Proposed API in support Fault Tolerance in MPI

MPI-3 Fault Tolerance Working Group

October 16, 2009

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

Contents

0.1 Introduction ii
0.1.1 Assumptionso ii
0.2 Initializing Fault Tolerance Support iii
0.3 Checking the State of a Communicator v
0.4 Restoring a Process or a Communicator vi
0.4.1 Return Status. L L vii
0.4.2 Who’s on first and what’s on second ix
0.5 Callback functions L ix
0.6 Supplement X
0.6.1 The Dynamic Process Model X
0.6.2 PVM discussion e xi
0.6.3 Fortran Issues. xi
0.6.4 General xi
References e xiii
Index e xiii
0.1 Introduction

This chapter introduces MPI features that support the development of fault tolerant appli-
cations. Fault tolerant actions described herein are constrained to that which is directly
under the control of MPI. Thus, for example, recovery of lost data is not the responsibil-
ity of MPI. We refer the reader to [3, 2] for further information on writing fault tolerant
applications using the features described in this chapter.

0.1.1 Assumptions

Support for fault tolerance is incorporated into MPI under the following assumptions:

e Backward compatibility is required.

e Errors are associated with specific call sites.

An application may choose to be notified when an error occurs anywhere in the system.

An application may ignore failures that do not impact its MPI requests.

e An MPI process may ignore failures that do not impact its MPI requests’.

!The user should understand the potential for unsatisfied requests caused by dependency chains of com-
munication among processes.

ii

e An application that does not use collective operations will not require collective re-
covery.

The behavior of several MPI procedures will be different from those provided by non-
fault tolerant implementations. For example, MPI_ABORT will only terminate the specified
communicator. An MPI process rank within a communicator must not change, and thus
MPI_COMM_SIZE and MPI_COMM_RANK must return the values as determined upon
communicator instantiation, regardless of whether or not the communicator has lost pro-
cesses. This implies, among other things, that processes removed from further participation
in the communicator as part of a fault tolerance recovery process will be included in the
size, assigned rank MPI_PROC_NULL.

A correct fault tolerant implementation of MPI requires that all procedures complete
in some bounded time, including those defined as blocking. This requires, among other
things, the ability to distinguish between failure and late arrival. As with any MPI non-
blocking procedure, non-blocking fault tolerance procedures must be completed, using any
of the (appropriate) procedures, such as MPI_WAIT, MPI_TEST, MPI_CANCEL, or their
respective variants.

Three key terms capture the fault tolerance capabilities of MPI as they relate to a
user application. In order to maintain general execution, MPl may recover a failed process.
However, that process is not available to the calling program until that program restores or
rejoins the process to a communicator.

Rationale. Recovery of a failed process may occur without user knowledge, while
restoring or rejoining the process for participation in the application program requires
user participation. Another view is that recover is an action, restore is a state, and
rejoin is a trait. (End of rationale.)

0.2 Initializing Fault Tolerance Support

The fault tolerance policy of a communicator and its member processes by MPI is specified
by attaching attributes to the communicator using MPI_COMM_SET_ATTR. The following
attributes are supported:

MPI_COMM_RESTORE_STRATEGY Specifies the restoration policy for a given communi-
cator. Options are:
e MPI_NO_RESTORE (default)
e MPI_RESTORE
MPI_RANK_RESTORE_STRATEGY Specifies the restoration policy for a set of ranks. Input

is an integer array, the first element of which is the number of ranks, followed by the
list of ranks. Options are:

e MPI_NO_RESTORE (default)
e MPI_RESTORE

MPI_RESTORE_THRESHOLD_COUNT The required minimum size of the recovered com-
municator. If MPI is unable to recover the communicator to this size, an error will be
returned. The default is all processes.

iii

MPI_RESTORE_THRESHOLD_PERCENT The required minimum size of the recovered com-
municator, as a percent of its original size. If MPI is unable to recover the communi-
cator to this size, an error will be returned. The default is all processes.

Discussion. Rainer: This is somewhat clunky (apart from rounding errors), and
with MPI_RESTORE_THRESHOLD_COUNT all should be said and done. (End
of discussion.)

