
Experience Applying Fortran GPU
Compilers to Numerical Weather

Prediction

Tom Henderson
NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff
Paul Madden, James Rosinski,

Craig Tierney

5/17/11

Outline

 Motivation for GPU investigation
 The Non-hydrostatic Icosahedral Model

(NIM)
 GPU software design issues
 Commercial directive-based Fortran GPU

compilers
 Step-wise approach
  Initial performance comparisons
 Conclusions and future directions

2

5/17/11

Motivation for NOAA GPU
Investigation

  Run global NWP and climate models at higher
resolution with more sophisticated physical
parameterizations to improve forecast skill
  Research: shop for FLOPs
  Operations: technology must be mature

  Michalakes early GPU work
  Continue to maintain single source code for all

desired execution modes
  Single and multiple CPU
  Single and multiple GPU
  Prefer a directive-based Fortran approach

3

5/17/11

NIM NWP Dynamical Core

  NIM = “Non-Hydrostatic Icosahedral Model”
  NWP dynamical core prototype
  Global “cloud-permitting” resolutions < 3km (42

million columns)
  32-bit floating-point computations
  Computations structured as simple vector ops

with indirect addressing and inner vertical loop
  “GPU-friendly”, also good for CPU

4

5/17/11 5

Icosahedral Grid

450km
2562 columns

Always 12
pentagons

Good geometric
properties
compared to
traditional
latitude/longitude
grid

5

5/17/11 6

NIM/FIM Indirect Addressing
(MacDonald, Middlecoff)

  Single horizontal index
  Store number of sides (5 or 6)

in “nprox” array
  nprox(34) = 6

  Store neighbor indices in
“prox” array
  prox(1,34) = 515
  prox(2,19) = 3

  Place directly-addressed
vertical dimension fastest-
varying for speed

  Very compact code
  Indirect addressing costs <1%

19

1

4

6

5

2

3

35

1

4

6

5

2

3

3

1

4

6

5

2

3
34

1

4

6

5

2

3

18

1

4

6

5

2

3

20

1

4

6

5

2

3

4

1

4

6

5

2

3

515

6

3

5

4

1

2

6

5/17/11

Simple Loop With Indirect
Addressing

 Compute sum of all horizontal neighbors
  nip = number of columns
  nvl = number of vertical levels

xnsum = 0.0
do ipn=1,nip ! Horizontal loop
 do isn=1,nprox(ipn) ! Loop over edges (sides, 5 or 6)
 ipp = prox(isn,ipn) ! Index of neighbor across side “isn”
 do k=1,nvl ! Vertical loop
 xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
 enddo
 enddo
enddo

 7

  CPU controls high level program flow
  I/O, message passing, coarse-grained parallelism

  MPI parallelism via the Scalable Modeling System (SMS)
  Directive-based

  GPU performs all computations
  Fine-grained parallelism
  Implemented by a GPU compiler

  Model data is resident on the GPU
  Invert traditional “GPU-as-accelerator” model

  Initial data read by the CPU and passed to the GPU
  Data passed back to the CPU only for output & message-passing
  Minimizes overhead of data movement between CPU & GPU

5/17/11 8

GPU Software Design Issues

 Massive fine-grained parallelism
 GPU “global memory” is slow

  Need lots of threads to hide memory latency
  Key trade-off: number of threads vs. thread

resources
 Coalesced loads

 Multiple memory accesses in one load
 Adjacent threads must access adjacent data

  Use unit stride access in loops that will be
threaded

5/17/11 9

GPU Software Design Issues

  Reduce branching
  Code should vectorize well using CPU compilers

  Redesign algorithms if needed
  Optimize inter-CPU (MPI) communication

  Computation time is a much smaller fraction of total run
time when multiple GPUs are used

  Overlap communication with computation
  Use redundant computation to eliminate communication

5/17/11 10

GPU Software Design Issues

5/17/11

GPU Fortran Compilers
  Commercial directive-based compilers

  CAPS HMPP 2.3.5
  Generates CUDA-C and OpenCL
  Supports NVIDIA and AMD GPUs

  Portland Group PGI Accelerator 11.7
  Supports NVIDIA GPUs
  Previously used to accelerate WRF physics

packages
 F2C-ACC (Govett, 2008) directive-based

compiler
  “Application-specific” Fortran->CUDA-C

compiler for performance evaluation
  Other directive-based compilers

  Cray (beta)

