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Motivation for NOAA GPU 
Investigation 

  Run global NWP and climate models at higher 
resolution with more sophisticated physical 
parameterizations to improve forecast skill 
  Research: shop for FLOPs 
  Operations: technology must be mature 

  Michalakes early GPU work 
  Continue to maintain single source code for all 

desired execution modes 
  Single and multiple CPU 
  Single and multiple GPU 
  Prefer a directive-based Fortran approach 
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NIM NWP Dynamical Core 

  NIM = “Non-Hydrostatic Icosahedral Model” 
  NWP dynamical core prototype 
  Global “cloud-permitting” resolutions < 3km (42 

million columns) 
  32-bit floating-point computations 
  Computations structured as simple vector ops 

with indirect addressing and inner vertical loop 
  “GPU-friendly”, also good for CPU 
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Icosahedral Grid 

450km 
2562 columns 
 
Always 12 
pentagons 
 
Good geometric 
properties 
compared to 
traditional 
latitude/longitude 
grid 
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NIM/FIM Indirect Addressing 
(MacDonald, Middlecoff) 

  Single horizontal index 
  Store number of sides (5 or 6) 

in “nprox” array 
  nprox(34) = 6 

  Store neighbor indices in 
“prox” array  
  prox(1,34) = 515 
  prox(2,19) = 3 

  Place directly-addressed 
vertical dimension fastest-
varying for speed 

  Very compact code 
  Indirect addressing costs <1% 
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Simple Loop With Indirect 
Addressing 

 Compute sum of all horizontal neighbors 
  nip = number of columns 
  nvl = number of vertical levels 

 

xnsum = 0.0 
do ipn=1,nip             ! Horizontal loop 
  do isn=1,nprox(ipn)    ! Loop over edges (sides, 5 or 6) 
    ipp = prox(isn,ipn)  ! Index of neighbor across side “isn” 
    do k=1,nvl           ! Vertical loop 
      xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp) 
    enddo 
  enddo 
enddo  
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  CPU controls high level program flow 
  I/O, message passing, coarse-grained parallelism 

  MPI parallelism via the Scalable Modeling System (SMS) 
  Directive-based 

  GPU performs all computations 
  Fine-grained parallelism 
  Implemented by a GPU compiler 

  Model data is resident on the GPU 
  Invert traditional “GPU-as-accelerator” model 

  Initial data read by the CPU and passed to the GPU 
  Data passed back to the CPU only for output & message-passing 
  Minimizes overhead of data movement between CPU & GPU 
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GPU Software Design Issues 



 Massive fine-grained parallelism 
 GPU “global memory” is slow 

  Need lots of threads to hide memory latency 
  Key trade-off:  number of threads vs. thread 

resources 
 Coalesced loads 

 Multiple memory accesses in one load 
 Adjacent threads must access adjacent data 

  Use unit stride access in loops that will be 
threaded 
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GPU Software Design Issues 



  Reduce branching 
  Code should vectorize well using CPU compilers 

  Redesign algorithms if needed 
  Optimize inter-CPU (MPI) communication 

  Computation time is a much smaller fraction of total run 
time when multiple GPUs are used 

  Overlap communication with computation 
  Use redundant computation to eliminate communication 
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GPU Software Design Issues 
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GPU Fortran Compilers 
  Commercial directive-based compilers 

  CAPS HMPP 2.3.5 
  Generates CUDA-C and OpenCL 
  Supports NVIDIA and AMD GPUs 

  Portland Group PGI Accelerator 11.7 
  Supports NVIDIA GPUs 
  Previously used to accelerate WRF physics 

packages 
 F2C-ACC (Govett, 2008) directive-based 

compiler 
  “Application-specific” Fortran->CUDA-C 

compiler for performance evaluation 
  Other directive-based compilers 

  Cray (beta) 
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Current GPU Compiler 
Limitations 

  Limited support for Fortran language features 
such as modules, derived types 

  Support not yet strong for automatic inlining, 
__device__ routines 

  Both PGI and HMPP prefer “tightly nested 
outer loops” (not a limitation for F2C-ACC) 