MPI_PROC_RESTORE_POLICY The policy for recovering failed processes.

e MPI_RESTORE_ALL: Attempt to recover all failed processes.
e MPI_RESTORE_SOME: Attempt to recover as many failed processes as possible.
e MPI_RESTORE_NONE: Do not recover any failed processes. (Default)

MPI_RESTORE_FN User defined function to be called by MPI immediately prior to return-
ing from a communicator recovery procedure, providing a means for user participation
in the recovery process. The default is NULL.

MPI_RESTORE_ALL_FN User defined function to be called by MPI immediately prior to
returning from a collective communicator recovery procedure, providing a means for
user participation in the collective recovery process. The default is NULL.

Discussion. Rainer: Why the distinction of collective and single-proc recovery
callback functions? (End of discussion.)

MPI_ERROR_REPORTING_FN User defined function to be called by MPl immediately prior
to returning from an MPI procedure that has encountered an error. Provides a means
for application specific error reporting. The default is NULL.

MPI_ERROR_NOTIFICATION Specifies the communicator failure notification policy.

e MPI_LOCAL_NOTIFICATION: Notify only processes directly impacted by the
failure.

e MPI_GLOBAL_NOTIFICATION: Notify all processes of the failure. (Default)

MPI_DISCARD_PENDING_MESSAGES Specifies what to do with outstanding communica-

tion when process failure occurs.

e MPI_DISCARD_FAILED_PROCS: Discard only traffic associated with the failed
process.

e MPI_DISCARD_ALL: Discard all traffic associated with the communicator. (De-
fault)

Rationale. The default settings are intended to produce the same behavior as would
a non-fault tolerant MPI implementation. Therefore, the user must explicitly attach
attributes to communicators in order to enable a fault tolerant capability. (End of
rationale.)

v

0.3

Checking the State of a Communicator

A program may query for the state of a communicator.

MPI_COMM_VALIDATE(comm, failed_rank_count, failed_ranks, return_code)

IN comm communicator (handle)

ouT failed_rank_count number of failed ranks in communicator (integer)
ouT failed_ranks array of failed ranks (integer)

ouT return_code return error code(integer)

Validation of the communicator. Upon return, a value other than 0 for failed_rank_count

indicates the number of failed ranks in the communicator. This is a collective call.

Advice to users. Collective operations require that all participants receive the same
values. However, it must be well-understood that it uses a phased system such that
the result of the call s based on the callers’ states prior to the call or at the start of
the call but with the understanding that the results are not guaranteed to be accurate
at the return of the call. (End of advice to users.)

MPI_COMM_IVALIDATE(comm, failed_rank_count, failed_ranks, request, return_code)

IN comm communicator (handle)

ouT failed_rank_count number of failed ranks in communicator (integer)
ouT failed_ranks array of failed ranks (integer)

ouT request request (handle)

ouT return_code return error code(integer)

Start a nonblocking validation of the communicator. This is a collective operation.

These calls allocate a communication request object and associate it with the request handle
(the argument request). The request can be used later to query the status of the commu-
nication or wait for its completion. A nonblocking call indicates that the system may start
writing data into the failed_rank_count, failed_ranks buffer. However, the calling process
should not access any part of the receive buffer after a nonblocking operation is called,
until the operation completes as indicated by the successful return form an appropriate
completion call.

Rationale. MPI behaves as if all communicators are intact. A process will only
recognize a problem when it attempts to engage to communicate with a process.
(End of rationale.)

Discussion. Rainer: Per the Rationale Processes either are notified, or when they
communicate with another process. So, what does MPI_COMM_VALIDATE tell us?
Immediately after returning from the function, a process may have died, anyway,
right? Not sure who inserted this note: Need to update the status object for returned
information. (End of discussion.)

Here is the caution from MPI 2.2 wrt MPI_Irecv. Inserting here in case an analogous
situation is an issue here?:

Adwvice to users. 'To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “Problem with Register Opti-
mization” in Section 16.2.2 on pages 482 and 485. (End of advice to users.)

0.4 Restoring a Process or a Communicator

The MPI implementation may recognize and perhaps recover a lost process or communicator
for its own purposes. However, the communicator or process is not available to the user
program until a procedure restores the communicator to a valid state or the process joins a
valid communicator.

