
Experience Applying Fortran GPU
Compilers to Numerical Weather

Prediction

Tom Henderson
NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff
Paul Madden, James Rosinski,

Craig Tierney

5/17/11

Outline

 Motivation for GPU investigation
 The Non-hydrostatic Icosahedral Model

(NIM)
 GPU software design issues
 Commercial directive-based Fortran GPU

compilers
 Step-wise approach
  Initial performance comparisons
 Conclusions and future directions

2

5/17/11

Motivation for NOAA GPU
Investigation

  Run global NWP and climate models at higher
resolution with more sophisticated physical
parameterizations to improve forecast skill
  Research: shop for FLOPs
  Operations: technology must be mature

  Michalakes early GPU work
  Continue to maintain single source code for all

desired execution modes
  Single and multiple CPU
  Single and multiple GPU
  Prefer a directive-based Fortran approach

3

5/17/11

NIM NWP Dynamical Core

  NIM = “Non-Hydrostatic Icosahedral Model”
  NWP dynamical core prototype
  Global “cloud-permitting” resolutions < 3km (42

million columns)
  32-bit floating-point computations
  Computations structured as simple vector ops

with indirect addressing and inner vertical loop
  “GPU-friendly”, also good for CPU

4

5/17/11 5

Icosahedral Grid

450km
2562 columns

Always 12
pentagons

Good geometric
properties
compared to
traditional
latitude/longitude
grid

5

5/17/11 6

NIM/FIM Indirect Addressing
(MacDonald, Middlecoff)

  Single horizontal index
  Store number of sides (5 or 6)

in “nprox” array
  nprox(34) = 6

  Store neighbor indices in
“prox” array
  prox(1,34) = 515
  prox(2,19) = 3

  Place directly-addressed
vertical dimension fastest-
varying for speed

  Very compact code
  Indirect addressing costs <1%

19

1

4

6

5

2

3

35

1

4

6

5

2

3

3

1

4

6

5

2

3
34

1

4

6

5

2

3

18

1

4

6

5

2

3

20

1

4

6

5

2

3

4

1

4

6

5

2

3

515

6

3

5

4

1

2

6

5/17/11

Simple Loop With Indirect
Addressing

 Compute sum of all horizontal neighbors
  nip = number of columns
  nvl = number of vertical levels

xnsum = 0.0
do ipn=1,nip ! Horizontal loop
 do isn=1,nprox(ipn) ! Loop over edges (sides, 5 or 6)
 ipp = prox(isn,ipn) ! Index of neighbor across side “isn”
 do k=1,nvl ! Vertical loop
 xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
 enddo
 enddo
enddo

 7

  CPU controls high level program flow
  I/O, message passing, coarse-grained parallelism

  MPI parallelism via the Scalable Modeling System (SMS)
  Directive-based

  GPU performs all computations
  Fine-grained parallelism
  Implemented by a GPU compiler

  Model data is resident on the GPU
  Invert traditional “GPU-as-accelerator” model

  Initial data read by the CPU and passed to the GPU
  Data passed back to the CPU only for output & message-passing
  Minimizes overhead of data movement between CPU & GPU

5/17/11 8

GPU Software Design Issues

 Massive fine-grained parallelism
 GPU “global memory” is slow

  Need lots of threads to hide memory latency
  Key trade-off: number of threads vs. thread

resources
 Coalesced loads

 Multiple memory accesses in one load
 Adjacent threads must access adjacent data

  Use unit stride access in loops that will be
threaded

5/17/11 9

GPU Software Design Issues

  Reduce branching
  Code should vectorize well using CPU compilers

  Redesign algorithms if needed
  Optimize inter-CPU (MPI) communication

  Computation time is a much smaller fraction of total run
time when multiple GPUs are used

  Overlap communication with computation
  Use redundant computation to eliminate communication

5/17/11 10

GPU Software Design Issues

5/17/11

GPU Fortran Compilers
  Commercial directive-based compilers

  CAPS HMPP 2.3.5
  Generates CUDA-C and OpenCL
  Supports NVIDIA and AMD GPUs

  Portland Group PGI Accelerator 11.7
  Supports NVIDIA GPUs
  Previously used to accelerate WRF physics

packages
 F2C-ACC (Govett, 2008) directive-based

compiler
  “Application-specific” Fortran->CUDA-C

compiler for performance evaluation
  Other directive-based compilers

  Cray (beta)

