Process failure – Use case scenario

Use case: N process MPI job looses a process m

Need to decide if the error is one that should be recovered from or not. Failure due to hardware error may be one that should be recovered from, but one may not want to recover from a segv in the user application.

Lets assume that the failure is one that should be recovered from, and all the communication “channels” with process m are lost – i.e. we have a symptom of a failed process. The goals are:

Discard all traffic associated with process m, on the send and receive sides

Outstanding point-to-point communications with process m return an error code

Decide how to restore the affected communicators, if to reduce the size of the communicator, or try and regenerate the lost process

Implement the changes to the communicator

Restart the communicator

One of the big questions is how do we handle recovery – is this a local event (uncoordinated from the MPI perspective), or a global event. If recovery is a global event, is this triggered at each process immediately, or do we wait for a communications even to enter the recovery process.
Given that applications want to handle both coordinated and uncoordinated recovery, it seems to me like we can’t enforce the API to be collective. Here it is important to distinguish between what happens at the MPI layer, and what the run-time may actually do.

If we define failure to be a local event by default, with synchronous local notification, i.e., on return from a failed process, and let the application subscribe to a global notification event by all the mpi processes in the failed communicators, if a form of coordinated recovery is desired. A question is how does notification occur? There appear to be two options:

 - “Immediate” and asynchronous
 - synchronous and delayed – i.e. at the next mpi call. Potential for large time delay in recovery, but recovery happens only when communications are actually needed.

Point-to-Point communications during failure scenario:

 mpi_isend()

 recovery() // either async or sync

 wait() // matching the isend

what is the expected behavior ? Will the wait() be expected to fail ? Seems to make sense.

Recovery from failure, when failure has occurred while collective communications are active, is a bit more detailed, as by default, there is a chance that different collectives will complete with different results:

· All the surviving procs complete successfully

· Some of the surviving procs complete successfully, while others detect an error.

· All the surviving procs complete with error

Should all surviving processes be notified of the failure? There are several factors affecting a decision here:

· Availability of collective data for completion of the collective if the failed process is restored. This should be the responsibility of the collective algorithm. It should not make the user buffer available for re-use (i.e. return from the blocking collective) unless the data is no longer needed by any other process, and is really an implementation issue

· Decisions that need to be made based on the error return codes, and whether or not all procs need to make the same decision. Does a process that completed the collective successfully need to know what collective did not complete correctly on another process? The assumption is that the collective algorithm will make sure that data the failed processes will need is available.

· Is the failed process expected to be restored? If not, will some/all of the procs need to know about the failure?

Does it make sense to treat this case just as the point-to-point case – default behavior as local error notification, and global notification on subscription?

How do we specify what mode of communicator recovery to perform ? Can we support more than a single mode within a single comm._world ? I.e.,

· do we always restore failed processes

· do we always compact the communicator w/o restoring any procs

· do we restore as many procs as we can with or w/o compacting the communicator?