MPI_COMM_RESTORABLE(comm_names, count, return_code)

ouT comm_names array of communicators that may be recovered (strings)

ouT count the number of communicators that may be recovered
(integer)

ouT return_code return error code(integer)

Returns a list of communicators that have been assigned an attribute that permits
restoration in case of a fault. By default, will restore MPI_COMM_WORLD within the
local view as well as MPI_COMM_SELF and MPI_COMM_NULL. The (user defined) strings
returned by the procedure may be used to rejoin the failed communicators.

Discussion. rbarrett: How is this name assigned? Not in the current list of attributes.

Also, why is it needed? Actually I no longer know what I'm questioning :) (End of
discussion.)

MPI_COMM_REJOIN(comm_names, comm, return_code)

IN comm_names communicator name (string)
ouT comm communicator (handle)
ouT return_code return error code(integer)

The calling process is re-associated with the input communicator using local recovery
properties. Upon return it may participate in point-to-point communication within the
communicator, but unless and until the communicator is fully restored, collective commu-
nication involving the communicator will not be valid.

vi

MPI_COMM_RESTORE(ranks_to_restore, ft_status, return_code)

IN ranks_to_restore array of ranks to restore
ouT ft_status ft_status object
ouT return_code return error code(integer)

The blocking version of the process restoration procedure. The union of the requests
across all ranks will be restored. Setting an element to MPI_COMM_NULL signifies that
the calling process does not require the restoration of any processes in the communicator.

Advice to implementors. It is the responsibility of the MPIl implementation to ensure
that only a single instance of a given process exists at a given point in time. It must
ensure that requests to restart a healthy process or multiple requests to restart the
same process do not result in an internally inconsistent MPI state. This procedure is
called by a surviving process that detects process failure. It is local in scope, and thus
restores local communications (point-to-point, one-sided, data-type creation, etc.),
but not collective communications. (End of advice to implementors.)

0.4.1 Return Status

(See MPI_Irecv discussion in existing spec. I've inserted placeholders, e.g. X and Y for
illustrative purposes only.)

If multiple requests are completed by a single MPI function (see Section 3.7.5 [FIXME:
Need latex link]), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_COMM_RESTORE. The type of
status is MPIl-defined. Status variables need to be explicitly allocated by the user, that
is, they are not system objects. In C, status is a structure that contains N fields named
X, Y, ..., and MPI_ERROR; the structure may contain additional fields. Thus, status.MPI_X,
status.MPI_Y and status.MPI_ERROR contain the z, y, and error code, respectively, of the
... In Fortran, status is an array of INTEGERs of size MPI_FT_STATUS_SIZE. The constants
MPI_X, MPI_Y and MPI_ERROR are the indices of the entries that store the source, tag
and error fields. Thus, status(MPI_X), status(MPI_Y) and status(MPI_ERROR) contain,
respectively, the x, y, and error code of the restoration procedure.

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 [FIXME:
Need latex link] which return multiple statuses. The field is updated if and only if such
function returns with an error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure.

The status argument may also return other information. However, this information is
not directly available as a field of the status variable and a call to MPI_GET_COUNT
is required to “decode” this information. (This could refer to an as yet undefined
function for retrieving such information.) (End of rationale.)

vii

MPI_COMM_RESTORE_ALL(ranks_to_restore, request, return_code)

IN ranks_to_restore array of ranks to restore
ouT request request object (handle)
ouT return_code return error code(integer)

The collective blocking version of the process restoration procedure.

MPI_COMM_IRESTORE(ranks_to_restore, request, return_code)

IN ranks_to_restore array of ranks to restore
ouT request request object (handle)
ouT return_code return error code(integer)

The non-blocking version of the process restoration procedure.

MPI_COMM _IRESTORE_ALL(ranks_to_restore, request, return_code)

IN ranks_to_restore array of ranks to restore
ouT request request object (handle)
ouT return_code return error code(integer)

The collective non-blocking version of the process restoration procedure.

MPI_COMM_PROC_GEN(comm, generation, return_code)

IN comm communicator (handle)
ouT generation process generation (integer)
ouT return_code return error code (integer)

If restored by MPI fault tolerance capabilities, the process generation is incremented
by one. (The initial generation is zero.)