11

5/17/11

Current GPU Compiler
Limitations

  Limited support for Fortran language features
such as modules, derived types

  Support not yet strong for automatic inlining,
__device__ routines

  Both PGI and HMPP prefer “tightly nested
outer loops” (not a limitation for F2C-ACC)

12

! This is OK
do ipn=1,nip
 do k=1,nvl
 <statements>
 enddo
enddo

! This is NOT OK
do ipn=1,nip
 <statements>
 do k=1,nvl
 <statements>
 enddo
enddo

5/17/11

Directive Comparison:
Loops

13

!$hmppcg parallel
do ipn=1,nip
!$hmppcg parallel
 do k=1,nvl
 do isn=1,nprox(ipn)
 xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
 enddo
 enddo
enddo

HMPP

!$acc do parallel
do ipn=1,nip
!$acc do vector
 do k=1,nvl
 do isn=1,nprox(ipn)
 xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
 enddo
 enddo
enddo

PGI

5/17/11 14

real :: u(nvl,nip)
…
call diag(u, …)
call vd(u, …)
call diag(u, …)
…
subroutine vd(fin, …)
…
subroutine diag(u, …)
…

Original
Code

Directive Comparison:
Array Declarations

5/17/11 15

real :: u(nvl,nip)
!$hmpp map, args[vd::fin;diag1::u;diag2::u]
…
!$hmpp diag1 callsite
call diag(u, …)
!$hmpp vd callsite
call vd(u, …)
!$hmpp diag2 callsite
call diag(u, …)
…
!$hmpp vd codelet
subroutine vd(fin, …)
…
!$hmpp diag1 codelet
!$hmpp diag2 codelet
subroutine diag(u, …)
…

HMPP

Directive Comparison:
Array Declarations

5/17/11 16

!$acc mirror (u)
real :: u(nvl,nip)

! Must make interfaces explicit via interface
! block or use association
include “interfaces.h”
…
call diag(u, …)
call vd(u, …)
call diag(u, …)
…
subroutine vd(fin, …)
!$acc reflected (fin, …)
…
subroutine diag(u, …)
!$acc reflected (u, …)
…

PGI

Directive Comparison:
Array Declarations

5/17/11

Directive Comparison:
Explicit CPU-GPU Data Transfers

17

!$hmpp diag1 advancedLoad, args[u]
…
!$hmpp diag2 delegatedStore, args[u]

HMPP

!$acc update device(u)
…
!$acc update host(u)

PGI

5/17/11

Step-Wise Approach to GPU
Parallelization

 GPU tools and debuggers are still
relatively primitive
  Bugs can be difficult to diagnose

 Create test cases and establish tolerances
  Match tolerances observed from CPU

compiler optimization changes
 Make small changes and test after each

  Much easier to find and fix errors

18

  Compare HMPP and PGI output and
performance with F2C-ACC compiler
  Use F2C-ACC to prove existence of bugs in

commercial compilers
  Use F2C-ACC to prove that performance of

commercial compilers can be improved
  Both HMPP and F2C-ACC generate

“readable” CUDA code
  Re-use function and variable names from

original Fortran code
  Allows straightforward use of CUDA profiler
  Eases detection and analysis of compiler

correctness and performance bugs
5/17/11

Step-Wise Approach to GPU
Parallelization

19

5/17/11

Initial Performance Results

 Optimize for both CPU and GPU
  Some code divergence
  Always use fastest code

 CPU = Intel Nehalem (2.8GHz) or Intel
Westmere (2.66GHz)

 GPU = NVIDIA GTX280 “Tesla” or C2050
“Fermi”

 Work in-progress…

20

5/17/11

Initial Performance Results

 Small “G4-L96” test case
  2562 columns, 96 levels, 50 time steps

  Fraction of time spent in init/input is
unrealistically large

  Large “G5-L96” test case
  10242 columns, 96 levels, 1000 time steps
  Newer version of NIM code

 Update to newer NIM code turned out to
be non-trivial!

