size);

/* ... submit the initial work requests ... */

MPI_Irecv(buffer, 1, MPI_INT, MPI_ANY_SOURCE, tag, comm, &req);

/* Progress engine: Get answers, send new requests,

and handle process failures */

while((active_workers > 0) && work_available) {

rc = MPI_Wait(&req, &status);

if((MPI_ERR_PROC_FAILED == rc) || (MPI_ERR_PENDING == rc)) {

MPI_Comm_failure_ack(comm);

MPI_Comm_failure_get_acked(comm, &g);

MPI_Group_size(g, &gsize);

/* ... find the lost work and requeue it ... */

active_workers = size - gsize - 1;

MPI_Group_free(&g);

/* repost the request if it matched the failed process */

if(rc == MPI_ERR_PROC_FAILED)

MPI_Irecv(buffer, 1, MPI_INT, MPI_ANY_SOURCE,

tag, comm, &req);

}

continue;

}

/* ... process the answer and update work_available ... */

MPI_Irecv(buffer, 1, MPI_INT, MPI_ANY_SOURCE, tag, comm, &req);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

17.5. EXAMPLES 547

/* ... cancel request and cleanup ... */

}

17.5.2 Iterative Refinement

The example below demonstrates a method of fault-tolerance to detect and handle failures.
At each iteration, the algorithm checks the return code of the MPI_ALLREDUCE. If the
return code indicates a process failure for at least one process, the algorithm revokes the
communicator, agrees on the presence of failures, and later shrinks it to create a new
communicator. By calling MPI_COMM_REVOKE, the algorithm ensures that all processes
will be notified of process failure and enter the MPI_COMM_AGREE. If a process fails, the
algorithm must complete at least one more iteration to ensure a correct answer.

Example 17.2 Fault-tolerant iterative refinement with shrink and agreement

while(gnorm > epsilon) {

/* Add a computation iteration to converge and

compute local norm in lnorm */

rc = MPI_Allreduce(&lnorm, &gnorm, 1, MPI_DOUBLE, MPI_MAX, comm);

if((MPI_ERR_PROC_FAILED == rc) ||

(MPI_ERR_COMM_REVOKE == rc) ||

(gnorm <= epsilon)) {

if(MPI_ERR_PROC_FAILED == rc)

MPI_Comm_revoke(comm);

/* About to leave: let’s be sure that everybody

received the same information */

allsucceeded = (rc == MPI_SUCCESS);

MPI_Comm_agree(comm, &allsucceeded);

if(!allsucceeded) {

/* We plan to join the shrink, thus the communicator

should be marked as revoked */

MPI_Comm_revoke(comm);

MPI_Comm_shrink(comm, &comm2);

MPI_Comm_free(comm); /* Release the revoked communicator */

comm = comm2;

gnorm = epsilon + 1.0; /* Force one more iteration */

}

}

}

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

548 CHAPTER 17. PROCESS FAULT TOLERANCE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Acknowledgments
	Introduction to MPI
	Overview and Goals
	Background of MPI-1.0
	Background of MPI-1.1, MPI-1.2, and MPI-2.0
	Background of MPI-1.3 and MPI-2.1
	Background of MPI-2.2
	Background of MPI-3.0
	Who Should Use This Standard?
	What Platforms Are Targets For Implementation?
	What Is Included In The Standard?
	What Is Not Included In The Standard?
	Organization of this Document

	MPI Terms and Conventions
	Document Notation
	Naming Conventions
	Procedure Specification
	Semantic Terms
	Data Types
	Opaque Objects
	Array Arguments
	State
	Named Constants
	Choice
	Addresses
	File Offsets

	Language Binding
	Deprecated Names and Functions
	Fortran Binding Issues
	C Binding Issues
	C++ Binding Issues
	Functions and Macros

	Processes
	Error Handling
	Implementation Issues
	Independence of Basic Runtime Routines
	Interaction with Signals