11

5/17/11

Current GPU Compiler
Limitations

  Limited support for Fortran language features
such as modules, derived types

  Support not yet strong for automatic inlining,
__device__ routines

  Both PGI and HMPP prefer “tightly nested
outer loops” (not a limitation for F2C-ACC)

12

! This is OK
do ipn=1,nip
 do k=1,nvl
 <statements>
 enddo
enddo

! This is NOT OK
do ipn=1,nip
 <statements>
 do k=1,nvl
 <statements>
 enddo
enddo

5/17/11

Directive Comparison:
Loops

13

!$hmppcg parallel
do ipn=1,nip
!$hmppcg parallel
 do k=1,nvl
 do isn=1,nprox(ipn)
 xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
 enddo
 enddo
enddo

HMPP

!$acc do parallel
do ipn=1,nip
!$acc do vector
 do k=1,nvl
 do isn=1,nprox(ipn)
 xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
 enddo
 enddo
enddo

PGI

5/17/11 14

real :: u(nvl,nip)
…
call diag(u, …)
call vd(u, …)
call diag(u, …)
…
subroutine vd(fin, …)
…
subroutine diag(u, …)
…

Original
Code

Directive Comparison:
Array Declarations

5/17/11 15

real :: u(nvl,nip)
!$hmpp map, args[vd::fin;diag1::u;diag2::u]
…
!$hmpp diag1 callsite
call diag(u, …)
!$hmpp vd callsite
call vd(u, …)
!$hmpp diag2 callsite
call diag(u, …)
…
!$hmpp vd codelet
subroutine vd(fin, …)
…
!$hmpp diag1 codelet
!$hmpp diag2 codelet
subroutine diag(u, …)
…

HMPP

Directive Comparison:
Array Declarations

5/17/11 16

!$acc mirror (u)
real :: u(nvl,nip)

! Must make interfaces explicit via interface
! block or use association
include “interfaces.h”
…
call diag(u, …)
call vd(u, …)
call diag(u, …)
…
subroutine vd(fin, …)
!$acc reflected (fin, …)
…
subroutine diag(u, …)
!$acc reflected (u, …)
…

PGI

Directive Comparison:
Array Declarations

5/17/11

Directive Comparison:
Explicit CPU-GPU Data Transfers

17

!$hmpp diag1 advancedLoad, args[u]
…
!$hmpp diag2 delegatedStore, args[u]

HMPP

!$acc update device(u)
…
!$acc update host(u)

PGI

5/17/11

Step-Wise Approach to GPU
Parallelization

 GPU tools and debuggers are still
relatively primitive
  Bugs can be difficult to diagnose

 Create test cases and establish tolerances
  Match tolerances observed from CPU

compiler optimization changes
 Make small changes and test after each

  Much easier to find and fix errors

18

  Compare HMPP and PGI output and
performance with F2C-ACC compiler
  Use F2C-ACC to prove existence of bugs in

commercial compilers
  Use F2C-ACC to prove that performance of

commercial compilers can be improved
  Both HMPP and F2C-ACC generate

“readable” CUDA code
  Re-use function and variable names from

original Fortran code
  Allows straightforward use of CUDA profiler
  Eases detection and analysis of compiler

correctness and performance bugs
5/17/11

Step-Wise Approach to GPU
Parallelization

19

5/17/11

Initial Performance Results

 Optimize for both CPU and GPU
  Some code divergence
  Always use fastest code

 CPU = Intel Nehalem (2.8GHz) or Intel
Westmere (2.66GHz)

 GPU = NVIDIA GTX280 “Tesla” or C2050
“Fermi”

 Work in-progress…

20

5/17/11

Initial Performance Results

 Small “G4-L96” test case
  2562 columns, 96 levels, 50 time steps

  Fraction of time spent in init/input is
unrealistically large

  Large “G5-L96” test case
  10242 columns, 96 levels, 1000 time steps
  Newer version of NIM code

 Update to newer NIM code turned out to
be non-trivial!

