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Motivation for NOAA GPU 
Investigation 

  Run global NWP and climate models at higher 
resolution with more sophisticated physical 
parameterizations to improve forecast skill 
  Research: shop for FLOPs 
  Operations: technology must be mature 

  Michalakes early GPU work 
  Continue to maintain single source code for all 

desired execution modes 
  Single and multiple CPU 
  Single and multiple GPU 
  Prefer a directive-based Fortran approach 
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NIM NWP Dynamical Core 

  NIM = “Non-Hydrostatic Icosahedral Model” 
  NWP dynamical core prototype 
  Global “cloud-permitting” resolutions < 3km (42 

million columns) 
  32-bit floating-point computations 
  Computations structured as simple vector ops 

with indirect addressing and inner vertical loop 
  “GPU-friendly”, also good for CPU 
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Icosahedral Grid 

450km 
2562 columns 
 
Always 12 
pentagons 
 
Good geometric 
properties 
compared to 
traditional 
latitude/longitude 
grid 
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NIM/FIM Indirect Addressing 
(MacDonald, Middlecoff) 

  Single horizontal index 
  Store number of sides (5 or 6) 

in “nprox” array 
  nprox(34) = 6 

  Store neighbor indices in 
“prox” array  
  prox(1,34) = 515 
  prox(2,19) = 3 

  Place directly-addressed 
vertical dimension fastest-
varying for speed 

  Very compact code 
  Indirect addressing costs <1% 
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Simple Loop With Indirect 
Addressing 

 Compute sum of all horizontal neighbors 
  nip = number of columns 
  nvl = number of vertical levels 

 

xnsum = 0.0 
do ipn=1,nip             ! Horizontal loop 
  do isn=1,nprox(ipn)    ! Loop over edges (sides, 5 or 6) 
    ipp = prox(isn,ipn)  ! Index of neighbor across side “isn” 
    do k=1,nvl           ! Vertical loop 
      xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp) 
    enddo 
  enddo 
enddo  
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  CPU controls high level program flow 
  I/O, message passing, coarse-grained parallelism 

  MPI parallelism via the Scalable Modeling System (SMS) 
  Directive-based 

  GPU performs all computations 
  Fine-grained parallelism 
  Implemented by a GPU compiler 

  Model data is resident on the GPU 
  Invert traditional “GPU-as-accelerator” model 

  Initial data read by the CPU and passed to the GPU 
  Data passed back to the CPU only for output & message-passing 
  Minimizes overhead of data movement between CPU & GPU 
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GPU Software Design Issues 



 Massive fine-grained parallelism 
 GPU “global memory” is slow 

  Need lots of threads to hide memory latency 
  Key trade-off:  number of threads vs. thread 

resources 
 Coalesced loads 

 Multiple memory accesses in one load 
 Adjacent threads must access adjacent data 

  Use unit stride access in loops that will be 
threaded 
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GPU Software Design Issues 



  Reduce branching 
  Code should vectorize well using CPU compilers 

  Redesign algorithms if needed 
  Optimize inter-CPU (MPI) communication 

  Computation time is a much smaller fraction of total run 
time when multiple GPUs are used 

  Overlap communication with computation 
  Use redundant computation to eliminate communication 
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GPU Software Design Issues 
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GPU Fortran Compilers 
  Commercial directive-based compilers 

  CAPS HMPP 2.3.5 
  Generates CUDA-C and OpenCL 
  Supports NVIDIA and AMD GPUs 

  Portland Group PGI Accelerator 11.7 
  Supports NVIDIA GPUs 
  Previously used to accelerate WRF physics 

packages 
 F2C-ACC (Govett, 2008) directive-based 

compiler 
  “Application-specific” Fortran->CUDA-C 

compiler for performance evaluation 
  Other directive-based compilers 

  Cray (beta) 
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Current GPU Compiler 
Limitations 

  Limited support for Fortran language features 
such as modules, derived types 

  Support not yet strong for automatic inlining, 
__device__ routines 

  Both PGI and HMPP prefer “tightly nested 
outer loops” (not a limitation for F2C-ACC) 

