
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

January 16, 2014
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 17

Language Bindings

17.1 Fortran Support

17.1.1 Overview

The Fortran MPI language bindings have been designed to be compatible with the Fortran
90 standard with additional features from Fortran 2003 and Fortran 2008 [2] + TS 29113
[3].

Rationale. Fortran 90 contains numerous features designed to make it a more “mod-
ern” language than Fortran 77. It seems natural that MPI should be able to take ad-
vantage of these new features with a set of bindings tailored to Fortran 90. In Fortran
2008 + TS 29113, the major new language features used are the ASYNCHRONOUS at-
tribute to protect nonblocking MPI operations, and assumed-type and assumed-rank
dummy arguments for choice buffer arguments. Further requirements for compiler
support are listed in Section 17.1.7 on page 17. (End of rationale.)

MPI defines three methods of Fortran support:

1. USE mpi_f08: This method is described in Section 17.1.2. It requires compile-time
argument checking with unique MPI handle types and provides techniques to fully
solve the optimization problems with nonblocking calls. This is the only Fortran
support method that is consistent with the Fortran standard (Fortran 2008 + TS
29113 and later). This method is highly recommended for all MPI applications.

2. USE mpi: This method is described in Section 17.1.3 and requires compile-time
argument checking. Handles are defined as INTEGER. This Fortran support method
is inconsistent with the Fortran standard, was “frozen” at MPI-3.0, and its use is ticketWG.
therefore not recommended. It exists only for backwards compatibility, and as a ticketWG.
straightforward upgrade target for codes that use the deprecated mpif.h Fortran
support method.

3. INCLUDE ’mpif.h’: This method is described in Section 17.1.4. The use of the
include file mpif.h [is]was strongly discouraged starting with MPI-3.0, and is depre- ticketWG.

ticketWG.cated starting with MPI-4.0[, because t]. This method neither guarantees compile-time
ticketWG.argument checking nor provides sufficient techniques to solve the optimization prob-

lems with nonblocking calls, and is therefore inconsistent with the Fortran standard.

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 17. LANGUAGE BINDINGS

It exists only for backwards compatibility with legacy MPI applications and may be ticketWG.
removed from a future version of MPI.

Compliant MPI-3 implementations providing a Fortran interface must provide one or
both of the following:

• The USE mpi_f08 Fortran support method.

• The USE mpi and INCLUDE ’mpif.h’ Fortran support methods.

Section 17.1.6 on page 14 describes restrictions if the compiler does not support all the
needed features.

Application subroutines and functions may use either one of the modules or the mpif.h
include file. An implementation may require the use of one of the modules to prevent type
mismatch errors.

Advice to users. Users are advised to utilize one of the MPI modules even if mpif.h
enforces type checking on a particular system. Using a module provides several poten-
tial advantages over using an include file; the mpi_f08 module offers the most robust
and complete Fortran support. (End of advice to users.)

In a single application, it must be possible to link together routines which USE mpi_f08,
USE mpi, and INCLUDE ’mpif.h’.

The LOGICAL compile-time constant MPI_SUBARRAYS_SUPPORTED is set to
.TRUE. if all buffer choice arguments are defined in explicit interfaces with assumed-type
and assumed-rank [3]; otherwise it is set to .FALSE.. The LOGICAL compile-time constant
MPI_ASYNC_PROTECTS_NONBLOCKING is set to .TRUE. if the ASYNCHRONOUS attribute was
added to the choice buffer arguments of all nonblocking interfaces and the underlying
Fortran compiler supports the ASYNCHRONOUS attribute for MPI communication (as part of
TS 29113), otherwise it is set to .FALSE.. These constants exist for each Fortran support
method, but not in the C header file. The values may be different for each Fortran support
method. All other constants and the integer values of handles must be the same for each
Fortran support method.

Section 17.1.2 through 17.1.4 define the Fortran support methods. The Fortran in-
terfaces of each MPI routine are shorthands. Section 17.1.5 defines the corresponding full
interface specification together with the used linker names and implications for the pro-
filing interface. Section 17.1.6 the implementation of the MPI routines for different ver-
sions of the Fortran standard. Section 17.1.7 summarizes major requirements for valid
MPI-3.0 implementations with Fortran support. Section 17.1.8 and Section 17.1.9 de-
scribe additional functionality that is part of the Fortran support. MPI_F_SYNC_REG
is needed for one of the methods to prevent register optimization problems. A set of func-
tions provides additional support for Fortran intrinsic numeric types, including parameter-
ized types: MPI_SIZEOF, MPI_TYPE_MATCH_SIZE, MPI_TYPE_CREATE_F90_INTEGER,
MPI_TYPE_CREATE_F90_REAL and MPI_TYPE_CREATE_F90_COMPLEX. In the context
of MPI, parameterized types are Fortran intrinsic types which are specified using KIND type
parameters. Sections 17.1.10 through 17.1.19 give an overview and details on known prob-
lems when using Fortran together with MPI; Section 17.1.20 compares the Fortran problems
with those in C.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 3

17.1.2 Fortran Support Through the mpi_f08 Module

An MPI implementation providing a Fortran interface must provide a module named mpi_f08

that can be used in a Fortran program. Section 17.1.6 on page 14 describes restrictions if
the compiler does not support all the needed features. Within all MPI function specifica-
tions, the first of the set of two Fortran routine interface specifications is provided by this
module. This module must:

• Define all named MPI constants.

• Declare MPI functions that return a value.

• Provide explicit interfaces according to the Fortran routine interface specifications.
This module therefore guarantees compile-time argument checking for all arguments
which are not TYPE(*), with the following exception:

Only one Fortran interface is defined for functions that are deprecated as of
MPI-3.0. This interface must be provided as an explicit interface according to
the rules defined for the mpi module, see Section 17.1.3 on page 5.

Advice to users. It is strongly recommended that developers substitute calls
to deprecated routines when upgrading from mpif.h or the mpi module to
the mpi_f08 module. (End of advice to users.)

• Define all MPI handles with uniquely named handle types (instead of INTEGER handles,
as in the mpi module). This is reflected in the first Fortran binding in each MPI
function definition throughout this document (except for the deprecated routines).

• Overload the operators .EQ. and .NE. to allow the comparison of these MPI handles
with .EQ., .NE., == and /=.

• Use the ASYNCHRONOUS attribute to protect the buffers of nonblocking operations,
and set the LOGICAL compile-time constant MPI_ASYNC_PROTECTS_NONBLOCKING

to .TRUE. if the underlying Fortran compiler supports the ASYNCHRONOUS attribute
for MPI communication (as part of TS 29113). See Section 17.1.6 on page 14 for older
compiler versions.

• Set the LOGICAL compile-time constant MPI_SUBARRAYS_SUPPORTED to .TRUE. and
declare choice buffers using the Fortran 2008 TS 29113 features assumed-type and
assumed-rank, i.e., TYPE(*), DIMENSION(..) in all nonblocking, split collective and
persistent communication routines, if the underlying Fortran compiler supports it.
With this, non-contiguous sub-arrays can be used as buffers in nonblocking routines.

Rationale. In all blocking routines, i.e., if the choice-buffer is not declared
as ASYNCHRONOUS, the TS 29113 feature is not needed for the support of non-
contiguous buffers because the compiler can pass the buffer by in-and-out-copy
through a contiguous scratch array. (End of rationale.)

• Set the MPI_SUBARRAYS_SUPPORTED compile-time constant to .FALSE. and declare
choice buffers with a compiler-dependent mechanism that overrides type checking if
the underlying Fortran compiler does not support the Fortran 2008 TS 29113 assumed-
type and assumed-rank notation. In this case, the use of non-contiguous sub-arrays as
buffers in nonblocking calls may be invalid. See Section 17.1.6 on page 14 for details.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 17. LANGUAGE BINDINGS

• Declare each argument with an INTENT of IN, OUT, or INOUT as defined in this standard.

Rationale. For these definitions in the mpi_f08 bindings, in most cases, INTENT(IN)
is used if the C interface uses call-by-value. For all buffer arguments and for OUT and
INOUT dummy arguments that allow one of the non-ordinary Fortran constants (see
MPI_BOTTOM, etc. in Section 2.5.4 on page 15) as input, an INTENT is not specified.
(End of rationale.)

Advice to users. If a dummy argument is declared with INTENT(OUT), then the
Fortran standard stipulates that the actual argument becomes undefined upon invo-
cation of the MPI routine, i.e., it may be overwritten by some other values, e.g. zeros;
according to [2], 12.5.2.4 Ordinary dummy variables, Paragraph 17: “If a dummy ar-
gument has INTENT(OUT), the actual argument becomes undefined at the time the
association is established, except [. . .]”. For example, if the dummy argument is an
assumed-size array and the actual argument is a strided array, the call may be imple-
mented with copy-in and copy-out of the argument. In the case of INTENT(OUT) the
copy-in may be suppressed by the optimization and the routine is starts execution us-
ing an array of undefined values. If the routine stores fewer elements into the dummy
argument than is provided in the actual argument, then the remaining locations are
overwritten with these undefined values. See also both advices to implementors in
Section 17.1.3 on page 5. (End of advice to users.)

• Declare all ierror output arguments as OPTIONAL, except for user-defined callback
functions (e.g., COMM_COPY_ATTR_FUNCTION) and predefined callbacks (e.g.,
MPI_COMM_NULL_COPY_FN).

Rationale. For user-defined callback functions (e.g., COMM_COPY_ATTR_FUNCTION) and
their predefined callbacks (e.g., MPI_COMM_NULL_COPY_FN), the ierror argument
is not optional. The MPI library must always call these routines with an actual ierror
argument. Therefore, these user-defined functions need not check whether the MPI
library calls these routines with or without an actual ierror output argument. (End of
rationale.)

The MPI Fortran bindings in the mpi_f08 module are designed based on the Fortran
2008 standard [2] together with the Technical Specification “TS 29113 Further Interoper-
ability with C” [3] of the ISO/IEC JTC1/SC22/WG5 (Fortran) working group.

Rationale. The features in TS 29113 on further interoperability with C were decided
on by ISO/IEC JTC1/SC22/WG5 and designed by PL22.3 (formerly J3) to support a
higher level of integration between Fortran-specific features and C than was provided
in the Fortran 2008 standard; part of this design is based on requirements from the
MPI Forum to support MPI-3.0. According to [3], “an ISO/IEC TS is reviewed after
three years in order to decide whether it will be confirmed for a further three years,
revised to become an International Standard, or withdrawn. If the ISO/IEC TS is
confirmed, it is reviewed again after a further three years, at which time it must either
be transformed into an International Standard or be withdrawn.”

The TS 29113 contains the following language features that are needed for the MPI
bindings in the mpi_f08 module: assumed-type and assumed-rank. It is important
that any possible actual argument can be used for such dummy arguments, e.g.,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 5

scalars, arrays, assumed-shape arrays, assumed-size arrays, allocatable arrays, and
with any element type, e.g., REAL, CHARACTER*5, CHARACTER*(*), sequence derived
types, or BIND(C) derived types. Especially for backward compatibility reasons, it is
important that any possible actual argument in an implicit interface implementation
of a choice buffer dummy argument (e.g., with mpif.h without argument-checking)
can be used in an implementation with assumed-type and assumed-rank argument in
an explicit interface (e.g., with the mpi_f08 module).

The INTERFACE construct in combination with BIND(C) allows the implementation of
the Fortran mpi_f08 interface with a single set of portable wrapper routines written
in C, which supports all desired features in the mpi_f08 interface. TS 29113 also has
a provision for OPTIONAL arguments in BIND(C) interfaces.

A further feature useful for MPI is the extension of the semantics of the
ASYNCHRONOUS attribute: In F2003 and F2008, this attribute could be used only to
protect buffers of Fortran asynchronous I/O. With TS 29113, this attribute now also
covers asynchronous communication occurring within library routines written in C.

The MPI Forum hereby wishes to acknowledge this important effort by the Fortran
PL22.3 and WG5 committee. (End of rationale.)

17.1.3 Fortran Support Through the mpi Module

An MPI implementation providing a Fortran interface must provide a module named mpi

that can be used in a Fortran program. The mpi module has been “frozen” as of MPI-3.0, ticketWG.
meaning that no new functionality will be added to the module after MPI-3.0.

Advice to users. The mpi module is not deprecated, and provides a straightforward
upgrade path for codes that currently include mpif.h. Users should be aware, however,
that the mpi_f08 module contains the most modern Fortran MPI support, and will
likely have a longer life than the mpi module. Users are therefore encouraged to
upgrade to the mpi module in the short-term, but should also investigate upgrading
to the mpi_f08 module in the longer term. (End of advice to users.)

Within all MPI-3.0 MPI function specifications, the second of the set of two Fortran ticketWG.
routine interface specifications is provided by this module. This module must:

• Define all named [MPI]MPI-3.0 constants ticketWG.

• Declare [MPI]MPI-3.0 functions that return a value. ticketWG.

• Provide explicit interfaces according to the Fortran routine interface specifications.
This module therefore guarantees compile-time argument checking and allows posi-
tional and keyword-based argument lists.

• Define all [MPI]MPI-3.0 handles as type INTEGER. ticketWG.

• Define the derived type MPI_Status and all named handle types that are used in the
mpi_f08 module. For these named handle types, overload the operators .EQ. and
.NE. to allow handle comparison via the .EQ., .NE., == and /= operators.

Rationale. They are needed only when the application converts old-style INTEGER

handles into new-style handles with a named type. (End of rationale.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 17. LANGUAGE BINDINGS

• A high quality MPI implementation may enhance the interface by using the
ASYNCHRONOUS attribute in the same way as in the mpi_f08 module if it is supported
by the underlying compiler.

• Set the LOGICAL compile-time constant MPI_ASYNC_PROTECTS_NONBLOCKING to
.TRUE. if the ASYNCHRONOUS attribute is used in all nonblocking interfaces and the
underlying Fortran compiler supports the ASYNCHRONOUS attribute for MPI communi-
cation (as part of TS 29113), otherwise to .FALSE..

Advice to users. For an MPI implementation that fully supports nonblocking calls
with the ASYNCHRONOUS attribute for choice buffers, an existing MPI-2.2 application
may fail to compile even if it compiled and executed with expected results with an
MPI-2.2 implementation. One reason may be that the application uses “contiguous”
but not “simply contiguous” ASYNCHRONOUS arrays as actual arguments for choice
buffers of nonblocking routines, e.g., by using subscript triplets with stride one or
specifying (1:n) for a whole dimension instead of using (:). This should be fixed
to fulfill the Fortran constraints for ASYNCHRONOUS dummy arguments. This is not
considered a violation of backward compatibility because existing applications can
not use the ASYNCHRONOUS attribute to protect nonblocking calls. Another reason
may be that the application does not conform either to MPI-2.2, or to MPI-3.0, or to
the Fortran standard, typically because the program forces the compiler to perform
copy-in/out for a choice buffer argument in a nonblocking MPI call. This is also not a
violation of backward compatibility because the application itself is non-conforming.
See Section 17.1.12 on page 30 for more details. (End of advice to users.)

• A high quality MPI implementation may enhance the interface by using TYPE(*),

DIMENSION(..) choice buffer dummy arguments instead of using non-standardized
extensions such as !$PRAGMA IGNORE_TKR or a set of overloaded functions as described
by M. Hennecke in [1], if the compiler supports this TS 29113 language feature. See
Section 17.1.6 on page 14 for further details.

• Set the LOGICAL compile-time constant MPI_SUBARRAYS_SUPPORTED to
.TRUE. if all choice buffer arguments in all nonblocking, split collective and persistent
communication routines are declared with TYPE(*), DIMENSION(..), otherwise set
it to .FALSE.. When MPI_SUBARRAYS_SUPPORTED is defined as
.TRUE., non-contiguous sub-arrays can be used as buffers in nonblocking routines.

• Set the MPI_SUBARRAYS_SUPPORTED compile-time constant to .FALSE. and declare
choice buffers with a compiler-dependent mechanism that overrides type checking if
the underlying Fortran compiler does not support the TS 29113 assumed-type and
assumed-rank features. In this case, the use of non-contiguous sub-arrays in non-
blocking calls may be disallowed. See Section 17.1.6 on page 14 for details.

An MPI implementation may provide other features in the mpi module that enhance
the usability of MPI while maintaining adherence to the standard. For example, it may
provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be different from what is given
in the MPI language-neutral bindings. Implementations must choose INTENT so that
the function adheres to the MPI standard, e.g., by defining the INTENT as provided in
the mpi_f08 bindings. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 7

Rationale. The intent given by the MPI generic interface is not precisely defined
and does not in all cases correspond to the correct Fortran INTENT. For instance,
receiving into a buffer specified by a datatype with absolute addresses may require
associating MPI_BOTTOM with a dummy OUT argument. Moreover, “constants” such
as MPI_BOTTOM and MPI_STATUS_IGNORE are not constants as defined by Fortran,
but “special addresses” used in a nonstandard way. Finally, the MPI-1 generic intent
was changed in several places in MPI-2. For instance, MPI_IN_PLACE changes the
intent of an OUT argument to be INOUT. (End of rationale.)