12 

! This is OK 
do ipn=1,nip 
  do k=1,nvl 
    <statements> 
  enddo 
enddo 

! This is NOT OK 
do ipn=1,nip 
  <statements> 
  do k=1,nvl 
    <statements> 
  enddo 
enddo 
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Directive Comparison: 
Loops 
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!$hmppcg parallel 
do ipn=1,nip 
!$hmppcg parallel 
 do k=1,nvl 
  do isn=1,nprox(ipn) 
    xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp) 
  enddo 
 enddo 
enddo 

HMPP 

!$acc do parallel 
do ipn=1,nip 
!$acc do vector 
 do k=1,nvl 
  do isn=1,nprox(ipn) 
    xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp) 
  enddo 
 enddo 
enddo 

PGI 
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real :: u(nvl,nip) 
… 
call diag(u, …) 
call vd(u, …) 
call diag(u, …) 
… 
subroutine vd(fin, …) 
… 
subroutine diag(u, …) 
… 

Original 
Code 

Directive Comparison: 
Array Declarations 
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real :: u(nvl,nip) 
!$hmpp map, args[vd::fin;diag1::u;diag2::u] 
… 
!$hmpp diag1 callsite  
call diag(u, …) 
!$hmpp vd callsite  
call vd(u, …) 
!$hmpp diag2 callsite  
call diag(u, …) 
… 
!$hmpp vd codelet 
subroutine vd(fin, …) 
… 
!$hmpp diag1 codelet 
!$hmpp diag2 codelet 
subroutine diag(u, …) 
… 

HMPP 

Directive Comparison: 
Array Declarations 
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!$acc mirror (u) 
real :: u(nvl,nip) 
 
! Must make interfaces explicit via interface  
! block or use association 
include “interfaces.h” 
… 
call diag(u, …) 
call vd(u, …) 
call diag(u, …) 
… 
subroutine vd(fin, …) 
!$acc reflected (fin, …) 
… 
subroutine diag(u, …) 
!$acc reflected (u, …) 
… 

PGI 

Directive Comparison: 
Array Declarations 



5/17/11 

Directive Comparison: 
Explicit CPU-GPU Data Transfers 
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!$hmpp diag1 advancedLoad, args[u] 
… 
!$hmpp diag2 delegatedStore, args[u] 

HMPP 

!$acc update device(u) 
… 
!$acc update host(u) 

PGI 
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Step-Wise Approach to GPU 
Parallelization 

 GPU tools and debuggers are still 
relatively primitive 
  Bugs can be difficult to diagnose 

 Create test cases and establish tolerances 
  Match tolerances observed from CPU 

compiler optimization changes  
 Make small changes and test after each 

  Much easier to find and fix errors 
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  Compare HMPP and PGI output and 
performance with F2C-ACC compiler 
  Use F2C-ACC to prove existence of bugs in 

commercial compilers 
  Use F2C-ACC to prove that performance of 

commercial compilers can be improved 
  Both HMPP and F2C-ACC generate 

“readable” CUDA code 
  Re-use function and variable names from 

original Fortran code 
  Allows straightforward use of CUDA profiler 
  Eases detection and analysis of compiler 

correctness and performance bugs 
5/17/11 

Step-Wise Approach to GPU 
Parallelization 
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Initial Performance Results 

 Optimize for both CPU and GPU 
  Some code divergence 
  Always use fastest code 

 CPU = Intel Nehalem (2.8GHz) or Intel 
Westmere (2.66GHz) 

 GPU = NVIDIA GTX280 “Tesla” or C2050 
“Fermi” 

 Work in-progress… 
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Initial Performance Results 

 Small “G4-L96” test case 
  2562 columns, 96 levels, 50 time steps 

  Fraction of time spent in init/input is 
unrealistically large  

  Large “G5-L96” test case 
  10242 columns, 96 levels, 1000 time steps 
  Newer version of NIM code 

 Update to newer NIM code turned out to 
be non-trivial! 