 Many GPU optimizations remain untried

21

Run Times for Single GPU vs.
Single Nehalem Core, “G4-L96”
NIM routine Nehalem

CPU Time
(sec)

F2C-ACC
Tesla GPU
Time (sec)

HMPP Tesla
GPU Time

(sec)

PGI Tesla
GPU Time

(sec)*

Total 106.6 10.8 10.3 --
vdmints 50.6 2.5 2.3 4.6
vdmintv 23.3 0.93 0.99 0.93

flux 10.4 1.15 1.05 0.43
vdn 4.6 0.58 0.73 --
diag 4.0 0.093 0.085 0.12

force 3.4 0.11 0.19 0.09
trisol 2.0 1.9 1.4 --

* Note error in paper, speedups erroneously listed for PGI

5/17/11

Estimated GFLOPS for GPU and
Single Nehalem Core “G4-L96”
NIM
routine

Nehalem
1-core CPU

GFLOPS

F2C-ACC
CUDA-C

Tesla GPU
GFLOPS

HMPP
Tesla GPU

GFLOPS

Computational
Intensity

Total 3.2 31 32 1.68
vdmints 3.8 77 85 1.96
vdmintv 3.9 99 95 1.85

flux 2.3 21 23 1.11
vdn 1.0 9 6 0.89
diag 1.3 57 62 1.12

force 1.9 61 35 1.41
trisol 2.3 2.2 3 1.10

  Used PAPI performance counters on CPU (GPTL)
  Estimated ~29% of peak (11.2 GFLOPS) on CPU 23

Fermi GPU vs. Single/Multiple
Westmere CPU cores, “G5-L96”
NIM routine Westmere

CPU 1-core
Time (sec)

Westmere
CPU 6-core
Time (sec)

F2C-ACC
Fermi GPU
Time (sec)

Fermi
Speedup vs.
6-core CPU

(1 socket ea.)
Total 8654 2068 449 4.6

vdmints 4559 1062 196 5.4
vdmintv 2119 446 91 4.9

flux 964 175 26 6.7
vdn 131 86 18 4.8

diag 389 74 42 1.8
force 80 33 7 4.7
trisol 119 38 31 1.2

5/17/11

“G5-96” with PGI and HMPP
  HMPP:

  Each kernel passes correctness tests in
isolation

  Run times of individual kernels very close to
F2C-ACC

  Unresolved error in “map”/data transfers
  PGI:

  Started with PGI 11.7 six days ago
  Entire model runs but does not pass

correctness tests
  Run times of most expensive kernels very

close to F2C-ACC
  Data transfers appear to be correct
  Likely error in one (or more) kernel(s)

25

5/17/11

Ongoing Work With WRF Physics

  Legacy codes not designed with GPU in
mind

 Much more difficult than NIM
  Initial candidate: YSU PBL scheme
 WRF physics (i,k,j) ordering good for

coalesced loads (Michalakes, others)
  Must transpose from NIM (k,ipn)
  Transpose costs appear small
  Memory may be an issue

26

5/17/11

Early Work With Multi-GPU Runs

 F2C-ACC + SMS directives
  Correct results on different numbers of

GPUs
  Poor scaling because compute has sped

up but communication has not
  Working on communication optimizations

 Demonstrates that single source code can
be used for single/multiple CPU/GPU runs

 Should be possible to mix HMPP/PGI
directives with SMS too

27

5/17/11

Conclusions

  Some grounds for optimism
  Fermi is ~4-5x faster than 6-core Westmere
  Once compilers mature, expect level of effort

similar to OpenMP for “GPU-friendly” codes
like NIM

  HMPP strengths: more flexible low-level loop
transformation directives, user-readable
CUDA-C

  PGI strengths: simpler directives for making
data persist in GPU memory

  This is still very much a work-in-progress

28

5/17/11

Future Directions

 Continue to improve GPU performance
  Tuning options via commercial compilers
  Test AMD GPU/APUs (HMPP->OpenCL)

 Address GPU scaling issues
 Cray GPU compiler

  Working with beta releases
  Intel MIC
 OpenMP extensions?
 OpenHMPP?

29

5/17/11 30

Thank You

30