Advice to implementors. The Fortran 2008 standard illustrates in its Note 5.17
that “INTENT(OUT) means that the value of the argument after invoking the proce-
dure is entirely the result of executing that procedure. If an argument should retain
its value rather than being redefined, INTENT(INOUT) should be used rather than
INTENT(OUT), even if there is no explicit reference to the value of the dummy
argument. Furthermore, INTENT(INOUT) is not equivalent to omitting the IN-
TENT attribute, because INTENT(INOUT) always requires that the associated ac-
tual argument is definable.” Applications that include mpif.h may not expect that
INTENT(OUT) is used. In particular, output array arguments are expected to keep their
content as long as the MPI routine does not modify them. To keep this behavior, it is
recommended that implementations not use INTENT(OUT) in the mpi module and the
mpif.h include file, even though INTENT(OUT) is specified in an interface description
of the mpi_f08 module. (End of advice to implementors.)

17.1.4 Fortran Support Through the mpif.h Include File

The use of the mpif.h include file is [strongly discouraged]deprecated and may be [deprecated ticketWG.
ticketWG.in]deleted from a future version of MPI.
ticketWG.

Advice to users. Users are strongly encouraged to upgrade codes that include mpif.h
to use the mpi module; the process should be fairly straightforward (see the next Advice
to Users, below). Note, however, that the mpi module support in MPI is “frozen” and
will not be expanded beyond MPI-3.0. For a longer-term solution, the mpi_f08 module
provides more modern Fortran features and will continue to be expanded beyond MPI-
3.0. (End of advice to users.)

An MPI implementation providing a Fortran interface must provide an include file
named mpif.h that can be used in a Fortran program. Within all MPI function specifica-
tions, the second of the set of two Fortran routine interface specifications is supported by
this include file. This include file must:

• Define all named MPI constants.

• Declare MPI functions that return a value.

• Define all handles as INTEGER.

• Be valid and equivalent for both fixed and free source form.

For each MPI routine, an implementation can choose to use an implicit or explicit interface
for the second Fortran binding (in deprecated routines, the first one may be omitted).

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 17. LANGUAGE BINDINGS

• Set the LOGICAL compile-time constants MPI_SUBARRAYS_SUPPORTED and
MPI_ASYNC_PROTECTS_NONBLOCKING according to the same rules as for the mpi

module. In the case of implicit interfaces for choice buffer or nonblocking routines,
the constants must be set to .FALSE..

Advice to users. Instead of using mpif.h, the use of the mpi_f08 or mpi module is
strongly encouraged for the following reasons:

• Most mpif.h implementations do not include compile-time argument checking.

• Therefore, many bugs in MPI applications remain undetected at compile-time,
such as:

– Missing ierror as last argument in most Fortran bindings.

– Declaration of a status as an INTEGER variable instead of an INTEGER array
with size MPI_STATUS_SIZE.

– Incorrect argument positions; e.g., interchanging the count and
datatype arguments.

– Passing incorrect MPI handles; e.g., passing a datatype instead of a commu-
nicator.

• The migration from mpif.h to the mpi module should be relatively straightfor-
ward (i.e., substituting include ’mpif.h’ after an implicit statement by use

mpi before that implicit statement) as long as the application syntax is correct.

• Migrating portable and correctly written applications to the mpi module is not
expected to be difficult. No compile or runtime problems should occur because
an mpif.h include file was always allowed to provide explicit Fortran interfaces.

(End of advice to users.)

ticketWG.
[

Rationale. With MPI-3.0, the mpif.h include file was not deprecated in order to
retain strong backward compatibility. Internally, mpif.h and the mpi module may be
implemented so that essentialy the same library implementation of the MPI routines
can be used. (End of rationale.)

]

Advice to implementors. To make mpif.h compatible with both fixed- and free-source
forms, to allow automatic inclusion by preprocessors, and to allow extended fixed-
form line length, it is recommended that the requirement of usability in free and fixed
source form applications be met by constructing mpif.h without any continuation
lines. This should be possible because mpif.h may contain only declarations, and
because common block declarations can be split among several lines. The argument
names may need to be shortened to keep the SUBROUTINE statement within the allowed
72− 6 = 66 characters, e.g.,

INTERFACE

SUBROUTINE PMPI_DIST_GRAPH_CREATE_ADJACENT(a,b,c,d,e,f,g,h,i,j,k)

... ! dummy argument declarations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 9

This line has 65 characters and is the longest in MPI-3.0.

As long as the MPI standard contains routines with choice buffers and a name length
and argument count that implies that a BIND(C) implementation would need to
shorten their linker names in mpif.h, the mpif.h cannot set
MPI_SUBARRAYS_SUPPORTED and MPI_ASYNC_PROTECTS_NONBLOCKING equals
.TRUE., because such shortening is invalid. For example,
MPI_FILE_WRITE_AT_ALL_BEGIN with 6 arguments, may be defined:

INTERFACE MPI_FILE_WRITE_AT_ALL_BEGIN

SUBROUTINE MPI_X(a,b,c,d,e,f)BIND(C,NAME=’MPI_File_write_at_all_begin_f’)

... ! dummy argument declarations

This would need a line length of 73 characters, i.e., the C routine name would need
to be shortened by 7 characters to stay within the available 66 characters. Note
that the name MPI_X has no meaning for the compilation, and that this problem
occurs only with routines with choice buffers implemented with the assumed-type and
assumed-rank facility of TS 29113. To support Fortran 77 as well as Fortran 90 and
later, it may be necessary to eliminate all comments from mpif.h. (End of advice to
implementors.)

17.1.5 Interface Specifications, Linker Names and the Profiling Interface

The Fortran interface specifications of each MPI routine specifies the routine name that must
be called by the application program, and the names and types of the dummy arguments
together with additional attribbutes. The rules for the linker names and its implications
for the profiling interface are specified within this section. The linker name of a Fortran
routine is defined as the name that a C routine would have if both routines would have the
same name visible for the linker. A typical linker name of the Fortran routine FOOfoo is
foofoo__. In the case of BIND(C,NAME=’...’), the linker name is directly defined through
the external name given by the string.

The following rules for linker names apply:

• With the Fortran mpi_f08 module, if MPI_SUBARRAYS_SUPPORTED equals .TRUE.:

The Fortran binding must use BIND(C) interfaces with an interface name identical to
the language independent name, e.g., MPI_SEND. The linker name is a combination
of the C name and an _f08 suffix, e.g., MPI_Send_f08. Prototype example:

INTERFACE

SUBROUTINE MPI_Send(...) BIND(C,NAME=’MPI_Send_f08’)

• With the Fortran mpi_f08 module, if MPI_SUBARRAYS_SUPPORTED equals .FALSE.

(i.e., with a preliminary implementation of this module without TS 29113):

The linker name of each routine is defined through the linker name mapping of the
Fortran compiler for the name defined when subarrays are supported. For example,
MPI_Send_f08 may be mapped to mpi_send_f08__. Example:

INTERFACE MPI_Send

SUBROUTINE MPI_Send_f08(...)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 17. LANGUAGE BINDINGS

• With the Fortran mpi module or mpif.h include file, if MPI_SUBARRAYS_SUPPORTED

equals .FALSE.:

The linker name of each routine is defined through the linker-name mapping of the
Fortran compiler. For example, MPI_SEND may be mapped to mpi_send__. Example:

INTERFACE

SUBROUTINE MPI_SEND(...)

• With the Fortran mpi module or mpif.h include file, if MPI_SUBARRAYS_SUPPORTED

equals .TRUE.:

The Fortran binding must use BIND(C) interfaces with an interface name identical to
the language independent name, e.g., MPI_SEND. The linker name is a combination
of the C name and an _f suffix, e.g., MPI_Send_f. Prototype example:

INTERFACE

SUBROUTINE MPI_SEND(...) BIND(C,NAME=’MPI_Send_f’)

If the support of subarrays is different for the mpi module and the mpif.h include file,
then both linker-name methods can be used in the same application. If the application also
uses the mpi_f08 module and was compiled with this module partially before and after the
subarrays were supported, then all four interfaces are used within the same application.

Rationale. After a compiler provides the facilities from TS 29113, i.e., TYPE(*),
DIMENSION(..), it is possible to change the bindings within a Fortran support method
to support subarrays without recompiling the complete application. Of course, only
recompiled routines can benefit from the added facilities. There is no binary compat-
ibility conflict because each interface uses its own linker names and all interfaces use
the same constants and type definitions. (End of rationale.)

A user-written or middleware profiling routine that is written according to the same
binding rules will have the same linker name, and therefore, can interpose itself as the MPI
library routine. The profiling routine can internally call the matching PMPI routine with any
of its existing bindings, except for routines that have callback routine dummy arguments.
In this case, the profiling software must use the same Fortran support method as used in
the calling application program, because the C, mpi_f08 and mpi callback prototypes are
different.

Advice to users. This advice is mainly for tool writers. Even if an MPI library
supports subarrays in all three Fortran support methods, a portable profiling layer
should also provide the two interfaces for MPI_SUBARRAYS_SUPPORTED==.FALSE.

to support older binary user routines that were compiled before TS 29113 level support
was availabile.

If a user application calls MPI_SEND, then the chosen Fortran support method to-
gether with the MPI implementation decision about MPI_SUBARRAYS_SUPPORTED

imply, to which linker name the compiler will translate this call, i.e., whether the
application calls mpi_send__, or MPI_Send_f, or mpi_send_f08__, or MPI_Send_f08.
If the profiling layer wants to be independent of the decision of the user program and
MPI implementation, then it should provide all four routines. For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 11

SUBROUTINE MPI_SEND(...) BIND(C,NAME=’MPI_Send_f’)

USE mpi

CALL PMPI_SEND(...)

END SUBROUTINE

The MPI library must provide the PMPI_SEND routine according to the same rules
as for providing the MPI_SEND routine. (End of advice to users.)

Advice to implementors. If an implementation provides in a first step two sets of
routines, one for the mpi module and mpif.h, and the other for the mpi_f08 module,
and both sets without TS 29113, i.e., MPI_SUBARRAYS_SUPPORTED equals .FALSE.,
and the implementor wants to add a TS 29113 based set of routines, then it is not
necessary to add two full sets of routines. For full quality, it is enough to implement
in each set only those routines that have a choice buffer argument. (End of advice to
implementors.)

In the case that a Fortran binding consists of multiple routines through function over-
loading, the base names of overloaded routines are appended by a suffix indicating the differ-
ence in the argument list. For example, MPI_ALLOC_MEM (in the mpi module and mpif.h)
has an INTEGER(KIND=...) baseptr argument without a suffix. This routine is overloaded
by a routine with TYPE(C_PTR) baseptr and the suffix _CPTR. The implied linker name base is
MPI_ALLOC_MEM_CPTR. It is mapped to the linker names MPI_Alloc_mem_cptr_f, and,
e.g., mpi_alloc_mem_cptr__. Note that these routines are always called via the interface
name MPI_ALLOC_MEM by the application within all Fortran support methods.

For routines without ASYNCHRONOUS choice buffers and that are not predefined callback
routines, the implementor can freely choose to implement the routines according to the rules
for MPI_SUBARRAYS_SUPPORTED equals .TRUE. or .FALSE., provided that the following
rule about routine grouping is fulfilled. The implementation of routines with ASYNCHRONOUS

choice buffers depends on the rules for the provided Fortran support method and language
level of the underlying compiler. Predefined callback routines for the mpi_f08 module
must be implemented with BIND(C) interfaces, and for the mpi module and mpif.h without
BIND(C).

Similar MPI routines are grouped together for linker symbol scheme classification. If
the peer routine of a group is available within an MPI library with one of its possible linker
names then all of the routines in this group must be provided according to the same linker
name scheme. If the peer routine is not available through a linker name scheme then all
other routines in the group must not be available through this scheme.
Peer routines and their routine groups:

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 17. LANGUAGE BINDINGS

MPI_ALLOC_MEM MPI_ALLOC_MEM, MPI_WIN_ALLOCATE,
MPI_WIN_SHARED_ALLOCATE, and
MPI_WIN_SHARED_QUERY.

MPI_FREE_MEM Only this routine is in this group.
MPI_GET_ADDRESS Only this routine is in this group.
MPI_SEND . All routines with choice buffer arguments that

are not declared as ASYNCHRONOUS within the
mpi_f08 module.

MPI_ISEND . All routines with choice buffer arguments
that are declared as ASYNCHRONOUS within the
mpi_f08 module.

MPI_OP_CREATE Only this routine is in this group.
MPI_REGISTER_DATAREP Only this routine is in this group.
MPI_COMM_KEYVAL_CREATE All other routines with callback function argu-

ments.
MPI_COMM_DUP_FN All predefined callback routines.
MPI_COMM_RANK All other MPI routines.

Advice to implementors. Removed interfaces (see Chapter 16) are in the same routine
group as their corresponding replacement functions. (End of advice to implementors.)

Additionally, four C preprocessor macros are available in mpi.h for each routine group.
The name of the macros are the peer routine name written as in the list above and appended
with one of the following suffixes and meanings:
_mpi_f08_BIND_C The macro is set to 1 if the BIND(C) linker name with the

linker suffix _f08 is available for all routines within this group
(e.g., MPI_Send_f08), otherwise it is set to 0.

_mpi_f08_BIND_F The macro is set to 1 if the Fortran linker name with the
linker suffix _f08 is available for all routines within this group
(e.g., mpi_send_f08__), otherwise it is set to 0.

_mpi_BIND_C . . . The macro is set to 1 if the BIND(C) linker name with the
linker suffix _f is available for all routines within this group
(e.g., MPI_Send_f), otherwise it is set to 0.

_mpi_BIND_F . . . The macro is set to 1 if the Fortran linker name without
a linker suffix is available for all routines within this group
(e.g., mpi_send__), otherwise it is set to 0.

For example

...

#define MPI_SEND_mpi_f08_BIND_C 0

#define MPI_SEND_mpi_f08_BIND_F 1

#define MPI_SEND_mpi_BIND_C 0

#define MPI_SEND_mpi_BIND_F 1

#define MPI_ISEND_mpi_f08_BIND_C 1

#define MPI_ISEND_mpi_f08_BIND_F 1

#define MPI_ISEND_mpi_BIND_C 1

#define MPI_ISEND_mpi_BIND_F 1

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 13

#define MPI_COMM_DUP_FN_mpi_f08_BIND_C 1

#define MPI_COMM_DUP_FN_mpi_f08_BIND_F 0

#define MPI_COMM_DUP_FN_mpi_BIND_C 0

#define MPI_COMM_DUP_FN_mpi_BIND_F 1

...

shows, that

• the routines in the MPI_SEND group are only available through their Fortran linker
names (e.g., mpi_send_f08__, mpi_send__, mpi_recv_f08__, mpi_recv__, . . .),

• the routines in the MPI_ISEND group are available with all four interfaces: the MPI
library, the mpi_f08 and mpi modules (that provide the TS 29113 quality), and this
MPI library supports application routines that are compiled with an older MPI library
version with _BIND_C set to 0 and _BIND_F set to 1.

For the predefined callbacks, there is no choice, because the interfaces must fit to the
callback function prototypes which are BIND(C) based for mpi_f08 and without BIND(C)

for the mpi module and mpif.h.

Advice to implementors. If all following conditions are fulfilled (which is the case for
most compilers):

• the handles in the mpi_f08 module occupy one Fortran numerical storage unit
(same as an INTEGER handle),

• the internal argument passing mechanism used to pass an actual ierror argument
to a non-optional ierror dummy argument is binary compatible to passing an
actual ierror argument to an ierror dummy argument that is declared as OPTIONAL,

• the internal argument passing mechanism for ASYNCHRONOUS and non-
ASYNCHRONOUS arguments is the same,

• the internal routine call mechanism is the same for the Fortran and the C com-
pilers for which the MPI library is compiled,

• the compiler does not provide TS 29113,

then for the routine groups, the implementor may use the same internal routine
implementations for all Fortran support methods but with several different linker
names. For TS 29113 quality, new routines are needed only for the routine group of
MPI_ISEND. Typical settings for _mpi_f08_BIND_C / _mpi_f08_BIND_F /
_mpi_BIND_C / _mpi_BIND_F may be:

Upgrade for New impl.
Without Upgrade to strided data with
TS 29113 TS 29113 optimization TS 29113

MPI_ALLOC_MEM_... 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0
MPI_FREE_MEM_... 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0
MPI_GET_ADDRESS_... 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0
MPI_SEND_... 0/1/0/1 0/1/0/1 1/1/1/1 1/0/1/0
MPI_ISEND_... 0/1/0/1 1/1/1/1 1/1/1/1 1/0/1/0
MPI_OP_CREATE_... 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0
MPI_REGISTER_DATAREP_... . . . 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0
MPI_COMM_KEYVAL_CREATE_... 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0
MPI_COMM_DUP_FN_... 1/0/0/1 1/0/0/1 1/0/0/1 1/0/0/1
MPI_COMM_RANK_... 0/1/0/1 0/1/0/1 0/1/0/1 1/0/1/0

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 17. LANGUAGE BINDINGS

(End of advice to implementors.)