MPI_COMM_GEN(comm, generation, return_code)

IN comm communicator (handle)
ouT generation communicator generation (integer)
ouT return_code return error code (integer)

If restored by MPI fault tolerance capabilities, the communicator generation is incre-
mented by one. (The initial generation is zero.)

Discussion. Rainer: The following section must probably properly integrated... (End
of discussion.)

viii

0.4.2 Who's on first and what's on second

Text copied from status var discussion. I don’t know what to call the structs, so I've inserted
placeholders as defined by Abbott and Costello.

For convenience, a rank and its communicator are coupled in two MPI defined variables
used in the procedures in this section. These variables are not system objects, and therefore
must be explicitly allocated by the user.

In C, Whos_on_first is a structure that contains two fields named MPI_COMM and
MPI_RANK. Thus, Whos_on_first. MPI_RANK and Whos_on_first. MPI_COMM contain the
rank and its communicator, respectively. The structure may contain additional fields for
internal use by MPI, but the user should ignore them since they are not standardized.

In Fortran, Whos_on_first is an array of INTEGERs of size MPI_XYZ_SIZE. The con-
stants MPI_COMM and MPI_RANK are the indices of the entries that store the communi-
cator and rank fields. Thus, Whos_on_first(MPI_RANK) and Whos_on_first(MPI_COMM)
contain the rank and its communicator, respectively.

The result of the procedure is also reported using an MPI variable, named Whats_on_second.
The fields are the same as Whos_on_first, with the addition of return_code, used to report
the status of the procedure with regard to a specific rank in a communicator.

Rationale. Programmer convenience. (End of rationale.)

0.5 Callback functions

These callback functions provide the user a means for supplementing MPI recovery actions.

void(*MPI_COMM_ERROR_REPORT_FN) (comm, error_code, data)

IN comm communicator (handle)
IN error_code Error code as returned by failing rouine (integer)
IN data error description (void *)

Mechanism for increased error reporting. Error codes include:

e MPI_ERROR_RESTORED: As part of the recovery process, the library will invoke
the local recovery function set by the MPI application at communicator creation.
Only process local work, MPI and other, will be done within this user defined recov-
ery function. In addition, the MPI library will discard any outstanding communica-
tion with the failed process, and reinitialize communications with the newly restored
ranks. MPI_WAIT and MPI_TEST: calls made on MPI_REQUEST objects associ-
ated with the restored process and that were initialized before recovery will return
MPI_ERROR_RESTORED, with the request object reset to MPI_REQUEST _NULL.

Discussion. rbarrett: I don’t understand this description as it related to this
parameter. It sounds more like a general description of what happens during
recovery: (End of discussion.)

X

e MPI_ERROR_PROC_FAILED: Indicates process failure. Returned information includes
the communicator and rank information. Local error notification returns only those
ranks associated with the affected communicator. Global error notification returns
information regarding all communicators for which the rank is a member.

Discussion. rbarrett: Don’t know what this means: Fach failed process will be
reported with all communicators in use, giving it’s appropriate rank within each
such communicator. (End of discussion.)

Discussion. Rainer: In the above, what is e.g. the error_code being passed? Is it only
these two values? I'd rather think, these are two new error values being specified in
the possible list of error-values. (End of discussion.)

void(*MPI_COMM_RESTORE_FN) (comm)

IN comm communicator (handle)

Invoked prior to return from MPI_COMM_RESTORE or MPI_COMM_IRESTORE.

void(*MPI_COMM_RESTORE_ALL_FN) (comm)

IN comm communicator (handle)

Collective version of MPI_COMM_RESTORE_FN. That is, called prior to return from
MPI_COMM_RESTORE_ALL or MPI_COMM_IRESTORE_ALL.

Advice to users. This callback function is invoked by the MPI library right before
the library returns from the local repair functions. This provides the application with
a way to invoke communicator specific code on recovery, supporting layered library
recovery. (End of advice to users.)

0.6 Supplement

This section contains information that may be relevant across other areas of the full MPI
specification in order to effectively support the fault tolerance capabilities under consider-
ation.

