
A Proposal for User-Level Failure Mitigation in

the MPI-3 Standard

February 22, 2012

Abstract

This chapter describes a flexible approach providing process fault tol-
erance by allowing the application to react to failures while maintaining a
minimal execution path in failure-free executions. The focus is on return-
ing control to the application by avoiding deadlocks due to failures within
the MPI library. No implicit, asynchronous error notification is required.
Instead, functions are provided to allow processes to invalidate any com-
munication object, thus preventing any process from waiting indefinitely
on calls involving the invalidated objects. We consider the proposed set of
functions to constitute a minimal basis which allows libraries and applica-
tions to increase the fault tolerance capabilities by supporting additional
types of failures, and to build other desired strategies and consistency
models to tolerate faults.

Chapter 17

Process Fault Tolerance

17.1 Introduction 1

MPI processes may fail at any time during execution. Long running and large 2

scale applications are at increased risk of encountering process failures during 3

normal execution. This chapter introduces the MPI features that support the 4

development of applications and libraries that can tolerate process failures. The 5

approach described in this chapter is intended to prevent the deadlock of pro- 6

cesses while avoiding any impact on the failure-free execution of an application. 7

The expected behavior of MPI in case of a process failure is defined by the 8

following statements: any MPI call that involves a failed process must not block 9

indefinitely, but either succeed or return
::::
raise

:
an MPI error (see Section 17.2); 10

asynchronous failure propagation is not required by the MPI standard, an MPI 11

call that does not involve the failed process completes
:::
will

::::::::
complete

:
normally. 12

If an application needs global knowledge of failures, it can use the interfaces 13

defined in Section 17.3 to explicitly propagate locally detected failures. 14

Advice to users. Many of the operations and semantics described in this chap- 15

ter are only applicable when the MPI application has replaced the default 16

error handler MPI ERRORS ARE FATAL on, at least, MPI COMM - 17

WORLD. (End of advice to users.) 18

17.2 Failure Notification 19

In this section , we specify 20

::::
This

:::::::
section

:::::::
specifies

:
the behavior of an MPI communication call when fail- 21

ures happened on processes involved in the communication. A process is con- 22

sidered as involved in a communication if either:
:::
any

:::
of

:::
the

:::::::::
following

::
is

:::::
true: 23

24

1. the operation is a collective call and the process appears in one of the 25

groups on which the operation is applied; 26

1

2. the process is a named or matched destination or source in a point-to-point 1

communication; 2

3. the operation is an MPI ANY SOURCE reception and the
::::::
receive

:::::::::
operation 3

:::
and

::::
the

:::::
failed

:
process belongs to the source group. 4

Therefore, if an operation does not involve a failed process (such as a point to 5

point message between two non-failed processes), it must not return a process 6

failure error. 7

Advice to implementers. It is a legitimate implementation to provide failure de- 8

tection only for processes involved in an ongoing operation and postpone 9

detection of other failures until necessary. Moreover, as long as an imple- 10

mentation can complete operations, it may choose to delay returning an 11

error. Another valid implementation might choose to return an error to 12

the user as quickly as possible. (End of advice to implementers.) 13

Note for the Forum The text of Page 65, lines 28-33 must be changed to al- 14

low MPI IPROBE to set flag=true and return the appropriate status, if 15

an error is detected during an MPI IPROBE. MPI PROBE is defined as 16

behaving as MPI IPROBE so it should be sufficient. Similarly, the same 17

effort should be done for MPI MPROBE and MPI MRECV. 18

When a failure prevents the MPI implementation from completing a point-to- 19

point communication, the communication is marked as completed with an error 20

of class MPI ERR PROC FAILED. Further point-to-point communication with 21

the same process on this communicator must also return MPI ERR PROC - 22

FAILED. 23

In case of a failure of involved processes, the completion of an unmatched 24

MPI reception from MPI ANY SOURCE is undecidable. Such communication 25

is marked with an error of class MPI ERR PENDING and the completion op- 26

eration returns. If the operation worked on a request, and the request was 27

allocated by a nonblocking communication call, then the request is still valid 28