17.1.6 MPI for Different Fortran Standard Versions

This section describes which Fortran interface functionality can be provided for different
versions of the Fortran standard.

• For Fortran 77 with some extensions:

– MPI identifiers may be up to 30 characters (31 with the profiling interface).

– MPI identifiers may contain underscores after the first character.

– An MPI subroutine with a choice argument may be called with different argument
types.

– Although not required by the MPI standard, the INCLUDE statement should be
available for including mpif.h into the user application source code.

Only MPI-1.1, MPI-1.2, and MPI-1.3 can be implemented. The use of absolute ad-
dresses from MPI_ADDRESS and MPI_BOTTOM may cause problems if an address
does not fit into the memory space provided by an INTEGER. (In MPI-2.0 this problem
is solved with MPI_GET_ADDRESS, but not for Fortran 77.)

• For Fortran 90:
The major additional features that are needed from Fortran 90 are:

– The MODULE and INTERFACE concept.

– The KIND= and SELECTED_..._KIND concept.

– Fortran derived TYPEs and the SEQUENCE attribute.

– The OPTIONAL attribute for dummy arguments.

– Cray pointers, which are a non-standard compiler extension, are needed for the
use of MPI_ALLOC_MEM.

With these features, MPI-1.1 – MPI-2.2 can be implemented without restrictions.
MPI-3.0 can be implemented with some restrictions. The Fortran support methods
are abbreviated with S1 = the mpi_f08 module, S2 = the mpi module, and S3 = the
mpif.f include file. If not stated otherwise, restrictions exist for each method which
prevent implementing the complete semantics of MPI-3.0.

– MPI_SUBARRAYS_SUPPORTED equals .FALSE., i.e., subscript triplets and non-
contiguous subarrays cannot be used as buffers in nonblocking routines, RMA,
or split-collective I/O.

– S1, S2, and S3 can be implemented, but for S1, only a preliminary implementa-
tion is possible.

– In this preliminary interface of S1, the following changes are necessary:

∗ The routines are not BIND(C).

∗ TYPE(*), DIMENSION(..) is substituted by non-standardized extensions
like !$PRAGMA IGNORE_TKR.

∗ The ASYNCHRONOUS attribute is omitted.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 15

∗ PROCEDURE(...) callback declarations are substituted by EXTERNAL.

– The linker names are specified in Section 17.1.5 on page 9.

– Due to the rules specified in Section 17.1.5 on page 9, choice buffer declarations
should be implemented only with non-standardized extensions like !$PRAGMA

IGNORE_TKR (as long as F2008+TS 29113 is not available).

In S2 and S3: Without such extensions, routines with choice buffers should
be provided with an implicit interface, instead of overloading with a different
MPI function for each possible buffer type (as mentioned in Section 17.1.11 on
page 29). Such overloading would also imply restrictions for passing Fortran
derived types as choice buffer, see also Section 17.1.15 on page 33.

Only in S1: The implicit interfaces for routines with choice buffer arguments
imply that the ierror argument cannot be defined as OPTIONAL. For this reason,
it is recommended not to provide the mpi_f08 module if such an extension is not
available.

– The ASYNCHRONOUS attribute can not be used in applications to protect buffers
in nonblocking MPI calls (S1–S3).

– The TYPE(C_PTR) binding of the MPI_ALLOC_MEM and MPI_WIN_ALLOCATE
routines is not available.

– In S1 and S2, the definition of the handle types (e.g., TYPE(MPI_Comm) and
the status type TYPE(MPI_Status) must be modified: The SEQUENCE attribute
must be used instead of BIND(C) (which is not available in Fortran 90/95). This
restriction implies that the application must be fully recompiled if one switches to
an MPI library for Fortran 2003 and later because the internal memory size of the
handles may have changed. For this reason, an implementor may choose not to
provide the mpi_f08 module for Fortran 90 compilers. In this case, the mpi_f08

handle types and all routines, constants and types related to TYPE(MPI_Status)

(see Section 17.2.5 on page 52) are also not available in the mpi module and
mpif.h.

• For Fortran 95:
The quality of the MPI interface and the restrictions are the same as with Fortran 90.

• For Fortran 2003:
The major features that are needed from Fortran 2003 are:

– Interoperability with C, i.e.,

∗ BIND(C, NAME=’...’) interfaces.

∗ BIND(C) derived types.

∗ The ISO_C_BINDING intrinsic type C_PTR and routine C_F_POINTER.

– The ability to define an ABSTRACT INTERFACE and to use it for PROCEDURE dummy
arguments.

– The ASYNCHRONOUS attribute is available to protect Fortran asynchronous I/O.
This feature is not yet used by MPI, but it is the basis for the enhancement for
MPI communication in the TS 29113.

With these features (but still without the features of TS 29113), MPI-1.1 – MPI-2.2
can be implemented without restrictions, but with one enhancement:

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 17. LANGUAGE BINDINGS

– The user application can use TYPE(C_PTR) together with MPI_ALLOC_MEM as
long as MPI_ALLOC_MEM is defined with an implicit interface because a C_PTR

and an INTEGER(KIND=MPI_ADDRESS_KIND) argument must both map to a
void * argument.

MPI-3.0 can be implemented with the following restrictions:

– MPI_SUBARRAYS_SUPPORTED equals .FALSE..

– For S1, only a preliminary implementation is possible. The following changes are
necessary:

∗ The routines are not BIND(C).

∗ TYPE(*), DIMENSION(..) is substituted by non-standardized extensions
like !$PRAGMA IGNORE_TKR.

– The linker names are specified in Section 17.1.5 on page 9.

– With S1, the ASYNCHRONOUS is required as specified in the second Fortran inter-
faces. With S2 and S3 the implementation can also add this attribute if explicit
interfaces are used.

– The ASYNCHRONOUS Fortran attribute can be used in applications to try to protect
buffers in nonblocking MPI calls, but the protection can work only if the compiler
is able to protect asynchronous Fortran I/O and makes no difference between such
asynchronous Fortran I/O and MPI communication.

– The TYPE(C_PTR) binding of the MPI_ALLOC_MEM, MPI_WIN_ALLOCATE,
MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_SHARED_QUERY routines can
be used only for Fortran types that are C compatible.

– The same restriction as for Fortran 90 applies if non-standardized extensions like
!$PRAGMA IGNORE_TKR are not available.

• For Fortran 2008 + TS 29113 and later and
For Fortran 2003 + TS 29113:
The major feature that are needed from TS 29113 are:

– TYPE(*), DIMENSION(..) is available.

– The ASYNCHRONOUS attribute is extended to protect also nonblocking MPI com-
munication.

– OPTIONAL dummy arguments are allowed in combination with BIND(C) interfaces.

– CHARACTER(LEN=*) dummy arguments are allowed in combination with BIND(C)

interfaces.

– The array dummy argument of the ISO_C_BINDING intrinsic C_F_POINTER is not
restricted to Fortran types for which a corresponding type in C exists.

Using these features, MPI-3.0 can be implemented without any restrictions.

– With S1, MPI_SUBARRAYS_SUPPORTED equals .TRUE.. The ASYNCHRONOUS at-
tribute can be used to protect buffers in nonblocking MPI calls. The TYPE(C_PTR)
binding of the MPI_ALLOC_MEM, MPI_WIN_ALLOCATE,
MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_SHARED_QUERY routines can
be used for any Fortran type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 17

– With S2 and S3, the value of MPI_SUBARRAYS_SUPPORTED is implementation
dependent. A high quality implementation will also provide
MPI_SUBARRAYS_SUPPORTED==.TRUE. and will use the
ASYNCHRONOUS attribute in the same way as in S1.

– If non-standardized extensions like !$PRAGMA IGNORE_TKR are not available then
S2 must be implemented with TYPE(*), DIMENSION(..).

Advice to implementors. If MPI_SUBARRAYS_SUPPORTED==.FALSE., the choice
argument may be implemented with an explicit interface using compiler directives,
for example:

INTERFACE

SUBROUTINE MPI_...(buf, ...)

!DEC$ ATTRIBUTES NO_ARG_CHECK :: buf

!$PRAGMA IGNORE_TKR buf

!DIR$ IGNORE_TKR buf

!IBM* IGNORE_TKR buf

REAL, DIMENSION(*) :: buf

... ! declarations of the other arguments

END SUBROUTINE

END INTERFACE

(End of advice to implementors.)

17.1.7 Requirements on Fortran Compilers

MPI-3.0 (and later) compliant Fortran bindings are not only a property of the MPI library
itself, but rather a property of an MPI library together with the Fortran compiler suite for
which it is compiled.

Advice to users. Users must take appropriate steps to ensure that proper options
are specified to compilers. MPI libraries must document these options. Some MPI
libraries are shipped together with special compilation scripts (e.g., mpif90, mpicc)
that set these options automatically. (End of advice to users.)

An MPI library together with the Fortran compiler suite is only compliant with MPI-3.0 (and
later), as referred by MPI_GET_VERSION, if all the solutions described in Sections 17.1.11
through 17.1.19 work correctly. Based on this rule, major requirements for all three Fortran
support methods (i.e., the mpi_f08 and mpi modules, and mpif.h) are:

• The language features assumed-type and assumed-rank from Fortran 2008 TS 29113
[3] are available. This is required only for mpi_f08. As long as this requirement is
not supported by the compiler, it is valid to build an MPI library that implements the
mpi_f08 module with MPI_SUBARRAYS_SUPPORTED set to .FALSE..

• “Simply contiguous” arrays and scalars must be passed to choice buffer dummy ar-
guments of nonblocking routines with call by reference. This is needed only if one of
the support methods does not use the ASYNCHRONOUS attribute. See Section 17.1.12
on page 30 for more details.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 17. LANGUAGE BINDINGS

• SEQUENCE and BIND(C) derived types are valid as actual arguments passed to choice
buffer dummy arguments, and, in the case of MPI_SUBARRAYS_SUPPORTED==
.FALSE., they are passed with call by reference, and passed by descriptor in the case
of .TRUE..

• All actual arguments that are allowed for a dummy argument in an implicitly defined
and separately compiled Fortran routine with the given compiler (e.g.,
CHARACTER(LEN=*) strings and array of strings) must also be valid for choice buffer
dummy arguments with all Fortran support methods.

• The array dummy argument of the ISO_C_BINDING intrinsic module procedure
C_F_POINTER is not restricted to Fortran types for which a corresponding type in C
exists.

• The Fortran compiler shall not provide TYPE(*) unless the ASYNCHRONOUS attribute
protects MPI communication as described in TS 29113. Specifically, the TS 29113
must be implemented as a whole.

The following rules are required at least as long as the compiler does not provide the ex-
tension of the ASYNCHRONOUS attribute as part of TS 29113 and there still exists a Fortran
support method with MPI_ASYNC_PROTECTS_NONBLOCKING==.FALSE.. Observation of
these rules by the MPI application developer is especially recomended for backward com-
patibility of existing applications that use the mpi module or the mpif.h include file. The
rules are as follows:

• Separately compiled empty Fortran routines with implicit interfaces and separately
compiled empty C routines with BIND(C) Fortran interfaces (e.g., MPI_F_SYNC_REG
on page 41 and Section 17.1.8 on page 19, and DD on page 42) solve the problems
described in Section 17.1.17 on page 36.

• The problems with temporary data movement (described in detail in Section 17.1.18
on page 43) are solved as long as the application uses different sets of variables for
the nonblocking communication (or nonblocking or split collective I/O) and the com-
putation when overlapping communication and computation.

• Problems caused by automatic and permanent data movement (e.g., within a garbage
collection, see Section 17.1.19 on page 46) are resolved without any further require-
ments on the application program, neither on the usage of the buffers, nor on the
declaration of application routines that are involved in invoking MPI procedures.

All of these rules are valid independently of whether the MPI routine interfaces in the
mpi_f08 and mpi modules are internally defined with an INTERFACE or CONTAINS construct,
and with or without BIND(C), and also if mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of the Fortran 2003
standard if the MPI interfaces are defined without BIND(C). Additional compiler sup-
port may be necessary if BIND(C) is used. Some of these additional requirements
are defined in the Fortran TS 29113 [3]. Some of these requirements for MPI-3.0 are
beyond the scope of TS 29113. (End of advice to implementors.)

Further requirements apply if the MPI library internally uses BIND(C) routine interfaces
(i.e., for a full implementation of mpi_f08):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 19

• Non-buffer arguments are INTEGER, INTEGER(KIND=...), CHARACTER(LEN=*),
LOGICAL, and BIND(C) derived types (handles and status in mpi_f08), variables and
arrays; function results are DOUBLE PRECISION. All these types must be valid as
dummy arguments in the BIND(C) MPI routine interfaces. When compiling an MPI
application, the compiler should not issue warnings indicating that these types may
not be interoperable with an existing type in C. Some of these types are already valid
in BIND(C) interfaces since Fortran 2003, some may be valid based on TS 29113 (e.g.,
CHARACTER*(*)).

• OPTIONAL dummy arguments are also valid within BIND(C) interfaces. This require-
ment is fulfilled if TS 29113 is fully supported by the compiler.

17.1.8 Additional Support for Fortran Register-Memory-Synchronization

As described in Section 17.1.17 on page 36, a dummy call may be necessary to tell the
compiler that registers are to be flushed for a given buffer or that accesses to a buffer may
not be moved across a given point in the execution sequence. Only a Fortran binding exists
for this call.

MPI_F_SYNC_REG(buf)

INOUT buf initial address of buffer (choice)

ticket-248T.
MPI_F_sync_reg(buf) BIND(C)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

MPI_F_SYNC_REG(buf)

<type> buf(*)

This routine has no executable statements. It must be compiled in the MPI library in
such a manner that a Fortran compiler cannot detect in the module that the routine has
an empty body. It is used only to force the compiler to flush a cached register value of a
variable or buffer back to memory (when necessary), or to invalidate the register value.

Rationale. This function is not available in other languages because it would not be
useful. This routine has no ierror return argument because there is no operation that
can fail. (End of rationale.)

Advice to implementors. This routine can be bound to a C routine to minimize
the risk that the Fortran compiler can learn that this routine is empty (and that
the call to this routine can be removed as part of an optimization). However, it is
explicitly allowed to implement this routine within the mpi_f08 module according to
the definition for the mpi module or mpif.h to circumvent the overhead of building
the internal dope vector to handle the assumed-type, assumed-rank argument. (End
of advice to implementors.)

Rationale. This routine is not defined with TYPE(*), DIMENSION(*), i.e., assumed
size instead of assumed rank, because this would restrict the usability to “simply
contiguous” arrays and would require overloading with another interface for scalar
arguments. (End of rationale.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 17. LANGUAGE BINDINGS

Advice to users. If only a part of an array (e.g., defined by a subscript triplet) is
used in a nonblocking routine, it is recommended to pass the whole array to
MPI_F_SYNC_REG anyway to minimize the overhead of this no-operation call. Note
that this routine need not be called if MPI_ASYNC_PROTECTS_NONBLOCKING is
.TRUE. and the application fully uses the facilities of ASYNCHRONOUS arrays. (End of
advice to users.)

17.1.9 Additional Support for Fortran Numeric Intrinsic Types

MPI provides a small number of named datatypes that correspond to named intrinsic types
supported by C and Fortran. These include MPI_INTEGER, MPI_REAL, MPI_INT,
MPI_DOUBLE, etc., as well as the optional types MPI_REAL4, MPI_REAL8, etc. There is a
one-to-one correspondence between language declarations and MPI types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These
types are declared using an intrinsic type (one of INTEGER, REAL, COMPLEX, LOGICAL, and
CHARACTER) with an optional integer KIND parameter that selects from among one or more
variants. The specific meaning of different KIND values themselves are implementation
dependent and not specified by the language. Fortran provides the KIND selection functions
selected_real_kind for REAL and COMPLEX types, and selected_int_kind for INTEGER

types that allow users to declare variables with a minimum precision or number of digits.
These functions provide a portable way to declare KIND-parameterized REAL, COMPLEX, and
INTEGER variables in Fortran. This scheme is backward compatible with Fortran 77. REAL

and INTEGER Fortran variables have a default KIND if none is specified. Fortran DOUBLE

PRECISION variables are of intrinsic type REAL with a non-default KIND. The following two
declarations are equivalent:

double precision x

real(KIND(0.0d0)) x

MPI provides two orthogonal methods for handling communication buffers of numeric
intrinsic types. The first method (see the following section) can be used when variables have
been declared in a portable way — using default KIND or using KIND parameters obtained
with the selected_int_kind or selected_real_kind functions. With this method, MPI
automatically selects the correct data size (e.g., 4 or 8 bytes) and provides representation
conversion in heterogeneous environments. The second method (see “Support for size-
specific MPI Datatypes” on page 24) gives the user complete control over communication
by exposing machine representations.