 Many GPU optimizations remain untried 
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Run Times for Single GPU vs. 
Single Nehalem Core, “G4-L96” 
NIM routine Nehalem 

CPU Time 
(sec) 

F2C-ACC 
Tesla GPU 
Time (sec) 

HMPP Tesla 
GPU Time 

(sec) 

PGI Tesla 
GPU Time 

(sec)* 

Total 106.6 10.8 10.3 -- 
vdmints 50.6 2.5 2.3 4.6 
vdmintv 23.3 0.93 0.99 0.93 

flux 10.4 1.15 1.05 0.43 
vdn 4.6 0.58 0.73 -- 
diag 4.0 0.093 0.085 0.12 

force 3.4 0.11 0.19 0.09 
trisol 2.0 1.9 1.4 -- 

* Note error in paper, speedups erroneously listed for PGI 
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Estimated GFLOPS for GPU and 
Single Nehalem Core “G4-L96” 
NIM 
routine 

Nehalem 
1-core CPU 

GFLOPS 

F2C-ACC 
CUDA-C 

Tesla GPU 
GFLOPS 

HMPP 
Tesla GPU 

GFLOPS 

Computational 
Intensity 

Total 3.2 31 32 1.68 
vdmints 3.8 77 85 1.96 
vdmintv 3.9 99 95 1.85 

flux 2.3 21 23 1.11 
vdn 1.0 9 6 0.89 
diag 1.3 57 62 1.12 

force 1.9 61 35 1.41 
trisol 2.3 2.2 3 1.10 

  Used PAPI performance counters on CPU (GPTL) 
  Estimated ~29% of peak (11.2 GFLOPS) on CPU 23 



Fermi GPU vs. Single/Multiple 
Westmere CPU cores, “G5-L96” 
NIM routine Westmere 

CPU 1-core 
Time (sec) 

Westmere 
CPU 6-core 
Time (sec) 

F2C-ACC 
Fermi GPU 
Time (sec) 

Fermi 
Speedup vs. 
6-core CPU 

(1 socket ea.) 
Total 8654 2068 449 4.6 

vdmints 4559 1062 196 5.4 
vdmintv 2119 446 91 4.9 

flux 964 175 26 6.7 
vdn 131 86 18 4.8 

diag 389 74 42 1.8 
force 80 33 7 4.7 
trisol 119 38 31 1.2 
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“G5-96” with PGI and HMPP 
  HMPP: 

  Each kernel passes correctness tests in 
isolation 

  Run times of individual kernels very close to 
F2C-ACC 

  Unresolved error in “map”/data transfers 
  PGI: 

  Started with PGI 11.7 six days ago 
  Entire model runs but does not pass 

correctness tests 
  Run times of most expensive kernels very 

close to F2C-ACC 
  Data transfers appear to be correct 
  Likely error in one (or more) kernel(s) 
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Ongoing Work With WRF Physics 

  Legacy codes not designed with GPU in 
mind 

 Much more difficult than NIM 
  Initial candidate:  YSU PBL scheme 
 WRF physics (i,k,j) ordering good for 

coalesced loads (Michalakes, others) 
  Must transpose from NIM (k,ipn) 
  Transpose costs appear small 
  Memory may be an issue 
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Early Work With Multi-GPU Runs 

 F2C-ACC + SMS directives 
  Correct results on different numbers of 

GPUs 
  Poor scaling because compute has sped 

up but communication has not 
  Working on communication optimizations 

 Demonstrates that single source code can 
be used for single/multiple CPU/GPU runs 

 Should be possible to mix HMPP/PGI 
directives with SMS too 
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Conclusions 

  Some grounds for optimism 
  Fermi is ~4-5x faster than 6-core Westmere 
  Once compilers mature, expect level of effort 

similar to OpenMP for “GPU-friendly” codes 
like NIM 

  HMPP strengths:  more flexible low-level loop 
transformation directives, user-readable 
CUDA-C 

  PGI strengths: simpler directives for making 
data persist in GPU memory 

  This is still very much a work-in-progress 
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Future Directions 

 Continue to improve GPU performance 
  Tuning options via commercial compilers 
  Test AMD GPU/APUs (HMPP->OpenCL) 

 Address GPU scaling issues 
 Cray GPU compiler 

  Working with beta releases 
  Intel MIC 
 OpenMP extensions? 
 OpenHMPP? 
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Thank You 
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