and pending. To acknowledge this failure and discover which processes failed, 29

the user should call MPI COMM FAILURE ACK. 30

Advice to implementers. When an operation on MPI ANY SOURCE has matched 31

internally, a subsequent process failure on this operation must return an 32

error of class MPI ERR PROC FAILED (like a named receive). (End of 33

advice to implementers.) 34

Non-blocking operations must not return an error about
:::::::
process

:
failures 35

during initialization. All
::::::
process

:
failure errors are postponed until the corre- 36

sponding completion function is called. 37

When a collective operation cannot be completed because of the failure of 38

an involved process, the collective operation eventually returns an error of class 39

MPI ERR PROC FAILED. The content of the output buffers is undefined. 40

2

Advice to users. Depending on how the collective operation is implemented and 1

when a process failure occurs, some participating alive processes may raise 2

an error while other processes return successfully from the same collective 3

operation. For example, in MPI Bcast, the root process is likely to succeed 4

before a failed process disrupts the operation, resulting in some other 5

processes returning an error. However, it is noteworthy that for non- 6

rooted collective operations on an intra-communicator, processes failing 7

before entering the operation provoke all surviving ranks to return MPI - 8

ERR PROC FAILED. Similarly, on an inter-communicator, processes of 9

the remote group failing before entering the operation have the same effect 10

on all surviving ranks of the local group. (End of advice to users.) 11

Advice to users. Note that communicator creation functions (like MPI COMM - 12

DUP or MPI COMM SPLIT) are collective operations. As such, if a fail- 13

ure happened during the call, an error might be returned to some processes 14

while others succeed and obtain a new communicator. It is the responsibil- 15

ity of the user to ensure that all involved processes have a consistent view 16

of the communicator creation. A conservative method is to invalidate the 17

parent communicator if the operation fails, otherwise call an MPI Barrier 18

on the parent communicator and invalidate the new communicator if the 19

MPI Barrier fails. (End of advice to users.) 20

17.2.1
::::::::::
Dynamic

::::::::::
Process

::::::::::::::::
Management 21

::::::::
Dynamic

:::::::
process

:::::::::::
management

::::::::
function

:::::::
require

:::::
some

:::::::::
additional

:::::::::
semantics

:::::
from 22

:::
the

::::
MPI

:::::::::::::::
implementation

::
as

::::::::
detailed

::::::
below.

:
23

1.
:
If
::::
the

:::::
MPI

::::::::::::::
implementation

:::::::
decides

::
to

:::::::
return

:::
an

:::::
error

::::::
related

:::
to

:::::::
process 24

::::::
failure

::
at

:::
the

::::
root

:::::::
process

::
of

::::
MPI

::
C
::::::
OMM

::
C

:::::::::
ONNECT

::
or

::::
MPI

::
C
::::::
OMM

::
A

:::::::
CCEPT,25

:::
the

::::
root

:::::::::
processes

:::
of

:::::
both

::::::::::::::::::
intracommunicators

:::::
must

::::::
return

:::
an

:::::
error

:::
of 26

::::
class

::::
MPI

::
E
:::
RR

::
P
:::::
ROC

::
F

::::::
AILED

:::::::
(unless

:::::::
required

:::
to

::::::
return

::::
MPI

::
E

:::
RR

:
I
::::::::::::::
NVALIDATED27

::
as

:::::::
defined

::
by

::::::::
17.3.1). 28

2.
:
If
::::
the

:::::
MPI

::::::::::::::
implementation

:::::::
decides

::
to

:::::::
return

:::
an

:::::
error

::::::
related

:::
to

:::::::
process 29

::::::
failure

::
at

:::
the

::::
root

:::::::
process

::
of
:::::
MPI

::
C

:::::
OMM

::
S
:::::::
PAWN,

::
no

::::::::
spawned

:::::::::
processes 30

::::::
should

::
be

:::::
able

::
to

::::::::::::
communicate

:::
on

:::
the

:::::::
created

::::::::::::::::::
intercommunicator.