Parameterized Datatypes with Specified Precision and Exponent Range

MPI provides named datatypes corresponding to standard Fortran 77 numeric types:
MPI_INTEGER, MPI_COMPLEX, MPI_REAL, MPI_DOUBLE_PRECISION and
MPI_DOUBLE_COMPLEX. MPI automatically selects the correct data size and provides rep-
resentation conversion in heterogeneous environments. The mechanism described in this
section extends this model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables
are declared (perhaps indirectly) using selected_real_kind(p, r) to determine the KIND

parameter, where p is decimal digits of precision and r is an exponent range. Implicitly
MPI maintains a two-dimensional array of predefined MPI datatypes D(p, r). D(p, r) is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 21

defined for each value of (p, r) supported by the compiler, including pairs for which one
value is unspecified. Attempting to access an element of the array with an index (p, r) not
supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX
datatypes. For integers, there is a similar implicit array related to selected_int_kind and
indexed by the requested number of digits r. Note that the predefined datatypes contained
in these implicit arrays are not the same as the named MPI datatypes MPI_REAL, etc., but
a new set.

Advice to implementors. The above description is for explanatory purposes only. It
is not expected that implementations will have such internal arrays. (End of advice
to implementors.)

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a
much smaller number of KIND parameters supported by the compiler. KIND parameters
are not specified by the language and are not portable. From the language point of
view intrinsic types of the same base type and KIND parameter are of the same type. In
order to allow interoperability in a heterogeneous environment, MPI is more stringent.
The corresponding MPI datatypes match if and only if they have the same (p,r) value
(REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than
there are fundamental language types. (End of advice to users.)

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)
ticket-248T.

MPI_Type_create_f90_real(p, r, newtype, ierror) BIND(C)

INTEGER, INTENT(IN) :: p, r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

This function returns a predefined MPI datatype that matches a REAL variable of KIND
selected_real_kind(p, r). In the model described above it returns a handle for the el-
ement D(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r)

(but not both). Analogously, either p or r may be set to MPI_UNDEFINED. In communica-
tion, an MPI datatype A returned by MPI_TYPE_CREATE_F90_REAL matches a datatype
B if and only if B was returned by MPI_TYPE_CREATE_F90_REAL called with the same
values for p and r or B is a duplicate of such a datatype. Restrictions on using the returned
datatype with the “external32” data representation are given on page 24.

It is erroneous to supply values for p and r not supported by the compiler.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 17. LANGUAGE BINDINGS

MPI_TYPE_CREATE_F90_COMPLEX(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)
ticket-248T.

MPI_Type_create_f90_complex(p, r, newtype, ierror) BIND(C)

INTEGER, INTENT(IN) :: p, r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

This function returns a predefined MPI datatype that matches a
COMPLEX variable of KIND selected_real_kind(p, r). Either p or r may be omitted from
calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set
to MPI_UNDEFINED. Matching rules for datatypes created by this function are analogous to
the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions
on using the returned datatype with the “external32” data representation are given on
page 24.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits

(integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)
ticket-248T.

MPI_Type_create_f90_integer(r, newtype, ierror) BIND(C)

INTEGER, INTENT(IN) :: r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

This function returns a predefined MPI datatype that matches a INTEGER variable of
KIND selected_int_kind(r). Matching rules for datatypes created by this function are
analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL.
Restrictions on using the returned datatype with the “external32” data representation are
given on page 24.

It is erroneous to supply a value for r that is not supported by the compiler.
Example:

integer longtype, quadtype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 23

integer, parameter :: long = selected_int_kind(15)

integer(long) ii(10)

real(selected_real_kind(30)) x(10)

call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)

call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)

...

call MPI_SEND(ii, 10, longtype, ...)

call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are predefined
datatypes. They cannot be freed; they do not need to be committed; they can be
used with predefined reduction operations. There are two situations in which they
behave differently syntactically, but not semantically, from the MPI named predefined
datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to
retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time
initializers or otherwise accessed before a call to one of the
MPI_TYPE_CREATE_F90_XXX routines.

If a variable was declared specifying a non-default KIND value that was not obtained
with selected_real_kind() or selected_int_kind(), the only way to obtain a
matching MPI datatype is to use the size-based mechanism described in the next
section.

(End of advice to users.)

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_XXX with the same combination of (XXX,p,r). The appli-
cation is not allowed to free the returned predefined, unnamed datatype handles. To
prevent the creation of a potentially huge amount of handles, a high quality MPI imple-
mentation should return the same datatype handle for the same (REAL/COMPLEX/
INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call
to MPI_TYPE_CREATE_F90_XXX and using a hash table to find formerly generated
handles should limit the overhead of finding a previously generated datatype with
same combination of (XXX,p,r). (End of advice to implementors.)

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface
needs as input the original range and precision values to be able to define useful
and compiler-independent external (Section 13.7.2 on page 534) or user-defined (Sec-
tion 13.7.3 on page 535) data representations, and in order to be able to perform
automatic and efficient data conversions in a heterogeneous environment. (End of
rationale.)

We now specify how the datatypes described in this section behave when used with the
“external32” external data representation described in Section 13.7.2 on page 534.

The external32 representation specifies data formats for integer and floating point val-
ues. Integer values are represented in two’s complement big-endian format. Floating point

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 17. LANGUAGE BINDINGS

values are represented by one of three IEEE formats. These are the IEEE “Single,” “Dou-
ble,” and “Double Extended” formats, requiring 4, 8, and 16 bytes of storage, respectively.
For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16 bytes, with
15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the
“Double” format.

The external32 representations of the datatypes returned by
MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules.
For MPI_TYPE_CREATE_F90_REAL:

if (p > 33) or (r > 4931) then external32 representation

is undefined

else if (p > 15) or (r > 307) then external32_size = 16

else if (p > 6) or (r > 37) then external32_size = 8

else external32_size = 4

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for
MPI_TYPE_CREATE_F90_REAL.
For MPI_TYPE_CREATE_F90_INTEGER:

if (r > 38) then external32 representation is undefined

else if (r > 18) then external32_size = 16

else if (r > 9) then external32_size = 8

else if (r > 4) then external32_size = 4

else if (r > 2) then external32_size = 2

else external32_size = 1

If the external32 representation of a datatype is undefined, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the external32 representation is undefined. These operations in-
clude MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL, and many MPI_FILE functions,
when the “external32” data representation is used. The ranges for which the external32
representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes

MPI provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths — MPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is
a unique machine representation. For every pair (typeclass, n) supported by a compiler,
MPI must provide a named size-specific datatype. The name of this datatype is of the form
MPI_<TYPE>n in C and Fortran where <TYPE> is one of REAL, INTEGER and COMPLEX,
and n is the length in bytes of the machine representation. This datatype locally matches
all variables of type (typeclass, n). The list of names for such types includes:

MPI_REAL4

MPI_REAL8

MPI_REAL16

MPI_COMPLEX8

MPI_COMPLEX16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 25

MPI_COMPLEX32

MPI_INTEGER1

MPI_INTEGER2

MPI_INTEGER4

MPI_INTEGER8

MPI_INTEGER16

One datatype is required for each representation supported by the compiler. To be backward
compatible with the interpretation of these types in MPI-1, we assume that the nonstandard
declarations REAL*n, INTEGER*n, always create a variable whose representation is of size n.
These datatypes may also be used for variables declared with KIND=INT8/16/32/64 or
KIND=REAL32/64/128, which are defined in the ISO_FORTRAN_ENV intrinsic module. Note
that the MPI datatypes and the REAL*n, INTEGER*n declarations count bytes whereas the
Fortran KIND values count bits. All these datatypes are predefined.

The following functions allow a user to obtain a size-specific MPI datatype for any
intrinsic Fortran type.

MPI_SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type (choice)

OUT size size of machine representation of that type (integer)

ticket-248T.
MPI_Sizeof(x, size, ierror) BIND(C)

TYPE(*), DIMENSION(..) :: x

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C sizeof operator but behaves slightly
differently. If given an array argument, it returns the size of the base element, not
the size of the whole array. (End of advice to users.)

Rationale. This function is not available in other languages because it would not be
useful. (End of rationale.)

MPI_TYPE_MATCH_SIZE(typeclass, size, datatype)

IN typeclass generic type specifier (integer)

IN size size, in bytes, of representation (integer)

OUT datatype datatype with correct type, size (handle)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *datatype)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 17. LANGUAGE BINDINGS

ticket-248T.
MPI_Type_match_size(typeclass, size, datatype, ierror) BIND(C)

INTEGER, INTENT(IN) :: typeclass, size

TYPE(MPI_Datatype), INTENT(OUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, DATATYPE, IERROR)

INTEGER TYPECLASS, SIZE, DATATYPE, IERROR

typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass. The function returns
an MPI datatype matching a local variable of type (typeclass, size).

This function returns a reference (handle) to one of the predefined named datatypes, not
a duplicate. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be used to obtain a
size-specific type that matches a Fortran numeric intrinsic type by first calling MPI_SIZEOF
in order to compute the variable size, and then calling MPI_TYPE_MATCH_SIZE to find
a suitable datatype. In C, one can use the C function sizeof(), instead of MPI_SIZEOF.
In addition, for variables of default kind the variable’s size can be computed by a call to
MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify a size not
supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the
correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)

{

switch(typeclass) {

case MPI_TYPECLASS_REAL: switch(size) {

case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;

case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;

default: error(...);

}

case MPI_TYPECLASS_INTEGER: switch(size) {

case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;

case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;

default: error(...);

}

... etc. ...

}

return MPI_SUCCESS;

}

(End of advice to implementors.)

Communication With Size-specific Types

The usual type matching rules apply to size-specific datatypes: a value sent with datatype
MPI_<TYPE>n can be received with this same datatype on another process. Most modern

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 27

computers use 2’s complement for integers and IEEE format for floating point. Thus, com-
munication using these size-specific datatypes will not entail loss of precision or truncation
errors.

Advice to users. Care is required when communicating in a heterogeneous environ-
ment. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

... initialize x ...

call MPI_SEND(x, xtype, 100, 1, ...)

else if (myrank .eq. 1) then

call MPI_RECV(x, xtype, 100, 0, ...)

endif

This may not work in a heterogeneous environment if the value of size is not the
same on process 1 and process 0. There should be no problem in a homogeneous
environment. To communicate in a heterogeneous environment, there are at least four
options. The first is to declare variables of default type and use the MPI datatypes
for these types, e.g., declare a variable of type REAL and use MPI_REAL. The second
is to use selected_real_kind or selected_int_kind and with the functions of the
previous section. The third is to declare a variable that is known to be the same
size on all architectures (e.g., selected_real_kind(12) on almost all compilers will
result in an 8-byte representation). The fourth is to carefully check representation
size before communication. This may require explicit conversion to a variable of size
that can be communicated and handshaking between sender and receiver to agree on
a size.

Note finally that using the “external32” representation for I/O requires explicit at-
tention to the representation sizes. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, zero, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 17. LANGUAGE BINDINGS

if (myrank .eq. 1) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, MPI_MODE_RDONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, zero, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

If processes 0 and 1 are on different machines, this code may not work as expected if
the size is different on the two machines. (End of advice to users.)

17.1.10 Problems With Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran
program. It is intended as advice to users, and clarifies how MPI interacts with Fortran. It
is intended to clarify, not add to, this standard.

As noted in the original MPI specification, the interface violates the Fortran standard
in several ways. While these may cause few problems for Fortran 77 programs, they become
more significant for Fortran 90 programs, so that users must exercise care when using new
Fortran 90 features. With Fortran 2008 and the new semantics defined in TS 29113, most
violations are resolved, and this is hinted at in an addendum to each item. The violations
were originally adopted and have been retained because they are important for the usability
of MPI. The rest of this section describes the potential problems in detail.

The following MPI features are inconsistent with Fortran 90 and Fortran 77.

1. An MPI subroutine with a choice argument may be called with different argument
types. When using the mpi_f08 module together with a compiler that supports For-
tran 2008 + TS 29113, this problem is resolved.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual
scalar argument. This is only solved for choice buffers through the use of
DIMENSION(..).

3. Nonblocking and split-collective MPI routines assume that actual arguments are passed
by address or descriptor and that arguments and the associated data are not copied
on entrance to or exit from the subroutine. This problem is solved with the use of the
ASYNCHRONOUS attribute.

4. An MPI implementation may read or modify user data (e.g., communication buffers
used by nonblocking communications) concurrently with a user program that is ex-
ecuting outside of MPI calls. This problem is resolved by relying on the extended
semantics of the ASYNCHRONOUS attribute as specified in TS 29113.

5. Several named “constants,” such as MPI_BOTTOM, MPI_IN_PLACE,
MPI_STATUS_IGNORE, MPI_STATUSES_IGNORE, MPI_ERRCODES_IGNORE,
MPI_UNWEIGHTED, MPI_WEIGHTS_EMPTY, MPI_ARGV_NULL, and MPI_ARGVS_NULL

are not ordinary Fortran constants and require a special implementation. See Sec-
tion 2.5.4 on page 15 for more information.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 29

6. The memory allocation routine MPI_ALLOC_MEM cannot be used from
Fortran 77/90/95 without a language extension (for example, Cray pointers) that
allows the allocated memory to be associated with a Fortran variable. Therefore,
address sized integers were used in MPI-2.0 – MPI-2.2. In Fortran 2003,
TYPE(C_PTR) entities were added, which allow a standard-conforming implementation
of the semantics of MPI_ALLOC_MEM. In MPI-3.0 and later, MPI_ALLOC_MEM has
an additional, overloaded interface to support this language feature. The use of Cray
pointers is deprecated. The mpi_f08 module only supports TYPE(C_PTR) pointers.

Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.

• MPI identifiers exceed 6 characters.

• MPI identifiers may contain underscores after the first character.

• MPI requires an include file, mpif.h. On systems that do not support include files,
the implementation should specify the values of named constants.

• Many routines in MPI have KIND-parameterized integers (e.g., MPI_ADDRESS_KIND

and MPI_OFFSET_KIND) that hold address information. On systems that do not sup-
port Fortran 90-style parameterized types, INTEGER*8 or INTEGER should be used
instead.

MPI-1 contained several routines that take address-sized information as input or return
address-sized information as output. In C such arguments were of type MPI_Aint and in
Fortran of type INTEGER. On machines where integers are smaller than addresses, these
routines can lose information. In MPI-2 the use of these functions has been deprecated and
they have been replaced by routines taking INTEGER arguments of KIND=MPI_ADDRESS_KIND.
A number of new MPI-2 functions also take INTEGER arguments of non-default KIND. See
Section 2.6 on page 17 and Section 4.1.1 on page 85 for more information.

Sections 17.1.11 through 17.1.19 describe several problems in detail which concern
the interaction of MPI and Fortran as well as their solutions. Some of these solutions
require special capabilities from the compilers. Major requirements are summarized in
Section 17.1.7 on page 17.

17.1.11 Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of different Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90, it is technically only allowed if the function is overloaded with a different function
for each type (see also Section 17.1.6 on page 14). In C, the use of void* formal arguments
avoids these problems. Similar to C, with Fortran 2008 + TS 29113 (and later) together with
the mpi_f08 module, the problem is avoided by declaring choice arguments with TYPE(*),

DIMENSION(..), i.e., as assumed-type and assumed-rank dummy arguments.
Using INCLUDE ’mpif.h’, the following code fragment is technically invalid and may

generate a compile-time error.

integer i(5)

real x(5)

...

call mpi_send(x, 5, MPI_REAL, ...)

call mpi_send(i, 5, MPI_INTEGER, ...)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 17. LANGUAGE BINDINGS

In practice, it is rare for compilers to do more than issue a warning. When using either
the mpi_f08 or mpi module, the problem is usually resolved through the assumed-type
and assumed-rank declarations of the dummy arguments, or with a compiler-dependent
mechanism that overrides type checking for choice arguments.

It is also technically invalid in Fortran to pass a scalar actual argument to an array
dummy argument that is not a choice buffer argument. Thus, when using the mpi_f08

or mpi module, the following code fragment usually generates an error since the dims and
periods arguments to MPI_CART_CREATE are declared as assumed size arrays INTEGER ::
DIMS(*) and LOGICAL :: PERIODS(*).

USE mpi_f08 ! or USE mpi

INTEGER size

CALL MPI_Cart_create(comm_old,1,size,.TRUE.,.TRUE.,comm_cart,ierror)

Although this is a non-conforming MPI call, compiler warnings are not expected (but may
occur) when using INCLUDE ’mpif.h’ and this include file does not use Fortran explicit
interfaces.

17.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets

Arrays with subscript triplets describe Fortran subarrays with or without strides, e.g.,

REAL a(100,100,100)

CALL MPI_Send(a(11:17, 12:99:3, 1:100), 7*30*100, MPI_REAL, ...)

The handling of subscript triplets depends on the value of the constant
MPI_SUBARRAYS_SUPPORTED:

• If MPI_SUBARRAYS_SUPPORTED equals .TRUE.:

Choice buffer arguments are declared as TYPE(*), DIMENSION(..). For example,
consider the following code fragment:

REAL s(100), r(100)

CALL MPI_Isend(s(1:100:5), 3, MPI_REAL, ..., rq, ierror)

CALL MPI_Wait(rq, status, ierror)

CALL MPI_Irecv(r(1:100:5), 3, MPI_REAL, ..., rq, ierror)

CALL MPI_Wait(rq, status, ierror)

In this case, the individual elements s(1), s(6), and s(11) are sent between the start
of MPI_ISEND and the end of MPI_WAIT even though the compiled code will not copy
s(1:100:5) to a real contiguous temporary scratch buffer. Instead, the compiled code
will pass a descriptor to MPI_ISEND that allows MPI to operate directly on s(1), s(6),
s(11), . . ., s(96). The called MPI_ISEND routine will take only the first three of these
elements due to the type signature “3, MPI_REAL”.

