
A Proposal for User-Level Failure Mitigation in

the MPI-3 Standard

February 22, 2012

Abstract

This chapter describes a flexible approach providing process fault tol-
erance by allowing the application to react to failures while maintaining a
minimal execution path in failure-free executions. The focus is on return-
ing control to the application by avoiding deadlocks due to failures within
the MPI library. No implicit, asynchronous error notification is required.
Instead, functions are provided to allow processes to invalidate any com-
munication object, thus preventing any process from waiting indefinitely
on calls involving the invalidated objects. We consider the proposed set of
functions to constitute a minimal basis which allows libraries and applica-
tions to increase the fault tolerance capabilities by supporting additional
types of failures, and to build other desired strategies and consistency
models to tolerate faults.

Chapter 17

Process Fault Tolerance

17.1 Introduction 1

MPI processes may fail at any time during execution. Long running and large 2

scale applications are at increased risk of encountering process failures during 3

normal execution. This chapter introduces the MPI features that support the 4

development of applications and libraries that can tolerate process failures. The 5

approach described in this chapter is intended to prevent the deadlock of pro- 6

cesses while avoiding any impact on the failure-free execution of an application. 7

The expected behavior of MPI in case of a process failure is defined by the 8

following statements: any MPI call that involves a failed process must not block 9

indefinitely, but either succeed or raise an MPI error (see Section 17.2); asyn- 10

chronous failure propagation is not required by the MPI standard, an MPI call 11

that does not involve the failed process will complete normally. If an appli- 12

cation needs global knowledge of failures, it can use the interfaces defined in 13

Section 17.3 to explicitly propagate locally detected failures. 14

Advice to users. Many of the operations and semantics described in this chap- 15

ter are only applicable when the MPI application has replaced the default 16

error handler MPI ERRORS ARE FATAL on, at least, MPI COMM - 17

WORLD. (End of advice to users.) 18

17.2 Failure Notification 19

This section specifies the behavior of an MPI communication call when failures 20

happened on processes involved in the communication. A process is considered 21

as involved in a communication if any of the following is true: 22

1. the operation is a collective call and the process appears in one of the 23

groups on which the operation is applied; 24

1

2. the process is a named or matched destination or source in a point-to-point 1

communication; 2

3. the operation is an MPI ANY SOURCE receive operation and the failed 3

process belongs to the source group. 4

Therefore, if an operation does not involve a failed process (such as a point 5

to point message between two non-failed processes), it must not return a process 6

failure error. 7

Advice to implementers. It is a legitimate implementation to provide failure de- 8

tection only for processes involved in an ongoing operation and postpone 9

detection of other failures until necessary. Moreover, as long as an imple- 10

mentation can complete operations, it may choose to delay returning an 11

error. Another valid implementation might choose to return an error to 12

the user as quickly as possible. (End of advice to implementers.) 13

Note for the Forum The text of Page 65, lines 28-33 must be changed to al- 14

low MPI IPROBE to set flag=true and return the appropriate status, if 15

an error is detected during an MPI IPROBE. MPI PROBE is defined as 16

behaving as MPI IPROBE so it should be sufficient. Similarly, the same 17

effort should be done for MPI MPROBE and MPI MRECV. 18

Non-blocking operations must not return an error about process failures 19

during initialization. All process failure errors are postponed until the corre- 20

sponding completion function is called. 21

17.2.1 Point-to-Point and Collective Communication 22

When a failure prevents the MPI implementation from completing a point-to- 23

point communication, the communication is marked as completed with an error 24

of class MPI ERR PROC FAILED. Further point-to-point communication with 25

the same process on this communicator must also return MPI ERR PROC - 26

FAILED. 27

MPI libraries can not determine if the completion of an unmatched reception 28

operation of type MPI ANY SOURCE can succeed when one of the potential 29

senders has failed. If the reception has matched internally, a subsequent process 30

failure on this operation must return an error of class MPI ERR PROC FAILED 31

(as if it were a named receive). Otherwise, the communication is marked with 32

an error of class MPI ERR PENDING and the completion operation returns. 33

If the operation worked on a request allocated by a nonblocking communication 34

call, then the request is still valid and pending. To acknowledge a failure and 35

discover which processes failed, the user should call MPI COMM FAILURE - 36

ACK. 37

When a collective operation cannot be completed because of the failure of 38

an involved process, the collective operation eventually returns an error of class 39