:
31

Advice to users.
::
As

:::::
with

:::::::::::::
communicator

::::::::
creation

:::::::::
functions,

:::
it

::
is

:::::::
possible

:::::
that 32

:
if
::
a
::::::
failure

::::::::
happens

:::::::
during

::::::::
dynamic

:::::::
process

::::::::::::
management

:::::
calls,

:::
an

:::::
error 33

:::::
might

:::
be

::::::::
returned

:::
to

:::::
some

:::::::::
processes

:::::
while

::::::
others

::::::::
succeed

::::
and

::::::
obtain

::
a 34

:::
new

::::::::::::::
communicator.

:
35

17.2.2
::::::::::::
One-Sided

:::::::::::::::::::
Communication 36

::
As

:::::
with

::
all

::::::::::::
non-blocking

::::::::::
operations,

:::::::::
one-sided

:::::::::::::
communication

::::::::::
operations

::::::
should 37

:::::
delay

::
all

::::::
failure

::::::::::
notification

:::
to

::::
their

::::::::::::::
synchronization

:::::
calls

:::
and

::::::
return

::::
MPI

:::
E

::
RR

:::
P

::::
ROC

::
F

:::::::
AILED.38

:
If
::::

the
:::::::::::::::

implementation
:::::::
decides

:::
to

:::::::
return

:::
an

:::::
error

:::::::
related

:::
to

:::::::
process

:::::::
failure 39

3

::::
from

::::
the

::::::::::::::
synchronization

:::::::::
function,

:::
the

::::::
epoch

::::::::
behavior

:::
is

::::::::::
unchanged

::::
from

::::
the 1

:::::::::
definitions

::
in

::::::::
Chapter

:::
11.

:::::::
Similar

::
to

::::::::
collective

::::::::::
operations

::::
over

::::
MPI

::
C
:::::::::::::
ommunicators,2

:
it
::
is
::::::::
possible

::::
that

:::::
some

:::::::::
processes

:::::
could

:::::
have

::::::::
detected

::::
the

::::::
failure

::::
and

::::::::
returned 3

::::
with

::::
MPI

:::
E

::
RR

:::
P

::::
ROC

::
F

:::::::
AILED,

:::::
while

::::::
others

:::::
could

:::::
have

::::::::
returned

:::::::::::
successfully. 4

:::
The

::::::
status

::
of

::::
the

:::::::::
operations

:::::::::
occurring

::::::
during

:::
the

::::::
epoch

:::::::::
completed

:::::
with

::
an

:::::
error 5

::::::
related

::
to

:::::::
process

:::::::
failure

::
is

:::::::
detailed

::::::
below.

:
6

1.
:::
For

::::
MPI

:::
W

::
IN

::
F
::::::
ENCE

:::::::::
operations

:::::::::
following

:
a
:::::::
failure,

::::
MPI

::::::
makes

::
no

::::::::::
guarantees7

:::::
about

::::
the

::::
state

:::
of

:::
the

::::::::::
destination

:::::::::
memory. 8

2.
:
If
::
a
::::::
failure

::
is

::
to

:::
be

::::::::
reported

::::::
during

::::::
active

::::::
target

:::::::::::::
communication

:::::::::
functions 9

::::
MPI

:::
W

::
IN

::
C

::::::::::
OMPLETE

::::
and

::::
MPI

:::
W

::
IN

:::
W

::::
AIT

:::
(or

:::
the

::::::::::::
non-blocking

:::::::::
equivalent10

::::
MPI

:::
W

::
IN

::
T

:::::
EST),

::::
the

::::::
epoch

::
is

::::::::::
considered

:::::::::
completed

::::
and

:::
all

::::::::::
operations 11

:::
not

::::::::
involving

::::
the

:::::
failed

:::::::::
processes

:::
are

::::::::::
completed

:::::::::::
successfully.