All nonblocking MPI functions (e.g., MPI_ISEND, MPI_PUT,
MPI_FILE_WRITE_ALL_BEGIN) behave as if the user-specified elements of choice
buffers are copied to a contiguous scratch buffer in the MPI runtime environment.
All datatype descriptions (in the example above, “3, MPI_REAL”) read and store

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 31

data from and to this virtual contiguous scratch buffer. Displacements in MPI de-
rived datatypes are relative to the beginning of this virtual contiguous scratch buffer.
Upon completion of a nonblocking receive operation (e.g., when MPI_WAIT on a cor-
responding MPI_Request returns), it is as if the received data has been copied from
the virtual contiguous scratch buffer back to the non-contiguous application buffer.
In the example above, r(1), r(6), and r(11) are guaranteed to be defined with the
received data when MPI_WAIT returns.

Note that the above definition does not supercede restrictions about buffers used with
non-blocking operations (e.g., those specified in Section 3.7.2).

Advice to implementors. The Fortran descriptor for TYPE(*), DIMENSION(..)

arguments contains enough information that, if desired, the MPI library can make
a real contiguous copy of non-contiguous user buffers when the nonblocking op-
eration is started, and release this buffer not before the nonblocking communi-
cation has completed (e.g., the MPI_WAIT routine). Efficient implementations
may avoid such additional memory-to-memory data copying. (End of advice to
implementors.)

Rationale. If MPI_SUBARRAYS_SUPPORTED equals .TRUE., non-contiguous
buffers are handled inside the MPI library instead of by the compiler through
argument association conventions. Therefore, the scope of MPI library scratch
buffers can be from the beginning of a nonblocking operation until the completion
of the operation although beginning and completion are implemented in different
routines. (End of rationale.)

• If MPI_SUBARRAYS_SUPPORTED equals .FALSE.:

Implicit in MPI is the idea of a contiguous chunk of memory accessible through a
linear address space. MPI copies data to and from this memory. An MPI program
specifies the location of data by providing memory addresses and offsets. In the C
language, sequence association rules plus pointers provide all the necessary low-level
structure.

In Fortran, array data is not necessarily stored contiguously. For example, the array
section A(1:N:2) involves only the elements of A with indices 1, 3, 5, The same is
true for a pointer array whose target is such a section. Most compilers ensure that an
array that is a dummy argument is held in contiguous memory if it is declared with
an explicit shape (e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do
this by making a copy of the array into contiguous memory.1

Because MPI dummy buffer arguments are assumed-size arrays if
MPI_SUBARRAYS_SUPPORTED equals .FALSE., this leads to a serious problem for a
nonblocking call: the compiler copies the temporary array back on return but MPI
continues to copy data to the memory that held it. For example, consider the following
code fragment:

real a(100)

call MPI_IRECV(a(1:100:2), MPI_REAL, 50, ...)

1Technically, the Fortran standard is worded to allow non-contiguous storage of any array data, unless
the dummy argument has the CONTIGUOUS attribute.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 17. LANGUAGE BINDINGS

Since the first dummy argument to MPI_IRECV is an assumed-size array (<type>
buf(*)), the array section a(1:100:2) is copied to a temporary before being passed
to MPI_IRECV, so that it is contiguous in memory. MPI_IRECV returns immediately,
and data is copied from the temporary back into the array a. Sometime later, MPI
may write to the address of the deallocated temporary. Copying is also a problem
for MPI_ISEND since the temporary array may be deallocated before the data has all
been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole
of an explicit-shape or assumed-size array or is a “simply contiguous” section such
as A(1:N) of such an array. (“Simply contiguous” is defined in the next paragraph.)
Also, many compilers treat allocatable arrays the same as they treat explicit-shape
arrays in this regard (though we know of one that does not). However, the same is not
true for assumed-shape and pointer arrays; since they may be discontiguous, copying
is often done. It is this copying that causes problems for MPI as described in the
previous paragraph.

According to the Fortran 2008 Standard, Section 6.5.4, a “simply contiguous” array
section is

name ([:,]... [<subscript>]:[<subscript>] [,<subscript>]...)

That is, there are zero or more dimensions that are selected in full, then one dimension
selected without a stride, then zero or more dimensions that are selected with a simple
subscript. The compiler can detect from analyzing the source code that the array is
contiguous. Examples are

A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N)

Because of Fortran’s column-major ordering, where the first index varies fastest, a
“simply contiguous” section of a contiguous array will also be contiguous.

The same problem can occur with a scalar argument. A compiler may make a copy of
scalar dummy arguments within a called procedure when passed as an actual argument
to a choice buffer routine. That this can cause a problem is illustrated by the example

real :: a

call user1(a,rq)

call MPI_WAIT(rq,status,ierr)

write (*,*) a

subroutine user1(buf,request)

call MPI_IRECV(buf,...,request,...)

end

If a is copied, MPI_IRECV will alter the copy when it completes the communication
and will not alter a itself.

Note that copying will almost certainly occur for an argument that is a non-trivial
expression (one with at least one operator or function call), a section that does not

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 33

select a contiguous part of its parent (e.g., A(1:n:2)), a pointer whose target is such
a section, or an assumed-shape array that is (directly or indirectly) associated with
such a section.

If a compiler option exists that inhibits copying of arguments, in either the calling or
called procedure, this must be employed.

If a compiler makes copies in the calling procedure of arguments that are explicit-
shape or assumed-size arrays, “simply contiguous” array sections of such arrays, or
scalars, and if no compiler option exists to inhibit such copying, then the compiler
cannot be used for applications that use MPI_GET_ADDRESS, or any nonblocking
MPI routine. If a compiler copies scalar arguments in the called procedure and there
is no compiler option to inhibit this, then this compiler cannot be used for applications
that use memory references across subroutine calls as in the example above.

17.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts

Fortran arrays with vector subscripts describe subarrays containing a possibly irregular
set of elements

REAL a(100)

CALL MPI_Send(A((/7,9,23,81,82/)), 5, MPI_REAL, ...)

Arrays with a vector subscript must not be used as actual choice buffer arguments in
any nonblocking or split collective MPI operations. They may, however, be used in blocking
MPI operations.

17.1.14 Special Constants

MPI requires a number of special “constants” that cannot be implemented as normal Fortran
constants, e.g., MPI_BOTTOM. The complete list can be found in Section 2.5.4 on page 15.
In C, these are implemented as constant pointers, usually as NULL and are used where the
function prototype calls for a pointer to a variable, not the variable itself.

In Fortran, using special values for the constants (e.g., by defining them through
parameter statements) is not possible because an implementation cannot distinguish these
values from valid data. Typically these constants are implemented as predefined static vari-
ables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that the target
compiler passes data by address. Inside the subroutine, the address of the actual choice
buffer argument can be compared with the address of such a predefined static variable.

These special constants also cause an exception with the usage of Fortran INTENT: with
USE mpi_f08, the attributes INTENT(IN), INTENT(OUT), and INTENT(INOUT) are used in the
Fortran interface. In most cases, INTENT(IN) is used if the C interface uses call-by-value.
For all buffer arguments and for dummy arguments that may be modified and allow one of
these special constants as input, an INTENT is not specified.

17.1.15 Fortran Derived Types

MPI supports passing Fortran entities of BIND(C) and SEQUENCE derived types to choice
dummy arguments, provided no type component has the ALLOCATABLE or POINTER attribute.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 17. LANGUAGE BINDINGS

The following code fragment shows some possible ways to send scalars or arrays of
interoperable derived type in Fortran. The example assumes that all data is passed by
address.

type, BIND(C) :: mytype

integer :: i

real :: x

double precision :: d

logical :: l

end type mytype

type(mytype) :: foo, fooarr(5)

integer :: blocklen(4), type(4)

integer(KIND=MPI_ADDRESS_KIND) :: disp(4), base, lb, extent

call MPI_GET_ADDRESS(foo%i, disp(1), ierr)

call MPI_GET_ADDRESS(foo%x, disp(2), ierr)

call MPI_GET_ADDRESS(foo%d, disp(3), ierr)

call MPI_GET_ADDRESS(foo%l, disp(4), ierr)

base = disp(1)

disp(1) = disp(1) - base

disp(2) = disp(2) - base

disp(3) = disp(3) - base

disp(4) = disp(4) - base

blocklen(1) = 1

blocklen(2) = 1

blocklen(3) = 1

blocklen(4) = 1

type(1) = MPI_INTEGER

type(2) = MPI_REAL

type(3) = MPI_DOUBLE_PRECISION

type(4) = MPI_LOGICAL

call MPI_TYPE_CREATE_STRUCT(4, blocklen, disp, type, newtype, ierr)

call MPI_TYPE_COMMIT(newtype, ierr)

call MPI_SEND(foo%i, 1, newtype, dest, tag, comm, ierr)

! or

call MPI_SEND(foo, 1, newtype, dest, tag, comm, ierr)

! expects that base == address(foo%i) == address(foo)

call MPI_GET_ADDRESS(fooarr(1), disp(1), ierr)

call MPI_GET_ADDRESS(fooarr(2), disp(2), ierr)

extent = disp(2) - disp(1)

lb = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 35

call MPI_TYPE_CREATE_RESIZED(newtype, lb, extent, newarrtype, ierr)

call MPI_TYPE_COMMIT(newarrtype, ierr)

call MPI_SEND(fooarr, 5, newarrtype, dest, tag, comm, ierr)

Using the derived type variable foo instead of its first basic type element foo%i may
be impossible if the MPI library implements choice buffer arguments through overloading
instead of using TYPE(*), DIMENSION(..), or through a non-standardized extension such
as !$PRAGMA IGNORE_TKR; see Section 17.1.6 on page 14.

To use a derived type in an array requires a correct extent of the datatype handle
to take care of the alignment rules applied by the compiler. These alignment rules may
imply that there are gaps between the components of a derived type, and also between the
subsuquent elements of an array of a derived type. The extent of an interoperable derived
type (i.e., defined with BIND(C)) and a SEQUENCE derived type with the same content may
be different because C and Fortran may apply different alignment rules. As recommended
in the advice to users in Section 4.1.6, one should add an additional fifth structure element
with one numerical storage unit at the end of this structure to force in most cases that
the array of structures is contiguous. Even with such an additional element, one should
keep this resizing due to the special alignment rules that can be used by the compiler for
structures, as also mentioned in this advice.

Using the extended semantics defined in TS 29113, it is also possible to use entities
or derived types without either the BIND(C) or the SEQUENCE attribute as choice buffer
arguments; some additional constraints must be observed, e.g., no ALLOCATABLE or POINTER
type components may exist. In this case, the base address in the example must be changed
to become the address of foo instead of foo%i, because the Fortran compiler may rearrange
type components or add padding. Sending the structure foo should then also be performed
by providing it (and not foo%i) as actual argument for MPI_Send.

17.1.16 Optimization Problems, an Overview

MPI provides operations that may be hidden from the user code and run concurrently
with it, accessing the same memory as user code. Examples include the data transfer
for an MPI_IRECV. The optimizer of a compiler will assume that it can recognize periods
when a copy of a variable can be kept in a register without reloading from or storing to
memory. When the user code is working with a register copy of some variable while the
hidden operation reads or writes the memory copy, problems occur. These problems are
independent of the Fortran support method; i.e., they occur with the mpi_f08 module, the
mpi module, and the mpif.h include file.

This section shows four problematic usage areas (the abbrevations in parentheses are
used in the table below):

• Use of nonblocking routines or persistent requests (Nonbl.).

• Use of one-sided routines (1-sided).

• Use of MPI parallel file I/O split collective operations (Split).

• Use of MPI_BOTTOM together with absolute displacements in MPI datatypes, or rel-
ative displacements between two variables in such datatypes (Bottom).

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 17. LANGUAGE BINDINGS

The following compiler optimization strategies (valid for serial code) may cause prob-
lems in MPI applications:

• Code movement and register optimization problems; see Section 17.1.17 on page 36.

• Temporary data movement and temporary memory modifications; see Section 17.1.18
on page 43.

• Permanent data movement (e.g., through garbage collection); see Section 17.1.19 on
page 46.

Table 17.1 shows the only usage areas where these optimization problems may occur.

Optimization may cause a problem in
following usage areas

Nonbl. 1-sided Split Bottom

Code movement yes yes no yes
and register optimization

Temporary data movement yes yes yes no

Permanent data movement yes yes yes yes

Table 17.1: Occurrence of Fortran optimization problems in several usage areas

The solutions in the following sections are based on compromises:

• to minimize the burden for the application programmer, e.g., as shown in Sections
“Solutions” through “The (Poorly Performing) Fortran VOLATILE Attribute” on
pages 38–43,

• to minimize the drawbacks on compiler based optimization, and

• to minimize the requirements defined in Section 17.1.7 on page 17.

17.1.17 Problems with Code Movement and Register Optimization

Nonblocking Operations

If a variable is local to a Fortran subroutine (i.e., not in a module or a COMMON block), the
compiler will assume that it cannot be modified by a called subroutine unless it is an actual
argument of the call. In the most common linkage convention, the subroutine is expected
to save and restore certain registers. Thus, the optimizer will assume that a register which
held a valid copy of such a variable before the call will still hold a valid copy on return.

Example 17.1 shows extreme, but allowed, possibilities. MPI_WAIT on a concurrent
thread modifies buf between the invocation of MPI_IRECV and the completion of MPI_WAIT.
But the compiler cannot see any possibility that buf can be changed after MPI_IRECV has
returned, and may schedule the load of buf earlier than typed in the source. The compiler
has no reason to avoid using a register to hold buf across the call to MPI_WAIT. It also may
reorder the instructions as illustrated in the rightmost column.

Due to valid compiler code movement optimizations in Example 17.2, the content of
buf may already have been overwritten by the compiler when the content of buf is sent.
The code movement is permitted because the compiler cannot detect a possible access to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 37

Example 17.1 Fortran 90 register optimization — extreme.

Source compiled as or compiled as

REAL :: buf, b1 REAL :: buf, b1 REAL :: buf, b1

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req)

register = buf b1 = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call MPI_WAIT(req,..)

b1 = buf b1 = register

Example 17.2 Similar example with MPI_ISEND

Source compiled as with a possible MPI-internal
execution sequence

REAL :: buf, copy REAL :: buf, copy REAL :: buf, copy

buf = val buf = val buf = val

call MPI_ISEND(buf,..req) call MPI_ISEND(buf,..req) addr = &buf

copy = buf copy= buf copy = buf

buf = val_overwrite buf = val_overwrite

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call send(*addr) ! within

! MPI_WAIT

buf = val_overwrite

buf in MPI_WAIT (or in a second thread between the start of MPI_ISEND and the end of
MPI_WAIT).

Such register optimization is based on moving code; here, the access to buf was moved
from after MPI_WAIT to before MPI_WAIT. Note that code movement may also occur across
subroutine boundaries when subroutines or functions are inlined.

This register optimization/code movement problem for nonblocking operations does
not occur with MPI parallel file I/O split collective operations, because in the ..._BEGIN
and ..._END calls, the same buffer has to be provided as an actual argument. The register
optimization / code movement problem for MPI_BOTTOM and derived MPI datatypes may
occur in each blocking and nonblocking communication call, as well as in each parallel file
I/O operation.

One-sided Communication

An example with instruction reordering due to register optimization can be found in Sec-
tion 11.7.4 on page 463.

MPI_BOTTOM and Combining Independent Variables in Datatypes

This section is only relevant if the MPI program uses a buffer argument to an
MPI_SEND, MPI_RECV, etc., that hides the actual variables involved in the communica-
tion. MPI_BOTTOM with an MPI_Datatype containing absolute addresses is one example.
Creating a datatype which uses one variable as an anchor and brings along others by using
MPI_GET_ADDRESS to determine their offsets from the anchor is another. The anchor
variable would be the only one referenced in the call. Also attention must be paid if MPI

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 17. LANGUAGE BINDINGS

operations are used that run in parallel with the user’s application.
Example 17.3 shows what Fortran compilers are allowed to do.

Example 17.3 Fortran 90 register optimization.

This source . . . can be compiled as:

call MPI_GET_ADDRESS(buf,bufaddr, call MPI_GET_ADDRESS(buf,...)

ierror)

call MPI_TYPE_CREATE_STRUCT(1,1, call MPI_TYPE_CREATE_STRUCT(...)

bufaddr,

MPI_REAL,type,ierror)

call MPI_TYPE_COMMIT(type,ierror) call MPI_TYPE_COMMIT(...)

val_old = buf register = buf

val_old = register

call MPI_RECV(MPI_BOTTOM,1,type,...) call MPI_RECV(MPI_BOTTOM,...)

val_new = buf val_new = register

In Example 17.3, the compiler does not invalidate the register because it cannot see
that MPI_RECV changes the value of buf. The access to buf is hidden by the use of
MPI_GET_ADDRESS and MPI_BOTTOM.