	Examples

	Point-to-Point Communication
	Introduction
	Blocking Send and Receive Operations
	Blocking Send
	Message Data
	Message Envelope
	Blocking Receive
	Return Status
	Passing MPI_STATUS_IGNORE for Status

	Data Type Matching and Data Conversion
	Type Matching Rules
	Type MPI_CHARACTER

	Data Conversion

	Communication Modes
	Semantics of Point-to-Point Communication
	Buffer Allocation and Usage
	Model Implementation of Buffered Mode

	Nonblocking Communication
	Communication Request Objects
	Communication Initiation
	Communication Completion
	Semantics of Nonblocking Communications
	Multiple Completions
	Non-destructive Test of status

	Probe and Cancel
	Persistent Communication Requests
	Send-Receive
	Null Processes

	Datatypes
	Derived Datatypes
	Type Constructors with Explicit Addresses
	Datatype Constructors
	Subarray Datatype Constructor
	Distributed Array Datatype Constructor
	Address and Size Functions
	Lower-Bound and Upper-Bound Markers
	Extent and Bounds of Datatypes
	True Extent of Datatypes
	Commit and Free
	Duplicating a Datatype
	Use of General Datatypes in Communication
	Correct Use of Addresses
	Decoding a Datatype
	Examples

	Pack and Unpack
	Canonical MPI_PACK and MPI_UNPACK

	Collective Communication
	Introduction and Overview
	Communicator Argument
	Specifics for Intracommunicator Collective Operations
	Applying Collective Operations to Intercommunicators
	Specifics for Intercommunicator Collective Operations

	Barrier Synchronization
	Broadcast
	Example using MPI_BCAST

	Gather
	Examples using MPI_GATHER, MPI_GATHERV

	Scatter
	Examples using MPI_SCATTER, MPI_SCATTERV

	Gather-to-all
	Example using MPI_ALLGATHER

	All-to-All Scatter/Gather
	Global Reduction Operations
	Reduce
	Predefined Reduction Operations
	Signed Characters and Reductions
	MINLOC and MAXLOC
	User-Defined Reduction Operations
	Example of User-defined Reduce

	All-Reduce
	Process-local reduction

	Reduce-Scatter
	MPI_REDUCE_SCATTER_BLOCK
	MPI_REDUCE_SCATTER

	Scan
	Inclusive Scan
	Exclusive Scan
	Example using MPI_SCAN

	Nonblocking Collective Operations
	Nonblocking Barrier Synchronization
	Nonblocking Broadcast
	Example using MPI_IBCAST

	Nonblocking Gather
	Nonblocking Scatter
	Nonblocking Gather-to-all
	Nonblocking All-to-All Scatter/Gather
	Nonblocking Reduce
	Nonblocking All-Reduce
	Nonblocking Reduce-Scatter with Equal Blocks
	Nonblocking Reduce-Scatter
	Nonblocking Inclusive Scan
	Nonblocking Exclusive Scan

	Correctness

	Groups, Contexts, Communicators, and Caching
	Introduction
	Features Needed to Support Libraries
	MPI's Support for Libraries

	Basic Concepts
	Groups
	Contexts
	Intra-Communicators
	Predefined Intra-Communicators

	Group Management
	Group Accessors
	Group Constructors
	Group Destructors

	Communicator Management
	Communicator Accessors
	Communicator Constructors
	Communicator Destructors

	Motivating Examples
	Current Practice #1
	Current Practice #2
	(Approximate) Current Practice #3
	Example #4
	Library Example #1
	Library Example #2

	Inter-Communication
	Inter-communicator Accessors
	Inter-communicator Operations
	Inter-Communication Examples
	Example 1: Three-Group ``Pipeline"
	Example 2: Three-Group ``Ring"

	Caching
	Functionality
	Communicators
	Windows
	Datatypes
	Error Class for Invalid Keyval
	Attributes Example

	Naming Objects
	Formalizing the Loosely Synchronous Model
	Basic Statements
	Models of Execution
	Static communicator allocation
	Dynamic communicator allocation
	The General Case