:
12

3.
::::
MPI

:::
W

::
IN

::
L

::::
OCK

::::
and

:::::
MPI

:::
W

::
IN

::
U

:::::::
NLOCK

::::::::::
operations

::::::
return

:::
an

:::::
error

::
of 13

::::
class

::::
MPI

:::
E

::
RR

:::
P

::::
ROC

::
F

::::::
AILED

::
if
:::
the

::::::
target

:::::
rank

:::
has

::::::
failed.

::
If

:::
the

::::::
owner 14

::
of

:
a
::::
lock

::::
has

::::::
failed,

:::
the

::::
lock

::::
can

:::
not

:::
be

::::::::
acquired

:::::
again

::::
and

:::
all

::::::::::
subsequent 15

:::::::::
operations

:::
on

:::
the

::::
lock

:::::
must

:::
fail

::::
with

:::
an

::::
error

::
of

:::::
class

::::
MPI

::
E
:::
RR

::
P
:::::
ROC

::
F

:::::::
AILED.16

17

17.2.3
::::
I/O 18

::::
Due

::
to

::::
the

::::
fact

::::
that

:::::
MPI

::::
I/O

:::::::
writing

:::::::::
operations

::::
can

:::::::
choose

::
to

::::::
buffer

::::
data

:::
to 19

:::::::
improve

::::::::::::
performance,

:::
for

::::
the

::::::::
purposes

:::
of

:::::::
process

:::::
fault

::::::::
tolerance

:::
all

::::
I/O

:::::
data 20

::::::
writing

::::::::::
operations

:::
are

:::::::
treated

::
as

:::::::::
operations

::::::
which

::::::::::
synchronize

:::
on

::::
MPI

::
F
::::
ILE

:
S
:::::
YNC.21

:::::::::
Therefore,

:::::::
failures

:::::
may

::::
not

:::
be

::::::::
reported

:::::::
during

:::
an

:::::
MPI

::
F

:::
ILE

:::
W

:::::
RITE

::
X

:::
XX 22

:::::::::
operation,

::::::::
however

:::::
they

:::::
must

:::
be

::::::::
reported

:::
by

::::
the

::::
next

:::::
MPI

::
F
:::
ILE

::
S
:::::
YNC.

:::
In 23

:::
this

:::::
case,

:::
all

::::
alive

:::::::::
processes

:::::
must

:::::::::
uniformly

::::::
return

::::::
either

:::::::
success

::
or

::
a

::::::
failure

::
of 24

::::
class

:::::
MPI

::
E

:::
RR

::
P

::::
ROC

::
F
:::::::
AILED.

:
25

::::
Once

:::::
MPI

::::
has

:::::::::
returned

:::
an

:::::
error

:::
of

:::::
class

:::::
MPI

::
E
:::
RR

::
P
:::::
ROC

::
F

:::::::
AILED,

::
it 26

:::::
makes

:::
no

::::::::::
guarantees

:::::
about

::::
the

:::::::
position

::
of

:::
the

::::
file

::::::
pointer

:::::::::
following

:::
any

::::::::
previous 27

::::::::::
operations.

:::::
The

::::
only

:::::
way

::
to

::::::
know

::::
the

:::::::
current

::::::::
location

:::
by

::::::
calling

::::
the

:::::
local 28

::::::::
functions

::::
MPI

::
F
::::
ILE

::
G

:::
ET

::
P

::::::::
OSITION

:::
or

::::
MPI

::
F

:::
ILE

:::
G

:::
ET

::
P

::::::::
OSITION

::
S
::::::::
HARED. 29

30

17.3 Failure Handling
:::::::::::::::
Mitigation

:
Functions 31

MPI provides no guarantee of global knowledge of a process failure. Only pro- 32

cesses involved in a communication with the failed process are guaranteed to 33

eventually detect its failure. If global knowledge is required, MPI provides a 34

function to globally invalidate a communicator. 35

4

17.3.1
:::::::::::::::::
Communicator

::::::::::::
Functions 1

MPI COMM INVALIDATE(comm) 2

IN comm communicator (handle) 3

This function eventually notifies all processes of all groups within
:
in

::::
the

::::::
groups 4

:::::
(local

::::
and

::::::::
remote)