12 

! This is OK 
do ipn=1,nip 
  do k=1,nvl 
    <statements> 
  enddo 
enddo 

! This is NOT OK 
do ipn=1,nip 
  <statements> 
  do k=1,nvl 
    <statements> 
  enddo 
enddo 



5/17/11 

Directive Comparison: 
Loops 
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!$hmppcg parallel 
do ipn=1,nip 
!$hmppcg parallel 
 do k=1,nvl 
  do isn=1,nprox(ipn) 
    xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp) 
  enddo 
 enddo 
enddo 

HMPP 

!$acc do parallel 
do ipn=1,nip 
!$acc do vector 
 do k=1,nvl 
  do isn=1,nprox(ipn) 
    xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp) 
  enddo 
 enddo 
enddo 

PGI 
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real :: u(nvl,nip) 
… 
call diag(u, …) 
call vd(u, …) 
call diag(u, …) 
… 
subroutine vd(fin, …) 
… 
subroutine diag(u, …) 
… 

Original 
Code 

Directive Comparison: 
Array Declarations 
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real :: u(nvl,nip) 
!$hmpp map, args[vd::fin;diag1::u;diag2::u] 
… 
!$hmpp diag1 callsite  
call diag(u, …) 
!$hmpp vd callsite  
call vd(u, …) 
!$hmpp diag2 callsite  
call diag(u, …) 
… 
!$hmpp vd codelet 
subroutine vd(fin, …) 
… 
!$hmpp diag1 codelet 
!$hmpp diag2 codelet 
subroutine diag(u, …) 
… 

HMPP 

Directive Comparison: 
Array Declarations 
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!$acc mirror (u) 
real :: u(nvl,nip) 
 
! Must make interfaces explicit via interface  
! block or use association 
include “interfaces.h” 
… 
call diag(u, …) 
call vd(u, …) 
call diag(u, …) 
… 
subroutine vd(fin, …) 
!$acc reflected (fin, …) 
… 
subroutine diag(u, …) 
!$acc reflected (u, …) 
… 

PGI 

Directive Comparison: 
Array Declarations 
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Directive Comparison: 
Explicit CPU-GPU Data Transfers 
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!$hmpp diag1 advancedLoad, args[u] 
… 
!$hmpp diag2 delegatedStore, args[u] 

HMPP 

!$acc update device(u) 
… 
!$acc update host(u) 

PGI 
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Step-Wise Approach to GPU 
Parallelization 

 GPU tools and debuggers are still 
relatively primitive 
  Bugs can be difficult to diagnose 

 Create test cases and establish tolerances 
  Match tolerances observed from CPU 

compiler optimization changes  
 Make small changes and test after each 

  Much easier to find and fix errors 

18 



  Compare HMPP and PGI output and 
performance with F2C-ACC compiler 
  Use F2C-ACC to prove existence of bugs in 

commercial compilers 
  Use F2C-ACC to prove that performance of 

commercial compilers can be improved 
  Both HMPP and F2C-ACC generate 

“readable” CUDA code 
  Re-use function and variable names from 

original Fortran code 
  Allows straightforward use of CUDA profiler 
  Eases detection and analysis of compiler 

correctness and performance bugs 
5/17/11 

Step-Wise Approach to GPU 
Parallelization 
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Initial Performance Results 

 Optimize for both CPU and GPU 
  Some code divergence 
  Always use fastest code 

 CPU = Intel Nehalem (2.8GHz) or Intel 
Westmere (2.66GHz) 

 GPU = NVIDIA GTX280 “Tesla” or C2050 
“Fermi” 

 Work in-progress… 
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Initial Performance Results 

 Small “G4-L96” test case 
  2562 columns, 96 levels, 50 time steps 

  Fraction of time spent in init/input is 
unrealistically large  

  Large “G5-L96” test case 
  10242 columns, 96 levels, 1000 time steps 
  Newer version of NIM code 

 Update to newer NIM code turned out to 
be non-trivial! 