	Process Topologies
	Introduction
	Virtual Topologies
	Embedding in MPI
	Overview of the Functions
	Topology Constructors
	Cartesian Constructor
	Cartesian Convenience Function: MPI_DIMS_CREATE
	General (Graph) Constructor
	Distributed (Graph) Constructor
	Topology Inquiry Functions
	Cartesian Shift Coordinates
	Partitioning of Cartesian Structures
	Low-Level Topology Functions

	An Application Example

	MPI Environmental Management
	Implementation Information
	Version Inquiries
	Environmental Inquiries
	Tag Values
	Host Rank
	IO Rank
	Clock Synchronization

	Memory Allocation
	Error Handling
	Error Handlers for Communicators
	Error Handlers for Windows
	Error Handlers for Files
	Freeing Errorhandlers and Retrieving Error Strings

	Error Codes and Classes
	Error Classes, Error Codes, and Error Handlers
	Timers and Synchronization
	Startup
	Allowing User Functions at Process Termination
	Determining Whether MPI Has Finished

	Portable MPI Process Startup

	The Info Object
	Process Creation and Management
	Introduction
	The Dynamic Process Model
	Starting Processes
	The Runtime Environment

	Process Manager Interface
	Processes in MPI
	Starting Processes and Establishing Communication
	Starting Multiple Executables and Establishing Communication
	Reserved Keys
	Spawn Example
	Manager-worker Example Using MPI_COMM_SPAWN.

	Establishing Communication
	Names, Addresses, Ports, and All That
	Server Routines
	Client Routines
	Name Publishing
	Reserved Key Values
	Client/Server Examples
	Simplest Example — Completely Portable.
	Ocean/Atmosphere - Relies on Name Publishing
	Simple Client-Server Example.

	Other Functionality
	Universe Size
	Singleton MPI_INIT
	MPI_APPNUM
	Releasing Connections
	Another Way to Establish MPI Communication

	One-Sided Communications
	Introduction
	Initialization
	Window Creation
	Window Attributes

	Communication Calls
	Put
	Get
	Examples
	Accumulate Functions

	Synchronization Calls
	Fence
	General Active Target Synchronization
	Lock
	Assertions
	Miscellaneous Clarifications

	Examples
	Error Handling
	Error Handlers
	Error Classes

	Semantics and Correctness
	Atomicity
	Progress
	Registers and Compiler Optimizations

	External Interfaces
	Introduction
	Generalized Requests
	Examples

	Associating Information with Status
	MPI and Threads
	General
	Clarifications
	Initialization

	I/O
	Introduction
	Definitions

	File Manipulation
	Opening a File
	Closing a File
	Deleting a File
	Resizing a File
	Preallocating Space for a File
	Querying the Size of a File
	Querying File Parameters
	File Info
	Reserved File Hints

	File Views
	Data Access
	Data Access Routines
	Positioning
	Synchronism
	Coordination
	Data Access Conventions

	Data Access with Explicit Offsets
	Data Access with Individual File Pointers
	Data Access with Shared File Pointers
	Noncollective Operations
	Collective Operations
	Seek

	Split Collective Data Access Routines

	File Interoperability
	Datatypes for File Interoperability
	External Data Representation: ``external32''
	User-Defined Data Representations
	Extent Callback
	Datarep Conversion Functions

	Matching Data Representations

	Consistency and Semantics
	File Consistency
	Random Access vs. Sequential Files
	Progress
	Collective File Operations
	Type Matching
	Miscellaneous Clarifications
	MPI_Offset Type
	Logical vs. Physical File Layout
	File Size
	Examples
	Asynchronous I/O

	I/O Error Handling
	I/O Error Classes
	Examples
	Double Buffering with Split Collective I/O
	Subarray Filetype Constructor

	Profiling Interface
	Requirements
	Discussion
	Logic of the Design
	Miscellaneous Control of Profiling

	Examples
	Profiler Implementation
	MPI Library Implementation
	Systems with Weak Symbols
	Systems Without Weak Symbols