::::::::::
associated

:::::
with

:
the communicator comm that this com- 5

municator is now considered invalid. An invalid communicator preempts any 6

non-local MPI calls on comm, with the exception of MPI COMM SHRINKand 7

MPI COMM FREE. A communicator becomes invalid as soon as: 8

1. MPI COMM INVALIDATE is locally called on it 9

2. Or any MPI function returned MPI ERR INVALIDATED (or such error 10

field was set in the status pertaining to a request on this communicator). 11

Once a communicator has been invalidated, all subsequent non-local calls on 12

that communicator, with the exception of MPI COMM SHRINK and
:::::
(Page 13

:::
???

::::
line

:::::
???),

:::
are

::::::::::
considered

::::
local

::::
and

:::::
must

::::::
return

:::::
with

::
an

:::::
error

::
of
:::::
class

:
MPI - 14

:
E
:::
RR

::
I
::::::::::::::
NVALIDATED.

:
If
:::
an

::::::::::::::
implementation

:::::::
chooses

::
to

::::::::::
implement

::::
MPI

:
COMM - 15

FREE , must fail with an error of class
::
as

:
a
:::::
local

:::::::::
operation

::::
(see

:::::
Page

::::
209

::::
Line 16

::
1),

::
it
::
is
:::::::
allowed

:::
to

::::::::
succeed.

:
17

Note for the Forum
:::
The

:::::
text

:::
of

:::::
Page

::::
208

:::::
must

:::
be

:::::::::
amended

:::
to

:::::::
provide

::::
the 18

::::::::
following

::::::
advice

:::
to

:::::::::::::
implementers.

:::::
The

:::::::::::::::
implementation

:::::::
should

:::::
make

::
a 19

::::
best

:::::
effort

::
to

::::
free

:::
an

::::::::::
invalidated

::::::::::::::
communicator

::::::
locally

::::
and

::::::
return

:
MPI - 20

:
S
:::::::::
UCCESS.

::::::::::
Otherwise,

::
it

:::::
must

::::::
return

::::
MPI

:
ERR INVALIDATED. 21

The text of Page 208 lines 39-48 must be amended to provide the following 22

advice to users. 23

:::::::
Because

:
MPI Comm

::::::
OMM f

:
Free is also allowed to complete after the 24

communicator has been invalidated. It is the user’s responsibility to 25

ensure that there are no pending messages remaining on the invalidated 26

communicator. If the communicator is not invalid but there are known 27

failed processes inside, it is up to the user to clean up its own requests
::::
REE 28

:::::
resets

:::
the

:::::
MPI

::
E

::::::::
rrhandler

::
of

:
a
:::::::::::::
communicator

::
to

:::::
MPI

::
E

:::::::
RRORS

::
A

:::
RE

::
F

::::::
ATAL,29

::::
fault

::::::::
tolerant

:::::::::::
applications

:::::::
should

::::::::
complete

:::
all

::::::::
pending

:::::::::::::::
communications 30

before calling MPI COMM FREE. 31

MPI COMM SHRINK(comm, newcomm) 32

IN comm communicator (handle)
OUT newcomm communicator (handle) 33

This function partitions the group associated with comm into two disjoint sub- 34

groups: the group of failed processes and the group of alive processes. A new 35

communicator is created for the group of alive processes and returned as new- 36

comm. This function is illegal on a communicator which has not been invali- 37

dated and will return an error of class MPI ERR ARG. This call returns the 38

same value on all ranks, even if failures happen during the call. If the return 39

