
Proposed API in support Fault Tolerance in MPI

MPI-3 Fault Tolerance Working Group

February 20, 2009

February 20, 2009

0.1 Introduction

Here is the list of assumptions used in creating the specification for Fault Tolerance Support
in MPI:

• Existing MPI codes will run unmodified in the presence of MPI support for Fault
tolerance

• Applications may choose to continue running if the failure does not impact MPI’s
ability to satisfy application MPI requests

• An application my choose not to know about failures that do not directly affect a
given process. Here the dangers are similar to posting a pair of processes each posting
a blocking send - a failure in a chained set of communications could cause a process
to wait indefinitely on a message that may never arrive.

• Errors are specifically associated with specific call sites.

• An application may choose to be notified when an error occurs somewhere in the
system.

• Applications not using collective operations do not require collective recovery.

0.2 Initializing Fault Tolerance Support in MPI

The communicator attributes mechanism will be used to specify predefined attributes that
are used to manage the communicator recovery process. Specifying these at communicator
construction would be preferred, but this would require changing the communicator con-
struction API. MPI_COMM_SET_NAME() is used to attach a name to a communicator.

The list of supported parameters include:

MPI_COMMUNICATOR_RECOVER Defines if MPI should attempt to restart the
failed communicator. Possible values:

• MPI_NO_RECOVER (default)

• MPI_RECOVER

MPI_CRITICAL_PROCS This includes the list of ranks that if failed, no recovery
should be attempted. The first item in the array is the number of entries, followed by
the list of ranks.

MPI_RECOVERY_THRESHOLD_PERCENT This parameter defines the minimum
size of the recovered communicator, as a percent of the original communicator size.
If MPI is unable to restore this minimal count, an error should be returned.

ii

asupalov
Cross-Out

asupalov
Replacement Text
may

asupalov
Cross-Out

asupalov
Cross-Out

asupalov
Highlight

asupalov
Inserted Text
MPI_Init is a collective op. Please clarify.

asupalov
Cross-Out

asupalov
Replacement Text
applications

asupalov
Cross-Out

asupalov
Replacement Text
An MPI application

asupalov
Comment on Text
MPI

asupalov
Comment on Text
MPI

asupalov
Highlight

asupalov
Inserted Text
Better split this in two attributes, like MPI_CRITICAL_PROC_COUNT and MPI_CRITICAL_PROC_LIST or so.

asupalov
Comment on Text
Specify format - integer or floating point.

MPI_RECOVERY_THRESHOLD_COUNT This parameter defines the minimum size
of the recovered communicator, as a count. If MPI is unable to restore this minimal
count, an error should be returned.

MPI_PROC_RESTORATION_POLICY The policy to be used in restoring failed pro-
cesses.

• MPI_RESTORE_ALL - restore all failed processes (default)

• MPI_RESTORE_SOME - restore as many failed processes as possible

• MPI_RESTORE_NONE - do not restore any failed processes

MPI_ERROR_REPORTING_FN User defined function to be called before returning
from an MPI call used by the application to save error data.

MPI_RECOVERY_FN User defined function to be called by MPI right before the com-
municator recovery function returns. This provides the caller an opportunity to run
user-defined code as part of the recovery process.

MPI_COLL_RECOVERY_FN User defined function to be called by MPI right before
the communicator collective recovery function returns. This provides the caller an
opportunity to run user-defined code as part of the recovery process.

MPI_GLOBAL_ERROR_NOTIFICATION Specifies if all processes in the commu-
nicator should be notified when any process in the communicator fails.

• MPI_LOCAL_NOTIFICATION - notify only processes directly impacted by the
failure.

• MPI_GLOBAL_NOTIFICATION - notify all processes on failure.

MPI_DISCARD_PENDING_MESSAGES Specifies what to do with outstanding com-
munication when process failure occurs.

• MPI_DISCARD_FAILED_PROCS - discard only traffic associated with the failed
process

• MPI_DISCARD_ALL - discard all traffic associated with the communicator

0.3 Restoring MPI Processes

MPI_RESTORED_PROCESS(generation, return_code)

OUT generation Process generation (integer)

OUT return_code return error code (integer)

This function is used to figure out what generation the current process is for the local
MPI process. Each MPI process starts at generation zero. The return value for generation
is a local value, strictly with local meaning.

iii

MPI_GET_LOST_COMMUNICATORS(comm_names, count, return_code)

OUT comm_names Array of communicators that may be restored (strings)

OUT count Number of Communicators that may be restored (in-
teger)

OUT return_code return error code(integer)

This function returns a list of communicators that the application may choose to re-
store. The strings provided are those set on the communicator with MPI_COMM_SET_NAME.
The library will, by default, restore MPI_COMM_WORLD within the local view as well as
MPI_COMM_SELF and MPI_COMM_NULL. The (user defined) strings returned by the
routine may be used to rejoin the failed communicators.

MPI_COMM_REJOIN(comm_names, comm, return_code)

IN comm_names Communicator name (string)

OUT comm communicator (handle)

OUT return_code return error code(integer)

This function rejoins the local rank to the specified communicator, with local recov-
ery properties. When the call returns, the communicator may be used for point-to-point
communications.