Example 17.4 Similar example with MPI_SEND

This source . . . can be compiled as:

! buf contains val_old ! buf contains val_old

buf = val_new

call MPI_SEND(MPI_BOTTOM,1,type,...) call MPI_SEND(...)

! with buf as a displacement in type ! i.e. val_old is sent

!

! buf=val_new is moved to here

! and detected as dead code

! and therefore removed

!

buf = val_overwrite buf = val_overwrite

In Example 17.4, several successive assignments to the same variable buf can be com-
bined in a way such that only the last assignment is executed. “Successive” means that
no interfering load access to this variable occurs between the assignments. The compiler
cannot detect that the call to MPI_SEND statement is interfering because the load access
to buf is hidden by the usage of MPI_BOTTOM.

Solutions

The following sections show in detail how the problems with code movement and register
optimization can be portably solved. Application writers can partially or fully avoid these
compiler optimization problems by using one or more of the special Fortran declarations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 39

with the send and receive buffers used in nonblocking operations, or in operations in which
MPI_BOTTOM is used, or if datatype handles that combine several variables are used:

• Use of the Fortran ASYNCHRONOUS attribute.

• Use of the helper routine MPI_F_SYNC_REG, or an equivalent user-written dummy
routine.

• Declare the buffer as a Fortran module variable or within a Fortran common block.

• Use of the Fortran VOLATILE attribute.

Example 17.5 Protecting nonblocking communication with the ASYNCHRONOUS attribute.

USE mpi_f08

REAL, ASYNCHRONOUS :: b(0:101) ! elements 0 and 101 are halo cells

REAL :: bnew(0:101) ! elements 1 and 100 are newly computed

TYPE(MPI_Request) :: req(4)

INTEGER :: left, right, i

CALL MPI_Cart_shift(...,left,right,...)

CALL MPI_Irecv(b(0), ..., left, ..., req(1), ...)

CALL MPI_Irecv(b(101), ..., right, ..., req(2), ...)

CALL MPI_Isend(b(1), ..., left, ..., req(3), ...)

CALL MPI_Isend(b(100), ..., right, ..., req(4), ...)

#ifdef WITHOUT_OVERLAPPING_COMMUNICATION_AND_COMPUTATION

! Case (a)

CALL MPI_Waitall(4,req,...)

DO i=1,100 ! compute all new local data

bnew(i) = function(b(i-1), b(i), b(i+1))

END DO

#endif

#ifdef WITH_OVERLAPPING_COMMUNICATION_AND_COMPUTATION

! Case (b)

DO i=2,99 ! compute only elements for which halo data is not needed

bnew(i) = function(b(i-1), b(i), b(i+1))

END DO

CALL MPI_Waitall(4,req,...)

i=1 ! compute leftmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

i=100 ! compute rightmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

#endif

Each of these methods solves the problems of code movement and register optimization,
but may incur various degrees of performance impact, and may not be usable in every

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 17. LANGUAGE BINDINGS

application context. These methods may not be guaranteed by the Fortran standard, but
they must be guaranteed by a MPI-3.0 (and later) compliant MPI library and associated
compiler suite according to the requirements listed in Section 17.1.7 on page 17. The
performance impact of using MPI_F_SYNC_REG is expected to be low, that of using module
variables or the ASYNCHRONOUS attribute is expected to be low to medium, and that of using
the VOLATILE attribute is expected to be high or very high. Note that there is one attribute
that cannot be used for this purpose: the Fortran TARGET attribute does not solve code
movement problems in MPI applications.

The Fortran ASYNCHRONOUS Attribute

Declaring an actual buffer argument with the ASYNCHRONOUS Fortran attribute in a scoping
unit (or BLOCK) informs the compiler that any statement in the scoping unit may be executed
while the buffer is affected by a pending asynchronous Fortran input/output operation (since
Fortran 2003) or by an asynchronous communication (TS 29113 extension). Without the
extensions specified in TS 29113, a Fortran compiler may totally ignore this attribute if the
Fortran compiler implements asynchronous Fortran input/output operations with blocking
I/O. The ASYNCHRONOUS attribute protects the buffer accesses from optimizations through
code movements across routine calls, and the buffer itself from temporary and permanent
data movements. If the choice buffer dummy argument of a nonblocking MPI routine is
declared with ASYNCHRONOUS (which is mandatory for the mpi_f08 module, with allowable
exceptions listed in Section 17.1.6 on page 14), then the compiler has to guarantee call by
reference and should report a compile-time error if call by reference is impossible, e.g., if
vector subscripts are used. The MPI_ASYNC_PROTECTS_NONBLOCKING is set to .TRUE. if
both the protection of the actual buffer argument through ASYNCHRONOUS according to the
TS 29113 extension and the declaration of the dummy argument with ASYNCHRONOUS in the
Fortran support method is guaranteed for all nonblocking routines, otherwise it is set to
.FALSE..

The ASYNCHRONOUS attribute has some restrictions. Section 5.4.2 of the TS 29113
specifies:

“Asynchronous communication for a Fortran variable occurs through the action
of procedures defined by means other than Fortran. It is initiated by execution
of an asynchronous communication initiation procedure and completed by exe-
cution of an asynchronous communication completion procedure. Between the
execution of the initiation and completion procedures, any variable of which any
part is associated with any part of the asynchronous communication variable is
a pending communication affector. Whether a procedure is an asynchronous
communication initiation or completion procedure is processor dependent.

Asynchronous communication is either input communication or output com-
munication. For input communication, a pending communication affector shall
not be referenced, become defined, become undefined, become associated with a
dummy argument that has the VALUE attribute, or have its pointer association
status changed. For output communication, a pending communication affector
shall not be redefined, become undefined, or have its pointer association status
changed.”

In Example 17.5 Case (a) on page 39, the read accesses to b within function(b(i-1),

b(i), b(i+1)) cannot be moved by compiler optimizations to before the wait call because

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 41

b was declared as ASYNCHRONOUS. Note that only the elements 0, 1, 100, and 101 of b are in-
volved in asynchronous communication but by definition, the total variable b is the pending
communication affector and is usable for input and output asynchronous communication
between the MPI_I... routines and MPI_Waitall. Case (a) works fine because the read
accesses to b occur after the communication has completed.

In Case (b), the read accesses to b(1:100) in the loop i=2,99 are read accesses to
a pending communication affector while input communication (i.e., the two MPI_Irecv

calls) is pending. This is a contradiction to the rule that for input communication, a
pending communication affector shall not be referenced. The problem can be solved by using
separate variables for the halos and the inner array, or by splitting a common array into
disjoint subarrays which are passed through different dummy arguments into a subroutine,
as shown in Example 17.9 on page 47.

If one does not overlap communication and computation on the same variable, then all
optimization problems can be solved through the ASYNCHRONOUS attribute.

The problems with MPI_BOTTOM, as shown in Example 17.3 and Example 17.4, can
also be solved by declaring the buffer buf with the ASYNCHRONOUS attribute.

In some MPI routines, a buffer dummy argument is defined as ASYNCHRONOUS to guaran-
tee passing by reference, provided that the actual argument is also defined as ASYNCHRONOUS.

Calling MPI_F_SYNC_REG

The compiler may be prevented from moving a reference to a buffer across a call to an
MPI subroutine by surrounding the call by calls to an external subroutine with the buffer
as an actual argument. The MPI library provides the MPI_F_SYNC_REG routine for this
purpose; see Section 17.1.8 on page 19.

• The problems illustrated by the Examples 17.1 and 17.2 can be solved by calling
MPI_F_SYNC_REG(buf) once immediately after MPI_WAIT.

Example 17.1 Example 17.2
can be solved with can be solved with
call MPI_IRECV(buf,..req) buf = val

call MPI_ISEND(buf,..req)

copy = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..)

call MPI_F_SYNC_REG(buf) call MPI_F_SYNC_REG(buf)

b1 = buf buf = val_overwrite

The call to MPI_F_SYNC_REG(buf) prevents moving the last line before the
MPI_WAIT call. Further calls to MPI_F_SYNC_REG(buf) are not needed because it
is still correct if the additional read access copy=buf is moved below MPI_WAIT and
before buf=val_overwrite.

• The problems illustrated by the Examples 17.3 and 17.4 can be solved with two
additional MPI_F_SYNC_REG(buf) statements; one directly before MPI_RECV/
MPI_SEND, and one directly after this communication operation.

Example 17.3 Example 17.4
can be solved with can be solved with

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 17. LANGUAGE BINDINGS

call MPI_F_SYNC_REG(buf) call MPI_F_SYNC_REG(buf)

call MPI_RECV(MPI_BOTTOM,...) call MPI_SEND(MPI_BOTTOM,...)

call MPI_F_SYNC_REG(buf) call MPI_F_SYNC_REG(buf)

The first call to MPI_F_SYNC_REG(buf) is needed to finish all load and store refer-
ences to buf prior to MPI_RECV/MPI_SEND; the second call is needed to assure that
any subsequent access to buf is not moved before MPI_RECV/SEND.

• In the example in Section 11.7.4 on page 463, two asynchronous accesses must be
protected: in Process 1, the access to bbbb must be protected similar to Example 17.1,
i.e., a call to MPI_F_SYNC_REG(bbbb) is needed after the second MPI_WIN_FENCE
to guarantee that further accesses to bbbb are not moved ahead of the call to
MPI_WIN_FENCE. In Process 2, both calls to MPI_WIN_FENCE together act as a
communication call with MPI_BOTTOM as the buffer. That is, before the first fence and
after the second fence, a call to MPI_F_SYNC_REG(buff) is needed to guarantee that
accesses to buff are not moved after or ahead of the calls to MPI_WIN_FENCE. Using
MPI_GET instead of MPI_PUT, the same calls to MPI_F_SYNC_REG are necessary.

Source of Process 1 Source of Process 2

bbbb = 777 buff = 999

call MPI_F_SYNC_REG(buff)

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_PUT(bbbb

into buff of process 2)

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_F_SYNC_REG(bbbb) call MPI_F_SYNC_REG(buff)

ccc = buff

• The temporary memory modification problem, i.e., Example 17.6 on page 44, can not
be solved with this method.

A User Defined Routine Instead of MPI_F_SYNC_REG

Instead of MPI_F_SYNC_REG, one can also use a user defined external subroutine, which
is separately compiled:

subroutine DD(buf)

integer buf

end

Note that if the intent is declared in an explicit interface for the external subroutine,
it must be OUT or INOUT. The subroutine itself may have an empty body, but the compiler
does not know this and has to assume that the buffer may be altered. For example, a call
to MPI_RECV with MPI_BOTTOM as buffer might be replaced by

call DD(buf)

call MPI_RECV(MPI_BOTTOM,...)

call DD(buf)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 43

Such a user-defined routine was introduced in MPI-2.0 and is still included here to document
such usage in existing application programs although new applications should prefer
MPI_F_SYNC_REG or one of the other possibilities. In an existing application, calls to
such a user-written routine should be substituted by a call to MPI_F_SYNC_REG because
the user-written routine may not be implemented in accordance with the rules specified in
Section 17.1.7 on page 17.

Module Variables and COMMON Blocks

An alternative to the previously mentioned methods is to put the buffer or variable into a
module or a common block and access it through a USE or COMMON statement in each scope
where it is referenced, defined or appears as an actual argument in a call to an MPI routine.
The compiler will then have to assume that the MPI procedure may alter the buffer or
variable, provided that the compiler cannot infer that the MPI procedure does not reference
the module or common block.

• This method solves problems of instruction reordering, code movement, and register
optimization related to nonblocking and one-sided communication, or related to the
usage of MPI_BOTTOM and derived datatype handles.

• Unfortunately, this method does not solve problems caused by asynchronous accesses
between the start and end of a nonblocking or one-sided communication. Specifically,
problems caused by temporary memory modifications are not solved.

The (Poorly Performing) Fortran VOLATILE Attribute

The VOLATILE attribute gives the buffer or variable the properties needed to avoid register
optimization or code movement problems, but it may inhibit optimization of any code
containing references or definitions of the buffer or variable. On many modern systems, the
performance impact will be large because not only register, but also cache optimizations
will not be applied. Therefore, use of the VOLATILE attribute to enforce correct execution
of MPI programs is discouraged.

The Fortran TARGET Attribute

The TARGET attribute does not solve the code movement problem because it is not specified
for the choice buffer dummy arguments of nonblocking routines. If the compiler detects that
the application program specifies the TARGET attribute for an actual buffer argument used
in the call to a nonblocking routine, the compiler may ignore this attribute if no pointer
reference to this buffer exists.

Rationale. The Fortran standardization body decided to extend the ASYNCHRONOUS

attribute within the TS 29113 to protect buffers in nonblocking calls from all kinds of
optimization, instead of extending the TARGET attribute. (End of rationale.)

17.1.18 Temporary Data Movement and Temporary Memory Modification

The compiler is allowed to temporarily modify data in memory. Normally, this problem may
occur only when overlapping communication and computation, as in Example 17.5, Case (b)
on page 39. Example 17.6 on page 44 also shows a possibility that could be problematic.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 17. LANGUAGE BINDINGS

Example 17.6 Overlapping Communication and Computation.

USE mpi_f08

REAL :: buf(100,100)

CALL MPI_Irecv(buf(1,1:100),...req,...)

DO j=1,100

DO i=2,100

buf(i,j)=....

END DO

END DO

CALL MPI_Wait(req,...)

Example 17.7 The compiler may substitute the nested loops through loop fusion.

REAL :: buf(100,100), buf_1dim(10000)

EQUIVALENCE (buf(1,1), buf_1dim(1))

CALL MPI_Irecv(buf(1,1:100),...req,...)

tmp(1:100) = buf(1,1:100)

DO j=1,10000

buf_1dim(h)=...

END DO

buf(1,1:100) = tmp(1:100)

CALL MPI_Wait(req,...)

In the compiler-generated, possible optimization in Example 17.7, buf(100,100) from
Example 17.6 is equivalenced with the 1-dimensional array buf_1dim(10000). The nonblock-
ing receive may asynchronously receive the data in the boundary buf(1,1:100) while the fused
loop is temporarily using this part of the buffer. When the tmp data is written back to buf,
the previous data of buf(1,1:100) is restored and the received data is lost. The principle
behind this optimization is that the receive buffer data buf(1,1:100) was temporarily moved
to tmp.

Example 17.8 shows a second possible optimization. The whole array is temporarily
moved to local_buf.

When storing local_buf back to the original location buf, then this implies overwriting
the section of buf that serves as a receive buffer in the nonblocking MPI call, i.e., this
storing back of local_buf is therefore likely to interfere with asynchronously received data
in buf(1,1:100).

Note that this problem may also occur:

• With the local buffer at the origin process, between an RMA communication call and
the ensuing synchronization call; see Chapter 11 on page 401.

• With the window buffer at the target process between two ensuing RMA synchroniza-
tion calls.

• With the local buffer in MPI parallel file I/O split collective operations between the
..._BEGIN and ..._END calls; see Section 13.5.4 on page 523.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 45

Example 17.8 Another optimization is based on the usage of a separate memory storage
area, e.g., in a GPU.

REAL :: buf(100,100), local_buf(100,100)

CALL MPI_Irecv(buf(1,1:100),...req,...)

local_buf = buf

DO j=1,100

DO i=2,100

local_buf(i,j)=....

END DO

END DO

buf = local_buf ! may overwrite asynchronously received

! data in buf(1,1:100)

CALL MPI_Wait(req,...)

As already mentioned in subsection The Fortran ASYNCHRONOUS attribute on
page 40 of Section 17.1.17, the ASYNCHRONOUS attribute can prevent compiler optimization
with temporary data movement, but only if the receive buffer and the local references are
separated into different variables, as shown in Example 17.9 on page 47 and in Example 17.10
on page 48.

Note also that the methods

• calling MPI_F_SYNC_REG (or such a user-defined routine),

• using module variables and COMMON blocks, and

• the TARGET attribute

cannot be used to prevent such temporary data movement. These methods influence com-
piler optimization when library routines are called. They cannot prevent the optimizations
of the code fragments shown in Example 17.6 and 17.7.

Note also that compiler optimization with temporary data movement should not be
prevented by declaring buf as VOLATILE because the VOLATILE implies that all accesses to
any storage unit (word) of buf must be directly done in the main memory exactly in the
sequence defined by the application program. The VOLATILE attribute prevents all register
and cache optimizations. Therefore, VOLATILE may cause a huge performance degradation.

Instead of solving the problem, it is better to prevent the problem: when overlapping
communication and computation, the nonblocking communication (or nonblocking or split
collective I/O) and the computation should be executed on different variables, and the
communication should be protected with the ASYNCHRONOUS attribute. In this case, the
temporary memory modifications are done only on the variables used in the computation
and cannot have any side effect on the data used in the nonblocking MPI operations.