5

is MPI SUCCESS, the call is semantically equivalent to MPI COMM SPLIT 1

where living processes participate with the same color and a key equal to their 2

rank in comm, and an agreement is made among living processes to determine 3

the group of failed processes whose implicit contribution is MPI UNDEFINED. 4

Advice to users. This call does not guarantee that all processes in newcomm are 5

alive, but that all processes in newcomm agreed on a consistent set that 6

includes at least the union of processes locally known to have failed before 7

the call. Any new failure will be detected in subsequent MPI calls. (End 8

of advice to users.) 9

MPI COMM FAILURE ACK(comm) 10

IN comm communicator (handle) 11

This local function gives the users a way to acknowledge all locally notified 12

failures on comm. After the call, operations that would have returned MPI - 13

ERR PENDING
::::
due

::
to

:::::::
process

:::::::
failure proceed without further reporting ac- 14

knowledged failures. 15

Advice to users. It is an incorrect MPI code to call a collective communication 16

on a communicator with acknowledged failures. To reliably use collective 17

operations on a communicator with failed processes, the communicator 18

should first be invalidated using MPI COMM INVALIDATE and then a 19

new communicator should be created using MPI COMM SHRINK. (End 20

advice to users.) 21

MPI COMM FAILURE GET ACKED(comm, failedgroup) 22

IN comm communicator (handle)
OUT failedgroup group (handle) 23

This local function returns the group failedgroup of processes from the commu- 24

nicator comm which were locally acknowledged as failed by preceding calls to 25

MPI COMM FAILURE ACK. 26

:::::
MPI

::
A

:::::::::::::::
GREEMENT(

:::::::
comm,

::::
flag

::
)
:

27

::
IN

: ::::
comm

: ::::::::::::::
communicator

::::::::::
(handle)

:::::
INOUT

: ::::
flag

: :::::::
boolean

:::::
flag 28

::::
This

::::::::
function

::::::::
performs

:
a
:::::::::
collective

::::::::
operation

:::::::
among

::
all

:::::
living

:::::::::
processes

::
in

::::::
comm. 29

::
It

::::::
returns

::::
the

:::::
same

::::::
return

::::
code

:::
on

:::
all

::::::
ranks,

::::
even

::
if
:::::::
failures

:::::::
happen

:::::::
during

:::
the 30

::::
call.

:::::
Upon

::::::::::
successfull

::::::::::
completion,

:::
all

::::::
living

::::::::
processes

:::::::::
uniformly

:::
set

::::
the

:::::
value

::
of 31

:::
flag

:::
to

:::
the

::::::
result

::
of

::
a

::::::
logical

:::::::
’AND’

:::::::::
operation

::::
over

:::
the

::::::
value

::::::::::
contributed

:::::
from 32

::
all

::::::
ranks.

:::::
Any

:::::
failed

:::::::
process

::
is

::::::::
assumed

::
to

:::::
have

:::::::::::
participated

:::::
with

:::::::::::
flag = false. 33

34

:
If
::::::

comm
:::

is
:::
an

::::::::::::::::::
inter-communicator,

::::
the

::::::
return

::::::
value

::
is

::::::::
uniform

::::
over

:::::
both 35

::::::
groups

::::
and

:::
(if

::::::::::
applicable)

::::
the

:::::
value

::
of

::::
flag

:::
is

:
a
:::::::

logical
::::::
’AND’

::::::::::
operation

::::
over 36

6

:::
the

::::::
values

:::::::::::
contributed

::
by

::::
the

:::::::
remote

:::::
group

:::::::
(where

::::::
failed

::::::::
processes

::::::::::
contribute 1

::::
with

::::::::::::
flag = false).

:
2

17.3.2
::::::::::::
One-Sided

::::::::::::
Functions 3

:::::
MPI

:::
W

:::
IN

:
I
::::::::::::::
NVALIDATE

::
(

::::
win

::
) 4

::
IN

: :::
win

: ::::::::
window

:::::::::
(handle)

:
5

::::
This

::::::::
function

::::::::::
eventually

:::::::
notifies

:::
all

::::::
ranks

:::::::
within

:::
the

::::::::
window

::::
win

:::::
that

::::
this 6

:::::::
window

::
is

::::
now

::::::::::
considered

:::::::
invalid.

::::
An

::::::
invalid

::::::::
window

::::::::
preempts

::::
any

:::::::::
non-local 7

::::
MPI

::::
calls

:::
on

::::
win.