0.4 Communicator Restoration

recover_rank {
comm communicator
int rank

}

recovery_result {
comm communicator
int rank
int result

}

MPI_COMM_IRECOVER(ranks_to_restore, request, return_code)

IN ranks_to_restore array of ranks to restore (struct)

OUT request request object (handle)

OUT return_code return error code(integer)

This routine issues a non-blocking request to restored a list of processes. It is the
responsibility of the MPI implementation to ensure that only a single instance of a given

iv

asupalov
Cross-Out

asupalov
Highlight

asupalov
Inserted Text
Should be two arguments - count and an array, in line with the rest of MPI. Think Fortran.

asupalov
Highlight

asupalov
Inserted Text
Why not an array of requests? One for each process to be restored.

asupalov
Highlight

asupalov
Inserted Text
Explain difference from MPI_COMM_IRECOVER.

process exists at a given point in time. It must ensure that requests to restart a healthy pro-
cess or multiple requests to restart the same process do not result in the MPI implementation
getting into an internally inconsistent state. This routine is called by a surviving process
that detects process failure, and is strictly local in nature. It restores local communications
(point-to-point, one-sided, data-type creation, etc), but not collective communications.

note !!! Need to update the status object, so it can be interrogated for the results of
the process recovery operation.

MPI_COMM_RECOVER(ranks_to_restore, result, return_code)

IN ranks_to_restore array of ranks to restore (struct)

OUT result array of recovery results (struct)

OUT return_code return error code(integer)

This routine is the blocking version of the process recovery function.

MPI_COMM_IRECOVER_COLLECTIVE(ranks_to_restore, request, return_code)

IN ranks_to_restore array of ranks to restore (struct)

OUT request request object (handle)

OUT return_code return error code(integer)

This routine initiates asynchronous collective communicator recovery. All ranks (sur-
viving and restored) in the recovered communicator must participate in this recovery by
making a call to this function. If no process are to be restored, a single entry with rank
MPI_COMM_NULL must be specified, with the union of the requests made by all ranks
specifying the list of processes that will be restored.

MPI_COMM_RECOVER_COLLECTIVE(ranks_to_restore, request, return_code)

IN ranks_to_restore array of ranks to restore (struct)

OUT request request object (handle)

OUT return_code return error code(integer)

This routine initiates the synchronous collective communication recovery process. Since
this is a blocking collective calls, callers must ensure correct call ordering in each rank to
avoid deadlock.

v

asupalov
Highlight

asupalov
Inserted Text
Will this restore collective communications?

0.5 Check Communictor State

MPI_COMM_VALIDATE(comm, failed_process_count, failed_ranks, return_code)

IN comm communicator (handle)

OUT failed_process_count number of failed ranks in communicator (integer)

OUT failed_ranks array of failed ranks (integer)

OUT return_code return error code(integer)

This blocking routine is used to check the state of the communicator, and is a collective
call. The implementation must be cognizant of the fact due to process failure, not all ranks
may be able to call this routine due to process failure, and still complete in a bounded
amount of time. The MPI implementation must distinguish between process failure and
late arrival of some ranks, due to caller timing issues.

MPI_COMM_IVALIDATE(comm, request, return_code)

IN comm communicator (handle)

OUT request request (handle)

OUT return_code return error code(integer)

Asynchronous version of he communicator validation routine.
Note !!! Need to update the status object for returned information.

0.6 Call back functions

void(*MPI_COMM_ERROR_REPORT_FN) (comm, error_code, data)

IN comm communicator (handle)

IN parameter error_code (integer)

IN data error description (void *)

For backward compatibility, the return code from MPI functions must remain an inte-
ger, rather than a structure containing the error description. This function will be called
within the context of the caller, letting the caller manage the returned error description like
it would manage data from a returned in an error data structure. The list of added error
codes includes:

MPI_ERROR_RECOVERED As part of the recovery procedure, the library will in-
voke the local recovery function set by the MPI application at communicator cre-
ation. Only process local work, MPI and other, will be done within this user defined
recovery function. In addition, the MPI library will discard any outstanding com-
munication with the failed process, and reinitialize communications with the newly

vi

asupalov
Highlight

asupalov
Inserted Text
Timeout value?

asupalov
Highlight

asupalov
Inserted Text
Please provide example. It's unclear what this function is for.

restored ranks. MPI_Wait() and MPI_Test() calls made on MPI_Request objects as-
sociated with the restored process and that were initialized before recovery will return
MPI_ERROR_RECOVERED, with the request object reset to MPI_REQUEST_NULL.

MPI_ERROR_PROC_FAILED This error code indicates that a process failure has
been detected. The returned error information includes the communicator and rank
information. If error notification is requested only at the affected call sites, this will
return only the ranks associated with the communicator being used. With global error
notification, information will be returned for all communicators in use by the given
rank. Each failed process will be reported with all communicators in use, giving it’s
appropriate rank within each such communicator.

void(*MPI_COMM_RECOVERY_FN) (comm)

IN comm communicator (handle)

This callback function is invoked by theMPI library right before the library returns from
the local repair function MPI_COMM_RECOVER() or MPI_COMM_IRECOVER(). This provides
the application with a way to invoke communicator specific code on recovery. The intent is
intended as support for layered library recovery.

void(*MPI_COMM_COLLECTIVE_RECOVERY_FN) (comm)

IN comm communicator (handle)

This callback function is invoked by theMPI library right before the library returns from
the collective repair function MPI_COMM_RECOVER_COLLECTIVE() or MPI_COMM_IRECOVER_COLLECTIVE().
This provides the application with a way to invoke communicator specific code on recovery.
The intent is intended as support for layered library recovery.

vii

	Introduction
	Initializing Fault Tolerance Support in MPI
	 Restoring MPI Processes
	Communicator Restoration
	Check Communictor State
	Call back functions