Rationale. This is a strong restriction for application programs. To weaken this
restriction, a new or modified asynchronous feature in the Fortran language would
be necessary: an asynchronous attribute that can be used on parts of an array and
together with asynchronous operations outside the scope of Fortran. If such a feature
becomes available in a future edition of the Fortran standard, then this restriction
also may be weakened in a later version of the MPI standard. (End of rationale.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 17. LANGUAGE BINDINGS

In Example 17.9 on page 47 (which is a solution for the problem shown in Example 17.5
on page 39 and in Example 17.10 on page 48 (which is a solution for the problem shown
in Example 17.8 on page 45), the array is split into inner and halo part and both disjoint
parts are passed to a subroutine separated_sections. This routine overlaps the receiving
of the halo data and the calculations on the inner part of the array. In a second step, the
whole array is used to do the calculation on the elements where inner+halo is needed. Note
that the halo and the inner area are strided arrays. Those can be used in non-blocking
communication only with a TS 29113 based MPI library.

17.1.19 Permanent Data Movement

A Fortran compiler may implement permanent data movement during the execution of a
Fortran program. This would require that pointers to such data are appropriately updated.
An implementation with automatic garbage collection is one use case. Such permanent data
movement is in conflict with MPI in several areas:

• MPI datatype handles with absolute addresses in combination with MPI_BOTTOM.

• Nonblocking MPI operations (communication, one-sided, I/O) if the internally used
pointers to the buffers are not updated by the Fortran runtime, or if within an MPI
process, the data movement is executed in parallel with the MPI operation.

This problem can be also solved by using the ASYNCHRONOUS attribute for such buffers.
This MPI standard requires that the problems with permanent data movement do not
occur by imposing suitable restrictions on the MPI library together with the compiler used;
see Section 17.1.7 on page 17.

17.1.20 Comparison with C

In C, subroutines which modify variables that are not in the argument list will not cause
register optimization problems. This is because taking pointers to storage objects by using
the & operator and later referencing the objects by indirection on the pointer is an integral
part of the language. A C compiler understands the implications, so that the problem should
not occur, in general. However, some compilers do offer optional aggressive optimization
levels which may not be safe. Problems due to temporary memory modifications can also
occur in C. As above, the best advice is to avoid the problem: use different variables for
buffers in nonblocking MPI operations and computation that is executed while a nonblocking
operation is pending.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.1. FORTRAN SUPPORT 47

Example 17.9 Using separated variables for overlapping communication and computation
to allow the protection of nonblocking communication with the ASYNCHRONOUS attribute.

USE mpi_f08

REAL :: b(0:101) ! elements 0 and 101 are halo cells

REAL :: bnew(0:101) ! elements 1 and 100 are newly computed

INTEGER :: i

CALL separated_sections(b(0), b(1:100), b(101), bnew(0:101))

i=1 ! compute leftmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

i=100 ! compute rightmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

END

SUBROUTINE separated_sections(b_lefthalo, b_inner, b_righthalo, bnew)

USE mpi_f08

REAL, ASYNCHRONOUS :: b_lefthalo(0:0), b_inner(1:100), b_righthalo(101:101)

REAL :: bnew(0:101) ! elements 1 and 100 are newly computed

TYPE(MPI_Request) :: req(4)

INTEGER :: left, right, i

CALL MPI_Cart_shift(...,left,right,...)

CALL MPI_Irecv(b_lefthalo (0), ..., left, ..., req(1), ...)

CALL MPI_Irecv(b_righthalo(101), ..., right, ..., req(2), ...)

! b_lefthalo and b_righthalo is written asynchronously.

! There is no other concurrent access to b_lefthalo and b_righthalo.

CALL MPI_Isend(b_inner(1), ..., left, ..., req(3), ...)

CALL MPI_Isend(b_inner(100), ..., right, ..., req(4), ...)

DO i=2,99 ! compute only elements for which halo data is not needed

bnew(i) = function(b_inner(i-1), b_inner(i), b_inner(i+1))

! b_inner is read and sent at the same time.

! This is allowed based on the rules for ASYNCHRONOUS.

END DO

CALL MPI_Waitall(4,req,...)

END SUBROUTINE

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 17. LANGUAGE BINDINGS

Example 17.10 Protecting GPU optimizations with the ASYNCHRONOUS attribute.

USE mpi_f08

REAL :: buf(100,100)

CALL separated_sections(buf(1:1,1:100), buf(2:100,1:100))

END

SUBROUTINE separated_sections(buf_halo, buf_inner)

REAL, ASYNCHRONOUS :: buf_halo(1:1,1:100)

REAL :: buf_inner(2:100,1:100)

REAL :: local_buf(2:100,100)

CALL MPI_Irecv(buf_halo(1,1:100),...req,...)

local_buf = buf_inner

DO j=1,100

DO i=2,100

local_buf(i,j)=....

END DO

END DO

buf_inner = local_buf ! buf_halo is not touched!!!

CALL MPI_Wait(req,...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 49

17.2 Language Interoperability

17.2.1 Introduction

It is not uncommon for library developers to use one language to develop an application
library that may be called by an application program written in a different language. MPI
currently supports ISO (previously ANSI) C and Fortran bindings. It should be possible
for applications in any of the supported languages to call MPI-related functions in another
language.

Moreover, MPI allows the development of client-server code, with MPI communication
used between a parallel client and a parallel server. It should be possible to code the server
in one language and the clients in another language. To do so, communications should be
possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects We need to specify how MPI object
handles are passed between languages. We also need to specify what happens when
an MPI object is accessed in one language, to retrieve information (e.g., attributes)
set in another language.

Interlanguage communication We need to specify how messages sent in one language
can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extensible
to new languages, should MPI bindings be defined for such languages.

17.2.2 Assumptions

We assume that conventions exist for programs written in one language to call routines
written in another language. These conventions specify how to link routines in different
languages into one program, how to call functions in a different language, how to pass
arguments between languages, and the correspondence between basic data types in different
languages. In general, these conventions will be implementation dependent. Furthermore,
not every basic datatype may have a matching type in other languages. For example,
C character strings may not be compatible with Fortran CHARACTER variables. However,
we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array of
INTEGERs, can be passed to a C program. We also assume that Fortran and C have address-
sized integers. This does not mean that the default-size integers are the same size as
default-sized pointers, but only that there is some way to hold (and pass) a C address in a
Fortran integer. It is also assumed that INTEGER(KIND=MPI_OFFSET_KIND) can be passed
from Fortran to C as MPI_Offset.

17.2.3 Initialization

A call to MPI_INIT or MPI_INIT_THREAD, from any language, initializes MPI for execution
in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments
of the C version of MPI_INIT in order to propagate values for argc and argv to all

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 17. LANGUAGE BINDINGS

executing processes. Use of the Fortran version of MPI_INIT to initialize MPI may
result in a loss of this ability. (End of advice to users.)

The function MPI_INITIALIZED returns the same answer in all languages.
The function MPI_FINALIZE finalizes the MPI environments for all languages.
The function MPI_FINALIZED returns the same answer in all languages.
The function MPI_ABORT kills processes, irrespective of the language used by the

caller or by the processes killed.
The MPI environment is initialized in the same manner for all languages by

MPI_INIT. E.g., MPI_COMM_WORLD carries the same information regardless of language:
same processes, same environmental attributes, same error handlers.

Information can be added to info objects in one language and retrieved in another.

Advice to users. The use of several languages in one MPI program may require the
use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language specific MPI
libraries only to codes that need them, so as not to increase the size of binaries for codes
that use only one language. The MPI initialization code need perform initialization for
a language only if that language library is loaded. (End of advice to implementors.)

17.2.4 Transfer of Handles

Handles are passed between Fortran and C by using an explicit C wrapper to convert Fortran
handles to C handles. There is no direct access to C handles in Fortran.

The type definition MPI_Fint is provided in C for an integer of the size that matches a
Fortran INTEGER; usually, MPI_Fint will be equivalent to int. With the Fortran mpi module
or the mpif.h include file, a Fortran handle is a Fortran INTEGER value that can be used in
the following conversion functions. With the Fortran mpi_f08 module, a Fortran handle is a
BIND(C) derived type that contains an INTEGER component named MPI_VAL. This INTEGER
value can be used in the following conversion functions.

The following functions are provided in C to convert from a Fortran communicator han-
dle (which is an integer) to a C communicator handle, and vice versa. See also Section 2.6.4
on page 19.
MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI_Comm_f2c returns a
valid C handle to that same communicator; if comm = MPI_COMM_NULL (Fortran value),
then MPI_Comm_f2c returns a null C handle; if comm is an invalid Fortran handle, then
MPI_Comm_f2c returns an invalid C handle.
MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

The function MPI_Comm_c2f translates a C communicator handle into a Fortran handle
to the same communicator; it maps a null handle into a null handle and an invalid handle
into an invalid handle.

Similar functions are provided for the other types of opaque objects.
MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 51

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Request MPI_Request_f2c(MPI_Fint request)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_Win MPI_Win_f2c(MPI_Fint win)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

MPI_Message MPI_Message_f2c(MPI_Fint message)

MPI_Fint MPI_Message_c2f(MPI_Message message)

Example 17.11 The example below illustrates how the Fortran MPI function
MPI_TYPE_COMMIT can be implemented by wrapping the C MPI function
MPI_Type_commit with a C wrapper to do handle conversions. In this example a Fortran-C
interface is assumed where a Fortran function is all upper case when referred to from C and
arguments are passed by addresses.

! FORTRAN PROCEDURE

SUBROUTINE MPI_TYPE_COMMIT(DATATYPE, IERR)

INTEGER :: DATATYPE, IERR

CALL MPI_X_TYPE_COMMIT(DATATYPE, IERR)

RETURN

END

/* C wrapper */

void MPI_X_TYPE_COMMIT(MPI_Fint *f_handle, MPI_Fint *ierr)

{

MPI_Datatype datatype;

datatype = MPI_Type_f2c(*f_handle);

*ierr = (MPI_Fint)MPI_Type_commit(&datatype);

*f_handle = MPI_Type_c2f(datatype);

return;

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 17. LANGUAGE BINDINGS

}

The same approach can be used for all other MPI functions. The call to MPI_XXX_f2c
(resp. MPI_XXX_c2f) can be omitted when the handle is an OUT (resp. IN) argument,
rather than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case,
where a C wrapper is used to allow Fortran code to call a C library, or C code to
call a Fortran library. The use of C wrappers is much more likely than the use of
Fortran wrappers, because it is much more likely that a variable of type INTEGER can
be passed to C, than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument
list allows the generation of efficient inlined code when these functions are simple
(e.g., the identity). The conversion function in the wrapper does not catch an invalid
handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments. (End of rationale.)

17.2.5 Status

The following two procedures are provided in C to convert from a Fortran (with the mpi

module or mpif.h) status (which is an array of integers) to a C status (which is a structure),
and vice versa. The conversion occurs on all the information in status, including that which
is hidden. That is, no status information is lost in the conversion.
int MPI_Status_f2c(const MPI_Fint *f_status, MPI_Status *c_status)

If f_status is a valid Fortran status, but not the Fortran value of MPI_STATUS_IGNORE

or MPI_STATUSES_IGNORE, then MPI_Status_f2c returns in c_status a valid C status with
the same content. If f_status is the Fortran value of MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE, or if f_status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status,
and returns the same answers when queried for count, elements, and cancellation. The
conversion function may be called with a Fortran status argument that has an undefined
error field, in which case the value of the error field in the C status argument is undefined.

Two global variables of type MPI_Fint*, MPI_F_STATUS_IGNORE and
MPI_F_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE defined in
the mpi module or mpif.h. These are global variables, not C constant expressions and
cannot be used in places where C requires constant expressions. Their value is defined only
between the calls to MPI_INIT and MPI_FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:
int MPI_Status_c2f(const MPI_Status *c_status, MPI_Fint *f_status)

This call converts a C status into a Fortran status, and has a behavior similar to
MPI_Status_f2c. That is, the value of c_status must not be either MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE.

Advice to users. There exists no separate conversion function for arrays of statuses,
since one can simply loop through the array, converting each status with the routines
in Figure 17.1 on page 53. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 53

Rationale. The handling of MPI_STATUS_IGNORE is required in order to layer libraries
with only a C wrapper: if the Fortran call has passed MPI_STATUS_IGNORE, then the
C wrapper must handle this correctly. Note that this constant need not have the
same value in Fortran and C. If MPI_Status_f2c were to handle MPI_STATUS_IGNORE,
then the type of its result would have to be MPI_Status**, which was considered an
inferior solution. (End of rationale.)

Using the mpi_f08 Fortran module, a status is declared as TYPE(MPI_Status). The C
type MPI_F08_status can be used to pass a Fortran TYPE(MPI_Status) argument into a
C routine. Figure 17.1 illustrates all status conversion routines. Some are only available in
C, some in both C and Fortran.

Fortran types and subroutines

MPI_Status
M

P
I_

S
ta

tu
s_

f0
8
2
c(

)

MPI_Status_f2f08()

M
P

I_
S

ta
tu

s_
f2

c()

M
P

I_
S

ta
tu

s_
c2

f()

MPI_Status_f082f()

M
P

I_
S

ta
tu

s_
c2

f0
8
()

MPI_Fint array

C types and functions

(identical memory layout) (identical memory layout)

Equivalent types Equivalent types

MPI_F08_status

INTEGER array
of size MPI_STATUS_SIZE

MPI_Status_f082f()

MPI_Status_f2f08()
TYPE(MPI_Status)

Figure 17.1: Status conversion routines

int MPI_Status_f082c(const MPI_F08_status *f08_status, MPI_Status

*c_status)

This C routine converts a Fortran mpi_f08 TYPE(MPI_Status) into a C MPI_Status.
int MPI_Status_c2f08(const MPI_Status *c_status, MPI_F08_status

*f08_status)

This C routine converts a C MPI_Status into a Fortran mpi_f08 TYPE(MPI_Status).
Two global variables of type MPI_F08_status*, MPI_F08_STATUS_IGNORE and
MPI_F08_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE defined in
the mpi_f08 module. These are global variables, not C constant expressions and cannot be
used in places where C requires constant expressions. Their value is defined only between
the calls to MPI_INIT and MPI_FINALIZE and should not be changed by user code.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 17. LANGUAGE BINDINGS

Conversion between the two Fortran versions of a status can be done with:

MPI_STATUS_F2F08(f_status, f08_status)

IN f_status status object declared as array

OUT f08_status status object declared as named type

int MPI_Status_f2f08(MPI_Fint *f_status, MPI_F08_status *f08_status)
ticket-248T.

MPI_Status_f2f08(f_status, f08_status, ierror) BIND(C)

INTEGER, INTENT(IN) :: f_status(MPI_STATUS_SIZE)

TYPE(MPI_Status), INTENT(OUT) :: f08_status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_F2F08(F_STATUS, F08_STATUS, IERROR)

INTEGER :: F_STATUS(MPI_STATUS_SIZE)

TYPE(MPI_Status) :: F08_STATUS

INTEGER IERROR

This routine converts a Fortran INTEGER, DIMENSION(MPI_STATUS_SIZE) status array
into a Fortran mpi_f08 TYPE(MPI_Status).

MPI_STATUS_F082F(f08_status, f_status)

IN f08_status status object declared as named type

OUT f_status status object declared as array

int MPI_Status_f082f(MPI_F08_status *f08_status, MPI_Fint *f_status)
ticket-248T.

MPI_Status_f082f(f08_status, f_status, ierror) BIND(C)

TYPE(MPI_Status), INTENT(IN) :: f08_status

INTEGER, INTENT(OUT) :: f_status(MPI_STATUS_SIZE)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_F082F(F08_STATUS, F_STATUS, IERROR)

TYPE(MPI_Status) :: F08_STATUS

INTEGER :: F_STATUS(MPI_STATUS_SIZE)

INTEGER IERROR

This routine converts a Fortran mpi_f08 TYPE(MPI_Status) into a Fortran INTEGER,
DIMENSION(MPI_STATUS_SIZE) status array.

17.2.6 MPI Opaque Objects

Unless said otherwise, opaque objects are “the same” in all languages: they carry the same
information, and have the same meaning in both languages. The mechanism described
in the previous section can be used to pass references to MPI objects from language to
language. An object created in one language can be accessed, modified or freed in another
language.

We examine below in more detail issues that arise for each type of MPI object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 55

Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like
MPI_TYPE_GET_EXTENT will return the same information in all languages. If a datatype
defined in one language is used for a communication call in another language, then the
message sent will be identical to the message that would be sent from the first language:
the same communication buffer is accessed, and the same representation conversion is per-
formed, if needed. All predefined datatypes can be used in datatype constructors in any
language. If a datatype is committed, it can be used for communication in any language.

The function MPI_GET_ADDRESS returns the same value in all languages. Note that
we do not require that the constant MPI_BOTTOM have the same value in all languages (see
Section 17.2.9 on page 61).