:::::
Once

::
a
:::::::
window

:::
has

:::::
been

:::::::::::
invalidated,

::
all

:::::::::::
subsequent

::::::::
non-local 8

::::
calls

:::
on

::::
that

::::::::
window

:::
are

::::::::::
considered

:::::
local

::::
and

:::::
must

:::
fail

:::::
with

:::
an

:::::
error

::
of

:::::
class 9

::::
MPI

::
E

:::
RR

:
I
::::::::::::::
NVALIDATED.

:
10

:::::
MPI

:::
W

:::
IN

::
G

:::
ET

:::
F

::::::::
AILED(

:::::
win,

::::::::::::
failedgroup

:
)
:

11

::
IN

: :::
win

: ::::::::
window

:::::::::
(handle)

:

:::
OUT

: ::::::::::::
failedgroup

: ::::::
group

:::::::::
(handle)

:
12

::::
This

:::::
local

:::::::
function

:::::::
returns

::::
the

:::::
group

:::::::::::
failedgroup

::
of

:::::::::
processes

::::
from

::::
the

:::::::
window 13

:::
win

::::::
which

:::
are

:::::::
locally

::::::
known

::
to

:::::
have

::::::
failed.

:
14

Advice to users.
::::
MPI

::::::
makes

::
no

:::::::::::
assumption

:::::
about

:::::::::::::
asynchronous

:::::::
progress

:::
of

:::
the 15

::::::
failure

:::::::::
detection.

::
A

:::::
valid

::::
MPI

::::::::::::::
implementation

:::::
may

::::::
choose

::
to

::::
only

:::::::
update 16

:::
the

:::::
group

::
of

::::::
locally

:::::::
known

:::::
failed

::::::::
processes

:::::
when

::
it

::::::
enters

:
a
::::::::::::::
synchronization 17

::::::::
function.

:::::
(End

::::::
advice

:::
to

::::::
users.)

:
18

Advice to users.
:
It
:::

is
:::::::
possible

:::::
that

:::::
only

:::
the

:::::::
calling

:::::::
process

::::
has

::::::::
detected

::::
the 19

:::::::
reported

:::::::
failure.

::::
If

::::::
global

::::::::::
knowledge

::
is
::::::::::

necessary,
:::::::::
processes

:::::::::
detecting 20

::::::
failures

::::::
should

::::
use

:::
the

:::
call

:::::
MPI

::
W

:::
IN

:
I
:::::::::::::
NVALIDATE.

::::
(End

::::::
advice

:::
to

::::::
users.) 21

22

17.3.3
::::
I/O

::::::::::::
Functions 23

:::::
MPI

::
F

::::
ILE

:
I
::::::::::::::
NVALIDATE

::
(

::
fh

::
)
:

24

::
IN

: ::
fh

: :::
file

:::::::::
(handle)

:
25

::::
This

::::::::
function

::::::::::
eventually

:::::::
notifies

:::
all

::::::
ranks

::::::
within

:::
file

:::
fh

:::::
that

::::
this

:::
file

:::
is

::::
now 26

:::::::::
considered

:::::::
invalid.

::::
An

::::::
invalid

:::
file

:::::::::
preempts

:::
any

:::::::::
non-local

::::::::::
completion

::::
calls

:::::
MPI 27

::::
calls

::
on

::::
file

::::
(see

::::::
Section

:::::::
17.2.3).

::::::
Once

:
a
:::
file

::::
has

:::::
been

::::::::::
invalidated,

:::
all

::::::::::
subsequent 28

::::::::
non-local

::::
calls

:::
on

:::
the

:::
file

:::::
must

:::
fail

::::
with

:::
an

::::
error

::
of
:::::
class

::::
MPI

::
E
:::
RR

::
I
::::::::::::::
NVALIDATED. 29

30

7

17.4 Error Codes and Classes 1

MPI ERR PROC FAILED A process in the operation has failed (a
fail-stop failure).

MPI ERR INVALIDATED The communicator
:::::
object

:
used in the op-

eration was invalidated. 2

8