	Complications
	Multiple Counting
	Linker Oddities

	Multiple Levels of Interception

	Deprecated Functions
	Deprecated since MPI-2.0
	Deprecated since MPI-2.2

	Language Bindings
	C++
	Overview
	Design
	C++ Classes for MPI
	Class Member Functions for MPI
	Semantics
	C++ Datatypes
	Communicators
	Exceptions
	Mixed-Language Operability
	Profiling

	Fortran Support
	Overview
	Problems With Fortran Bindings for MPI
	Problems Due to Strong Typing
	Problems Due to Data Copying and Sequence Association
	Special Constants
	Fortran 90 Derived Types
	A Problem with Register Optimization

	Basic Fortran Support
	Extended Fortran Support
	The mpi Module
	No Type Mismatch Problems for Subroutines with Choice Arguments

	Additional Support for Fortran Numeric Intrinsic Types
	Parameterized Datatypes with Specified Precision and Exponent Range
	Support for Size-specific MPI Datatypes
	Communication With Size-specific Types

	Language Interoperability
	Introduction
	Assumptions
	Initialization
	Transfer of Handles
	Status
	MPI Opaque Objects
	Datatypes
	Callback Functions
	Error Handlers
	Reduce Operations
	Addresses

	Attributes
	Extra State
	Constants
	Interlanguage Communication

	Process Fault Tolerance
	Introduction
	Failure Notification
	Startup and Finalize
	Point-to-Point and Collective Communication
	Dynamic Process Management
	One-Sided Communication
	I/O

	Failure Mitigation Functions
	Communicator Functions
	One-Sided Functions
	I/O Functions

	Error Codes and Classes
	Examples
	Master/Worker
	Iterative Refinement

	Language Bindings Summary
	Defined Values and Handles
	Defined Constants
	Types
	Prototype Definitions
	Deprecated Prototype Definitions
	Info Keys
	Info Values

	C Bindings
	Point-to-Point Communication C Bindings
	Datatypes C Bindings
	Collective Communication C Bindings
	Groups, Contexts, Communicators, and Caching C Bindings
	Process Topologies C Bindings
	MPI Environmental Management C Bindings
	The Info Object C Bindings
	Process Creation and Management C Bindings
	One-Sided Communications C Bindings
	External Interfaces C Bindings
	I/O C Bindings
	Language Bindings C Bindings
	Profiling Interface C Bindings
	Fault Tolerance C Bindings
	Deprecated C Bindings

	Fortran Bindings
	Point-to-Point Communication Fortran Bindings
	Datatypes Fortran Bindings
	Collective Communication Fortran Bindings
	Groups, Contexts, Communicators, and Caching Fortran Bindings
	Process Topologies Fortran Bindings
	MPI Environmental Management Fortran Bindings
	The Info Object Fortran Bindings
	Process Creation and Management Fortran Bindings
	One-Sided Communications Fortran Bindings
	External Interfaces Fortran Bindings
	I/O Fortran Bindings
	Language Bindings Fortran Bindings
	Profiling Interface Fortran Bindings
	Fault Tolerance Fortran Bindings
	Deprecated Fortran Bindings

	C++ Bindings (deprecated)
	Point-to-Point Communication C++ Bindings
	Datatypes C++ Bindings
	Collective Communication C++ Bindings
	Groups, Contexts, Communicators, and Caching C++ Bindings
	Process Topologies C++ Bindings
	MPI Environmental Management C++ Bindings
	The Info Object C++ Bindings
	Process Creation and Management C++ Bindings
	One-Sided Communications C++ Bindings
	External Interfaces C++ Bindings
	I/O C++ Bindings
	Language Bindings C++ Bindings
	Profiling Interface C++ Bindings
	C++ Bindings on all MPI Classes
	Construction / Destruction
	Copy / Assignment
	Comparison
	Inter-language Operability

	Change-Log
	Changes from Version 2.1 to Version 2.2
	Changes from Version 2.0 to Version 2.1

	Bibliography
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index