 Many GPU optimizations remain untried

21

Run Times for Single GPU vs.
Single Nehalem Core, “G4-L96”
NIM routine Nehalem

CPU Time
(sec)

F2C-ACC
Tesla GPU
Time (sec)

HMPP Tesla
GPU Time

(sec)

PGI Tesla
GPU Time

(sec)*

Total 106.6 10.8 10.3 --
vdmints 50.6 2.5 2.3 4.6
vdmintv 23.3 0.93 0.99 0.93

flux 10.4 1.15 1.05 0.43
vdn 4.6 0.58 0.73 --
diag 4.0 0.093 0.085 0.12

force 3.4 0.11 0.19 0.09
trisol 2.0 1.9 1.4 --

* Note error in paper, speedups erroneously listed for PGI

5/17/11

Estimated GFLOPS for GPU and
Single Nehalem Core “G4-L96”
NIM
routine

Nehalem
1-core CPU

GFLOPS

F2C-ACC
CUDA-C

Tesla GPU
GFLOPS

HMPP
Tesla GPU

GFLOPS

Computational
Intensity

Total 3.2 31 32 1.68
vdmints 3.8 77 85 1.96
vdmintv 3.9 99 95 1.85

flux 2.3 21 23 1.11
vdn 1.0 9 6 0.89
diag 1.3 57 62 1.12

force 1.9 61 35 1.41
trisol 2.3 2.2 3 1.10

  Used PAPI performance counters on CPU (GPTL)
  Estimated ~29% of peak (11.2 GFLOPS) on CPU 23

Fermi GPU vs. Single/Multiple
Westmere CPU cores, “G5-L96”
NIM routine Westmere

CPU 1-core
Time (sec)

Westmere
CPU 6-core
Time (sec)

F2C-ACC
Fermi GPU
Time (sec)

Fermi
Speedup vs.
6-core CPU

(1 socket ea.)
Total 8654 2068 449 4.6

vdmints 4559 1062 196 5.4
vdmintv 2119 446 91 4.9

flux 964 175 26 6.7
vdn 131 86 18 4.8

diag 389 74 42 1.8
force 80 33 7 4.7
trisol 119 38 31 1.2

5/17/11

“G5-96” with PGI and HMPP
  HMPP:

  Each kernel passes correctness tests in
isolation

  Run times of individual kernels very close to
F2C-ACC

  Unresolved error in “map”/data transfers
  PGI:

  Started with PGI 11.7 six days ago
  Entire model runs but does not pass

correctness tests
  Run times of most expensive kernels very

close to F2C-ACC
  Data transfers appear to be correct
  Likely error in one (or more) kernel(s)

25

5/17/11

Ongoing Work With WRF Physics

  Legacy codes not designed with GPU in
mind

 Much more difficult than NIM
  Initial candidate: YSU PBL scheme
 WRF physics (i,k,j) ordering good for

coalesced loads (Michalakes, others)
  Must transpose from NIM (k,ipn)
  Transpose costs appear small
  Memory may be an issue

26

5/17/11

Early Work With Multi-GPU Runs

 F2C-ACC + SMS directives
  Correct results on different numbers of

GPUs
  Poor scaling because compute has sped

up but communication has not
  Working on communication optimizations

 Demonstrates that single source code can
be used for single/multiple CPU/GPU runs

 Should be possible to mix HMPP/PGI
directives with SMS too

27

5/17/11

Conclusions

  Some grounds for optimism
  Fermi is ~4-5x faster than 6-core Westmere
  Once compilers mature, expect level of effort

similar to OpenMP for “GPU-friendly” codes
like NIM

  HMPP strengths: more flexible low-level loop
transformation directives, user-readable
CUDA-C

  PGI strengths: simpler directives for making
data persist in GPU memory

  This is still very much a work-in-progress

28

5/17/11

Future Directions

 Continue to improve GPU performance
  Tuning options via commercial compilers
  Test AMD GPU/APUs (HMPP->OpenCL)

 Address GPU scaling issues
 Cray GPU compiler

  Working with beta releases
  Intel MIC
 OpenMP extensions?
 OpenHMPP?

29

5/17/11 30

Thank You

30