MPI ERR PROC FAILED. The content of the output buffers is undefined. 40

2

Advice to users. Depending on how the collective operation is implemented and 1

when a process failure occurs, some participating alive processes may raise 2

an error while other processes return successfully from the same collective 3

operation. For example, in MPI Bcast, the root process is likely to succeed 4

before a failed process disrupts the operation, resulting in some other 5

processes returning an error. However, it is noteworthy that for non- 6

rooted collective operations on an intracommunicator, processes failing 7

before entering the operation provoke all surviving ranks to return MPI - 8

ERR PROC FAILED. Similarly, on an intercommunicator, processes of 9

the remote group failing before entering the operation have the same effect 10

on all surviving ranks of the local group. (End of advice to users.) 11

Advice to users. Note that communicator creation functions (like MPI COMM - 12

DUP or MPI COMM SPLIT) are collective operations. As such, if a fail- 13

ure happened during the call, an error might be returned to some processes 14

while others succeed and obtain a new communicator. It is the responsi- 15

bility of the user to ensure that all involved processes have a consistent 16

view of the communicator creation, if needed. A conservative solution 17

is to invalidate the parent communicator if the operation fails, otherwise 18

call an MPI Barrier on the parent communicator and invalidate the new 19

communicator if the MPI Barrier fails. (End of advice to users.) 20

17.2.2 Dynamic Process Management 21

Dynamic process management functions require some additional semantics from 22

the MPI implementation as detailed below. 23

1. If the MPI implementation decides to return an error related to process 24

failure at the root process of MPI COMM CONNECT or MPI COMM - 25

ACCEPT, the root processes of both intracommunicators must return an 26

error of class MPI ERR PROC FAILED (unless required to return MPI - 27

ERR INVALIDATED as defined by 17.3.1). 28

2. If the MPI implementation decides to return an error related to process 29

failure at the root process of MPI COMM SPAWN, no spawned processes 30

should be able to communicate on the created intercommunicator. 31

Advice to users. As with communicator creation functions, it is possible that 32

if a failure happens during dynamic process management calls, an error 33

might be returned to some processes while others succeed and obtain a 34

new communicator. (End of advice to users. 35

17.2.3 One-Sided Communication 36

As with all non-blocking operations, one-sided communication operations should 37

delay all failure notification to their synchronization calls and return MPI ERR - 38

PROC FAILED (see Section 17.2). If the implementation decides to return an 39

3

error related to process failure from the synchronization function, the epoch 1

behavior is unchanged from the definitions in Section 11.4. Similar to collective 2

operations over MPI communicators, it is possible that some processes could 3

have detected the failure and returned MPI ERR PROC FAILED, while others 4

could have returned MPI SUCCESS. 5

The status of the operations occurring during the epoch which completed 6

with an error related to process failure are detailed below. 7

1. For MPI WIN FENCE operations which return an error class related to 8

process failure, MPI makes no guarantee about the state of the destination 9

memory. 10

2. If a failure is to be reported during active target communication func- 11

tions MPI WIN COMPLETE or MPI WIN WAIT (or the non-blocking 12

equivalent MPI WIN TEST), the epoch is considered completed and all 13

operations not involving the failed processes are completed successfully. 14

3. If the target rank has failed, MPI WIN LOCK and MPI WIN UNLOCK 15

operations return an error of class MPI ERR PROC FAILED. If the owner 16

of a lock has failed, the lock can not be acquired again and all subsequent 17

operations on the lock must fail with an error of class MPI ERR PROC - 18

FAILED. 19

17.2.4 I/O 20

Due to the fact that MPI I/O writing operations can choose to buffer data to 21

improve performance, for the purposes of process fault tolerance, all I/O data 22

writing operations are treated as operations which synchronize on MPI FILE - 23

SYNC. Therefore (as described for non-blocking operations in Section 17.2), 24

failures may not be reported during an MPI FILE WRITE XXX operation but 25

must be reported by the next MPI FILE SYNC. In this case, all alive processes 26

must uniformly return either success or a failure of class MPI ERR PROC - 27

FAILED. 28

Once MPI has returned an error of class MPI ERR PROC FAILED, it makes 29

no guarantees about the position of the file pointer following any previous oper- 30

ations. The only way to know the current location by calling the local functions 31

MPI FILE GET POSITION or MPI FILE GET POSITION SHARED. 32

17.3 Failure Mitigation Functions 33

17.3.1 Communicator Functions 34

MPI provides no guarantee of global knowledge of a process failure. Only pro- 35

cesses involved in a communication with the failed process are guaranteed to 36

eventually detect its failure (see Section 17.2). If global knowledge is required, 37

MPI provides a function to globally invalidate a communicator. 38

4

MPI COMM INVALIDATE(comm) 1

IN comm communicator (handle) 2

This function eventually notifies all processes in the groups (local and remote) 3

associated with the communicator comm that this communicator is now con- 4

sidered invalid. An invalid communicator preempts any non-local MPI calls on 5

comm, with the exception of MPI COMM SHRINK. A communicator becomes 6

invalid as soon as: 7

1. MPI COMM INVALIDATE is locally called on it; 8

2. Or any MPI function returned MPI ERR INVALIDATED (or such error 9

field was set in the status pertaining to a request on this communicator). 10

Once a communicator has been invalidated, all subsequent non-local calls 11

on that communicator, with the exception of MPI COMM SHRINK and MPI - 12

AGREEMENT, are considered local and must return with an error of class 13

MPI ERR INVALIDATED. If an implementation chooses to implement MPI - 14

COMM FREE as a local operation (see Page 209 Line 1), it is allowed to succeed 15