 Many GPU optimizations remain untried 
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Run Times for Single GPU vs. 
Single Nehalem Core, “G4-L96” 
NIM routine Nehalem 

CPU Time 
(sec) 

F2C-ACC 
Tesla GPU 
Time (sec) 

HMPP Tesla 
GPU Time 

(sec) 

PGI Tesla 
GPU Time 

(sec)* 

Total 106.6 10.8 10.3 -- 
vdmints 50.6 2.5 2.3 4.6 
vdmintv 23.3 0.93 0.99 0.93 

flux 10.4 1.15 1.05 0.43 
vdn 4.6 0.58 0.73 -- 
diag 4.0 0.093 0.085 0.12 

force 3.4 0.11 0.19 0.09 
trisol 2.0 1.9 1.4 -- 

* Note error in paper, speedups erroneously listed for PGI 
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Estimated GFLOPS for GPU and 
Single Nehalem Core “G4-L96” 
NIM 
routine 

Nehalem 
1-core CPU 

GFLOPS 

F2C-ACC 
CUDA-C 

Tesla GPU 
GFLOPS 

HMPP 
Tesla GPU 

GFLOPS 

Computational 
Intensity 

Total 3.2 31 32 1.68 
vdmints 3.8 77 85 1.96 
vdmintv 3.9 99 95 1.85 

flux 2.3 21 23 1.11 
vdn 1.0 9 6 0.89 
diag 1.3 57 62 1.12 

force 1.9 61 35 1.41 
trisol 2.3 2.2 3 1.10 

  Used PAPI performance counters on CPU (GPTL) 
  Estimated ~29% of peak (11.2 GFLOPS) on CPU 23 



Fermi GPU vs. Single/Multiple 
Westmere CPU cores, “G5-L96” 
NIM routine Westmere 

CPU 1-core 
Time (sec) 

Westmere 
CPU 6-core 
Time (sec) 

F2C-ACC 
Fermi GPU 
Time (sec) 

Fermi 
Speedup vs. 
6-core CPU 

(1 socket ea.) 
Total 8654 2068 449 4.6 

vdmints 4559 1062 196 5.4 
vdmintv 2119 446 91 4.9 

flux 964 175 26 6.7 
vdn 131 86 18 4.8 

diag 389 74 42 1.8 
force 80 33 7 4.7 
trisol 119 38 31 1.2 
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“G5-96” with PGI and HMPP 
  HMPP: 

  Each kernel passes correctness tests in 
isolation 

  Run times of individual kernels very close to 
F2C-ACC 

  Unresolved error in “map”/data transfers 
  PGI: 

  Started with PGI 11.7 six days ago 
  Entire model runs but does not pass 

correctness tests 
  Run times of most expensive kernels very 

close to F2C-ACC 
  Data transfers appear to be correct 
  Likely error in one (or more) kernel(s) 
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Ongoing Work With WRF Physics 

  Legacy codes not designed with GPU in 
mind 

 Much more difficult than NIM 
  Initial candidate:  YSU PBL scheme 
 WRF physics (i,k,j) ordering good for 

coalesced loads (Michalakes, others) 
  Must transpose from NIM (k,ipn) 
  Transpose costs appear small 
  Memory may be an issue 
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Early Work With Multi-GPU Runs 

 F2C-ACC + SMS directives 
  Correct results on different numbers of 

GPUs 
  Poor scaling because compute has sped 

up but communication has not 
  Working on communication optimizations 

 Demonstrates that single source code can 
be used for single/multiple CPU/GPU runs 

 Should be possible to mix HMPP/PGI 
directives with SMS too 
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Conclusions 

  Some grounds for optimism 
  Fermi is ~4-5x faster than 6-core Westmere 
  Once compilers mature, expect level of effort 

similar to OpenMP for “GPU-friendly” codes 
like NIM 

  HMPP strengths:  more flexible low-level loop 
transformation directives, user-readable 
CUDA-C 

  PGI strengths: simpler directives for making 
data persist in GPU memory 

  This is still very much a work-in-progress 
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Future Directions 

 Continue to improve GPU performance 
  Tuning options via commercial compilers 
  Test AMD GPU/APUs (HMPP->OpenCL) 

 Address GPU scaling issues 
 Cray GPU compiler 

  Working with beta releases 
  Intel MIC 
 OpenMP extensions? 
 OpenHMPP? 
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Thank You 
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