0.6.1 The Dynamic Process Model

Section 10.2 of the MPI 2.2 specification[1] describes the mechanism that allows the user to
create and terminate processes within a communicator. It includes strong cautions regarding
the runtime environment, and includes an example of the issues associated with a batch
queueing system. For example, the 2.2 spec states, “It provides a mechanism to establish
communication between the newly created processes and the existing MPI application.” The
FT text should adhere to this style of description since F'T adheres to this concept. e.g.
“newly created” and “recovered” and “restored” are related ideas.

I’'m placing the “Advice to Users” here for convenience, but it will move to the FT
section. We should ensure a smooth relationship between these two ideas (i.e. dynamic
processes and FT).

Advice to users. An MPI application configured for fault tolerance must include
mechanisms for operating within the context of its specific runtime environment. For
example... (End of advice to users.)

But we must still maintain a separation with the dynamic process section in order to
avoid confusion. That is, F'T is responsible for spawning new processes whereas dynamic
processes gives this responsibility to the user. Hmmm, sounds like another “Advice to
Users” blurb.

0.6.2 PVM discussion

The examples in this section are general, referring to a “batch queueing system”, “Network
of workstations managed by a load balancing system”, and a “large SMP with Unix”. The
exception to this generality is “Network of workstations with PVM”. Yet the current text
includes a discussion of the issues associated with such a runtime system, e.g. “It does not
provide “operating system” services, such as a general ability to query what processes are
running, to kill arbitrary processes,to find out properties of the runtime environment (how
many processors, how much memory, etc.).”

At the risk of incurring the wrath of PVM fans (of which I am one), I will ask: Should
this direct reference be eliminated from the MPI 3 spec? 1 would argue yes, but am certainly
open to alternative views. (Further evidence for elimination: Condor is not called out under
“managed by a batch queueing system”, yet Condor may be more in use than PVM (and
forms the basis of load leveler?) Stop digging, Barrett...

This then leads into a more general notion of the PVM-like functionality within the
spec, and for example should be considered within the context of other areas, such as the
buffered send. Is this in use?

0.6.3 Fortran Issues

Throughout the document I notice qualifiers with regard to Fortran. For example, in the
MPI_Irecv section:

Advice to users. To prevent problems with the argument copying and register optimiza-
tion done by Fortran compilers, please note the hints in subsections “Problems Due to Data
Copying and Sequence Association” and “Problem with Register Optimization” in Section
16.2.2 on pages 482 and 485. (End of advice to users.)

No doubt intruding in the business of that working group, but if it affects MPI_lrecv is
probably affects FT, e.g. MPI_Comm_ivalidate. Just a heads up.

0.6.4 General

Discussion of request handle p52, MPI 2.2: “The request can be used later to query the
status of the commumnication or wait for its completion.” This is in the discussion of
the non-blocking receive, but it applies to any use of a request handle. Shouldn’t this
be a stronger statement? That is, the request can be used to query, butmust be used
to complete the operation. I’ll bet this has been discussed, so presume there is a good

x1

reason for the language. But it also seems to me that failure to complete a request is
a “bug” in an application.

xii

Bibliography

[1] MPI Forum. MPI : A Message Passing Interface Standard, version 2.2. http: // www.
mpi-forum. org/ docs/mpi22-report. pdf, 2009. 0.6.1

[2] Richard L. Graham, Richard Barrett, Greg Bronevetsky, FErez Haba, Gregory
Koenig, Hideyuki Jitsumoto, Thomas Herault, Joshua Hursey, Adam Moody, Kannan
Narasimhan, Howard Pritchard, and David Solt. Creating Fault Tolerant Applications
Using MPI. In preparation. 0.1

[8] Richard L. Graham, Richard DBarrett, Greg Bronevetsky, Erez Haba, Gregory
Koenig, Hideyuki Jitsumoto, Thomas Herault, Joshua Hursey, Adam Moody, Kannan
Narasimhan, Howard Pritchard, and David Solt. Towards support for fault tolerance in
the mpi standard. In preparation. 0.1

xiii

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.mpi-forum.org/docs/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi22-report.pdf

	Introduction
	Assumptions

	Initializing Fault Tolerance Support
	Checking the State of a Communicator
	Restoring a Process or a Communicator
	Return Status
	Who's on first and what's on second

	Callback functions
	Supplement
	The Dynamic Process Model
	PVM discussion
	Fortran Issues
	General

	References
	Index