on an invalidated communicator. 16

Note for the Forum The text of Page 208 lines 39-43 must be amended to pro- 17

vide the following advice to implementers. 18

The implementation should make a best effort to free an invalidated com- 19

municator locally and return MPI SUCCESS. Otherwise, it must return 20

MPI ERR INVALIDATED. 21

Note for the Forum The text of Page 208 lines 39-48 must be amended to pro- 22

vide the following advice to users. 23

Because MPI COMM FREE resets the MPI Errhandler of a communi- 24

cator to MPI ERRORS ARE FATAL, fault tolerant applications should 25

complete all pending communications before calling MPI COMM FREE. 26

MPI COMM SHRINK(comm, newcomm) 27

IN comm communicator (handle)
OUT newcomm communicator (handle) 28

This function creates a new intra or inter communicator newcomm from the in- 29

validated intra or inter communicator comm respectively by excluding its failed 30

processes as detailed below. It is erroneous MPI code to call MPI COMM - 31

SHRINK on a communicator which has not been invalidated (as defined above) 32

and will return an error of class MPI ERR ARG. 33

This function must not return an error due to process failure (error classes 34

MPI ERR PROC FAILED and MPI ERR INVALIDATED). Upon successful 35

completion, an agreement is made among living processes to determine the 36

group of failed processes. This group includes at least all processes whose failure 37

has been notified to the user. The call is semantically equivalent to MPI - 38

COMM SPLIT where living processes participate with the same color and a key 39

5

equal to their rank in comm and failed processes implicitly contribute MPI - 1

UNDEFINED. 2

Advice to users. This call does not guarantee that all processes in newcomm are 3

alive. Any new failure will be detected in subsequent MPI calls. (End of 4

advice to users.) 5

MPI COMM FAILURE ACK(comm) 6

IN comm communicator (handle) 7

This local function gives the users a way to acknowledge all locally notified 8

failures on comm. After the call, operations that would have returned MPI - 9

ERR PENDING due to process failure (see Section 17.2.1) proceed without 10

further reporting acknowledged failures. 11

Advice to users. It is erroneous MPI code to call a collective communication 12

on a communicator with acknowledged failures. Such calls will continue 13

to return an error of class MPI ERR PROC FAILED as defined in Sec- 14

tion 17.2.1. To reliably use collective operations on a communicator with 15

failed processes, the communicator should first be invalidated using MPI - 16

COMM INVALIDATE and then a new communicator should be created 17

using MPI COMM SHRINK. (End advice to users.) 18

MPI COMM FAILURE GET ACKED(comm, failedgroup) 19

IN comm communicator (handle)
OUT failedgroup group (handle) 20

This local function returns the group failedgroup of processes from the commu- 21

nicator comm which have been locally acknowledged as failed by preceding calls 22

to MPI COMM FAILURE ACK. 23

MPI AGREEMENT(comm, flag) 24

IN comm communicator (handle)
INOUT flag boolean flag 25

This function performs a collective operation among all living processes in comm. 26

On completion, all living processes must agree to set the value of flag to the 27

result of a logical ’AND’ operation over the contributed values. This func- 28

tion must not return an error due to process failure (error classes MPI ERR - 29

PROC FAILED and MPI ERR INVALIDATED), and failed processes do not 30

contribute to the operation. 31

If comm is an intercommunicator, the return value is uniform over both 32

groups and (if applicable) the value of flag is a logical ’AND’ operation over the 33

values contributed by the remote group (where failed processes do not contribute 34

to the operation). 35

Advice to users. MPI AGREEMENT maintains its collective meaning even if 36

the comm is invalidated. 37

6

17.3.2 One-Sided Functions 1

MPI WIN INVALIDATE (win) 2

IN win window (handle) 3

This function eventually notifies all ranks within the window win that this 4

window is now considered invalid. An invalid window preempts any non-local 5

MPI calls on win. Once a window has been invalidated, all subsequent non-local 6

calls on that window are considered local and must fail with an error of class 7

MPI ERR INVALIDATED. 8

MPI WIN GET FAILED(win, failedgroup) 9

IN win window (handle)
OUT failedgroup group (handle) 10

This local function returns the group failedgroup of processes from the window 11

win which are locally known to have failed. 12

Advice to users. MPI makes no assumption about asynchronous progress of the 13

failure detection. A valid MPI implementation may choose to only update 14

the group of locally known failed processes when it enters a synchroniza- 15

tion function. (End advice to users.) 16

Advice to users. It is possible that only the calling process has detected the 17

reported failure. If global knowledge is necessary, processes detecting fail- 18

ures should use the call MPI WIN INVALIDATE. (End advice to users.) 19

17.3.3 I/O Functions 20

MPI FILE INVALIDATE (fh) 21

IN fh file (handle) 22

This function eventually notifies all ranks within file fh that this file is now 23

considered invalid. An invalid file preempts any non-local completion calls MPI 24

calls on file (see Section 17.2.4). Once a file has been invalidated, all subsequent 25

non-local calls on the file must fail with an error of class MPI ERR INVALI- 26

DATED. 27

17.4 Error Codes and Classes 28

MPI ERR PROC FAILED A process in the operation has failed (a
fail-stop failure).

MPI ERR INVALIDATED The communication object used in the
operation was invalidated. 29

7