Example 17.12

! FORTRAN CODE

REAL :: R(5)

INTEGER :: TYPE, IERR, AOBLEN(1), AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) :: AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS(R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)

{

int count = 5;

int lens[2] = {1,1};

MPI_Aint displs[2];

MPI_Datatype types[2], newtype;

/* create an absolute datatype for buffer that consists */

/* of count, followed by R(5) */

MPI_Get_address(&count, &displs[0]);

displs[1] = 0;

types[0] = MPI_INT;

types[1] = MPI_Type_f2c(*ftype);

MPI_Type_create_struct(2, lens, displs, types, &newtype);

MPI_Type_commit(&newtype);

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);

/* the message sent contains an int count of 5, followed */

/* by the 5 REAL entries of the Fortran array R. */

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 17. LANGUAGE BINDINGS

}

Advice to implementors. The following implementation can be used: MPI addresses,
as returned by MPI_GET_ADDRESS, will have the same value in all languages. One
obvious choice is that MPI addresses be identical to regular addresses. The address
is stored in the datatype, when datatypes with absolute addresses are constructed.
When a send or receive operation is performed, then addresses stored in a datatype
are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI_BOTTOM. Thus, if MPI_BOTTOM

is zero then a send or receive call with buf = MPI_BOTTOM is implemented exactly
as a call with a regular buffer argument: in both cases the base address is buf. On the
other hand, if MPI_BOTTOM is not zero, then the implementation has to be slightly
different. A test is performed to check whether buf = MPI_BOTTOM. If true, then the
base address is zero, otherwise it is buf. In particular, if MPI_BOTTOM does not have
the same value in Fortran and C, then an additional test for buf = MPI_BOTTOM is
needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI_BOTTOM even in C, so as
to distinguish it from a NULL pointer. If MPI_BOTTOM = c then one can still avoid
the test buf = MPI_BOTTOM, by using the displacement from MPI_BOTTOM, i.e., the
regular address - c, as the MPI address returned by MPI_GET_ADDRESS and stored
in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associ-
ated with communicators and files, attribute copy and delete functions are associated with
attribute keys, reduce operations are associated with operation objects, etc. In a multilan-
guage environment, a function passed in an MPI call in one language may be invoked by an
MPI call in another language. MPI implementations must make sure that such invocation
will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This
tag is set when the callback function is passed in by the library function (which is
presumably different for each language and language support method), and is used
to generate the right calling sequence when the callback function is invoked. (End of
advice to implementors.)

Advice to users. If a subroutine written in one language or Fortran support method
wants to pass a callback routine including the predefined Fortran functions (e.g.,
MPI_COMM_NULL_COPY_FN) to another application routine written in another lan-
guage or Fortran support method, then it must be guaranteed that both routines use
the callback interface definition that is defined for the argument when passing the
callback to an MPI routine (e.g., MPI_COMM_CREATE_KEYVAL); see also the advice
to users on page ??. (End of advice to users.)

Error Handlers

Advice to implementors. Error handlers, have, in C, a variable length argument list.
It might be useful to provide to the handler information on the language environment
where the error occurred. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 57

Reduce Operations

All predefined named and unnamed datatypes as listed in Section 5.9.2 on page 176 can
be used in the listed predefined operations independent of the programming language from
which the MPI routine is called.

Advice to users. Reduce operations receive as one of their arguments the datatype
of the operands. Thus, one can define “polymorphic” reduce operations that work for
C and Fortran datatypes. (End of advice to users.)

17.2.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute
values can be set in one language and accessed in another. To achieve this, attribute keys
will be allocated in an integer range that is valid all languages. The same holds true for
system-defined attribute values (such as MPI_TAG_UB, MPI_WTIME_IS_GLOBAL, etc.).

Attribute keys declared in one language are associated with copy and delete functions in
that language (the functions provided by the MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL
call). When a communicator is duplicated, for each attribute, the corresponding copy
function is called, using the right calling convention for the language of that function; and
similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as “C” or
“Fortran” and that the language tag be checked in order to use the right calling
convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 6.7 on page 265 defines
attributes arguments to be of type void* in C, and of type INTEGER, in Fortran. On some
systems, INTEGERs will have 32 bits, while C pointers will have 64 bits. This is a problem if
communicator attributes are used to move information from a Fortran caller to a C callee,
or vice-versa.

MPI behaves as if it stores, internally, address sized attributes. If Fortran INTEGERs
are smaller, then the (deprecated) Fortran function MPI_ATTR_GET will return the least
significant part of the attribute word; the (deprecated) Fortran function MPI_ATTR_PUT
will set the least significant part of the attribute word, which will be sign extended to the
entire word. (These two functions may be invoked explicitly by user code, or implicitly, by
attribute copying callback functions.)

As for addresses, new functions are provided that manipulate Fortran address sized
attributes, and have the same functionality as the old functions in C. These functions are
described in Section 6.7 on page 265. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer-
valued attributes. C attribute functions put and get address-valued attributes. Fortran
attribute functions put and get integer-valued attributes. When an integer-valued attribute
is accessed from C, then MPI_XXX_get_attr will return the address of (a pointer to) the
integer-valued attribute, which is a pointer to MPI_Aint if the attribute was stored with
Fortran MPI_XXX_SET_ATTR, and a pointer to int if it was stored with the deprecated
Fortran MPI_ATTR_PUT. When an address-valued attribute is accessed from Fortran, then
MPI_XXX_GET_ATTR will convert the address into an integer and return the result of this
conversion. This conversion is lossless if new style attribute functions are used, and an

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 CHAPTER 17. LANGUAGE BINDINGS

integer of kind MPI_ADDRESS_KIND is returned. The conversion may cause truncation if
deprecated attribute functions are used. In C, the deprecated routines MPI_Attr_put and
MPI_Attr_get behave identical to MPI_Comm_set_attr and MPI_Comm_get_attr.

Example 17.13
A. Setting an attribute value in C

int set_val = 3;

struct foo set_struct;

/* Set a value that is a pointer to an int */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval1, &set_val);

/* Set a value that is a pointer to a struct */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval2, &set_struct);

/* Set an integer value */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval3, (void *) 17);

B. Reading the attribute value in C

int flag, *get_val;

struct foo *get_struct;

/* Upon successful return, get_val == &set_val

(and therefore *get_val == 3) */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &get_val, &flag);

/* Upon successful return, get_struct == &set_struct */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &get_struct, &flag);

/* Upon successful return, get_val == (void*) 17 */

/* i.e., (MPI_Aint) get_val == 17 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval3, &get_val, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG

INTEGER IERR, GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val, possibly truncated

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)

! Upon successful return, GET_STRUCT == &set_struct, possibly truncated

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)

! Upon successful return, GET_VAL == 17

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 59

LOGICAL FLAG

INTEGER IERR

INTEGER (KIND=MPI_ADDRESS_KIND) GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)

! Upon successful return, GET_STRUCT == &set_struct

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)

! Upon successful return, GET_VAL == 17

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

Example 17.14 A. Setting an attribute value with the (deprecated) Fortran MPI-1 call

INTEGER IERR, VAL

VAL = 7

CALL MPI_ATTR_PUT(MPI_COMM_WORLD, KEYVAL, VAL, IERR)

B. Reading the attribute value in C

int flag;

int *value;

/* Upon successful return, value points to internal MPI storage and

*value == (int) 7 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval, &value, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG

INTEGER IERR, VALUE

! Upon successful return, VALUE == 7

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG

INTEGER IERR

INTEGER (KIND=MPI_ADDRESS_KIND) VALUE

! Upon successful return, VALUE == 7 (sign extended)

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)

Example 17.15 A. Setting an attribute value via a Fortran MPI-2 call

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 17. LANGUAGE BINDINGS

INTEGER IERR

INTEGER(KIND=MPI_ADDRESS_KIND) VALUE1

INTEGER(KIND=MPI_ADDRESS_KIND) VALUE2

VALUE1 = 42

VALUE2 = INT(2, KIND=MPI_ADDRESS_KIND) ** 40

CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, IERR)

CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, IERR)

B. Reading the attribute value in C

int flag;

MPI_Aint *value1, *value2;

/* Upon successful return, value1 points to internal MPI storage and

*value1 == 42 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &value1, &flag);

/* Upon successful return, value2 points to internal MPI storage and

*value2 == 2^40 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &value2, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG

INTEGER IERR, VALUE1, VALUE2

! Upon successful return, VALUE1 == 42

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, VALUE1, FLAG, IERR)

! Upon successful return, VALUE2 == 2^40, or 0 if truncation

! needed (i.e., the least significant part of the attribute word)

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, VALUE2, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG

INTEGER IERR

INTEGER (KIND=MPI_ADDRESS_KIND) VALUE1, VALUE2

! Upon successful return, VALUE1 == 42

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, FLAG, IERR)

! Upon successful return, VALUE2 == 2^40

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, FLAG, IERR)

The predefined MPI attributes can be integer valued or address-valued. Predefined
integer valued attributes, such as MPI_TAG_UB, behave as if they were put by a call to
the deprecated Fortran routine MPI_ATTR_PUT, i.e., in Fortran,
MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val, flag, ierr) will return
in val the upper bound for tag value; in C, MPI_Comm_get_attr(MPI_COMM_WORLD,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 61

MPI_TAG_UB, &p, &flag) will return in p a pointer to an int containing the upper bound
for tag value.

Address-valued predefined attributes, such as MPI_WIN_BASE behave as if they were
put by a C call, i.e., in Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag,
ierror) will return in val the base address of the window, converted to an integer. In C,
MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a pointer to the window
base, cast to (void *).

Rationale. The design is consistent with the behavior specified for predefined at-
tributes, and ensures that no information is lost when attributes are passed from
language to language. Because the language interoperability for predefined attributes
was defined based on MPI_ATTR_PUT, this definition is kept for compatibility reasons
although the routine itself is now deprecated. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as (1) address
attributes, (2) as INTEGER(KIND=MPI_ADDRESS_KIND) attributes or (3) as INTEGER

attributes, according to whether they were set in (1) C (with MPI_Attr_put or
MPI_XXX_set_attr), (2) in Fortran with MPI_XXX_SET_ATTR or (3) with the dep-
recated Fortran routine MPI_ATTR_PUT. Thus, the right choice can be made when
the attribute is retrieved. (End of advice to implementors.)

17.2.8 Extra-State

Extra-state should not be modified by the copy or delete callback functions. (This is obvious
from the C binding, but not obvious from the Fortran binding). However, these functions
may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be
a pointer to a data structure that is modified by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a COMMON array that is modified by the copy
or callback functions. In a multithreaded environment, users should be aware that distinct
threads may invoke the same callback function concurrently: if this function modifies state
associated with extra-state, then mutual exclusion code must be used to protect updates
and accesses to the shared state.

17.2.9 Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not
apply to constant handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM,
etc.) These handles need to be converted, as explained in Section 17.2.4. Constants that
specify maximum lengths of strings (see Section A.1.1 for a listing) have a value one less
in Fortran than C since in C the length includes the null terminating character. Thus,
these constants represent the amount of space which must be allocated to hold the largest
possible such string, rather than the maximum number of printable characters the string
could contain.

Advice to users. This definition means that it is safe in C to allocate a buffer to
receive a string using a declaration like

char name [MPI_MAX_OBJECT_NAME];

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 CHAPTER 17. LANGUAGE BINDINGS

(End of advice to users.)

Also constant “addresses,” i.e., special values for reference arguments that are not han-
dles, such as MPI_BOTTOM or MPI_STATUS_IGNORE may have different values in different
languages.

Rationale. The current MPI standard specifies that MPI_BOTTOM can be used in
initialization expressions in C, but not in Fortran. Since Fortran does not normally
support call by value, then MPI_BOTTOM in Fortran must be the name of a predefined
static variable, e.g., a variable in an MPI declared COMMON block. On the other hand,
in C, it is natural to take MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0
implies that NULL pointer cannot be distinguished from MPI_BOTTOM; it may be
that MPI_BOTTOM = 1 is better. See the advice to implementors in the Datatypes
subsection in Section 17.2.6) Requiring that the Fortran and C values be the same
will complicate the initialization process. (End of rationale.)

17.2.10 Interlanguage Communication

The type matching rules for communication in MPI are not changed: the datatype specifi-
cation for each item sent should match, in type signature, the datatype specification used to
receive this item (unless one of the types is MPI_PACKED). Also, the type of a message item
should match the type declaration for the corresponding communication buffer location,
unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is allowed if it
complies with these rules.

Example 17.16 In the example below, a Fortran array is sent from Fortran and received
in C.

! FORTRAN CODE

SUBROUTINE MYEXAMPLE()

USE mpi_f08

REAL :: R(5)

INTEGER :: IERR, MYRANK, AOBLEN(1)

TYPE(MPI_Datatype) :: TYPE, AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) :: AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS(R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYRANK, IERR)

IF (MYRANK.EQ.0) THEN

CALL MPI_SEND(MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)

ELSE

CALL C_ROUTINE(TYPE%MPI_VAL)

END IF

END SUBROUTINE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

17.2. LANGUAGE INTEROPERABILITY 63

/* C code */

void C_ROUTINE(MPI_Fint *fhandle)

{

MPI_Datatype type;

MPI_Status status;

type = MPI_Type_f2c(*fhandle);

MPI_Recv(MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);

}

MPI implementors may weaken these type matching rules, and allow messages to be sent
with Fortran types and received with C types, and vice versa, when those types match. I.e.,
if the Fortran type INTEGER is identical to the C type int, then an MPI implementation may
allow data to be sent with datatype MPI_INTEGER and be received with datatype MPI_INT.
However, such code is not portable.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] Michael Hennecke. A Fortran 90 interface to MPI version 1.1. Techni-
cal Report Internal Report 63/96, Rechenzentrum, Universität Karlsruhe, D-
76128 Karlsruhe, Germany, June 1996. Available via world wide web
from http://www.uni-karlsruhe.de/~Michael.Hennecke/Publications/#MPI_F90.
17.1.3

[2] International Organization for Standardization, Geneva, ISO/IEC 1539-1:2010. Infor-
mation technology – Programming languages – Fortran – Part 1: Base language, Novem-
ber 2010. 17.1.1, 17.1.2

[3] International Organization for Standardization, ISO/IEC/SC22/WG5 (For-
tran), Geneva, TS 29113. TS on further interoperability with C,
2012. http://www.nag.co.uk/sc22wg5/, successfully balloted DTS at
ftp://ftp.nag.co.uk/sc22wg5/N1901-N1950/N1917.pdf. 17.1.1, 17.1.1, 17.1.2, 17.1.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 64

Index

..._BEGIN, 37, 44

..._END, 37, 44

CONST:int, 57
CONST:MPI_ADDRESS_KIND, 29, 58
CONST:MPI_Aint, 29, 57
CONST:MPI_ARGV_NULL, 28
CONST:MPI_ARGVS_NULL, 28
CONST:MPI_ASYNC_PROTECTS_NONBLOCKING,

2, 3, 6, 8, 9, 18, 20, 40
CONST:MPI_BOTTOM, 4, 7, 14, 28, 33, 35,

37–39, 41–43, 46, 55, 56, 62
CONST:MPI_BYTE, 62
CONST:MPI_COMM_DUP_FN, 12
CONST:MPI_COMM_NULL_COPY_FN, 4,

56
CONST:MPI_COMM_WORLD, 50, 61
CONST:MPI_COMPLEX, 20
CONST:MPI_Datatype, 37
CONST:MPI_DOUBLE, 20
CONST:MPI_DOUBLE_COMPLEX, 20
CONST:MPI_DOUBLE_PRECISION, 20
CONST:MPI_ERRCODES_IGNORE, 28
CONST:MPI_Errhandler, 51
CONST:MPI_ERRORS_RETURN, 61
CONST:MPI_F08_status, 53
CONST:MPI_F08_STATUS_IGNORE, 53
CONST:MPI_F08_STATUSES_IGNORE, 53
CONST:MPI_F_STATUS_IGNORE, 52
CONST:MPI_F_STATUSES_IGNORE, 52
CONST:MPI_File, 51
CONST:MPI_Fint, 50, 50
CONST:MPI_Group, 50, 51
CONST:MPI_IN_PLACE, 7, 28
CONST:MPI_Info, 51
CONST:MPI_INT, 20, 61, 63
CONST:MPI_INTEGER, 20, 63
CONST:MPI_INTEGER8, 24
CONST:MPI_Message, 51
CONST:MPI_Offset, 49

CONST:MPI_OFFSET_KIND, 29
CONST:MPI_Op, 51
CONST:MPI_PACKED, 62
CONST:MPI_REAL, 20, 21, 27
CONST:MPI_REAL4, 20, 24
CONST:MPI_REAL8, 20
CONST:MPI_Request, 31, 51
CONST:MPI_Status, 5, 52–54
CONST:MPI_STATUS_IGNORE, 7, 28, 52,

53, 62
CONST:MPI_STATUS_SIZE, 8
CONST:MPI_STATUSES_IGNORE, 28, 52,

53
CONST:MPI_SUBARRAYS_SUPPORTED,

2, 3, 6, 8–11, 14, 16–18, 30, 31
CONST:MPI_SUM, 61
CONST:MPI_TAG_UB, 57, 60
CONST:MPI_TYPECLASS_COMPLEX, 26
CONST:MPI_TYPECLASS_INTEGER, 26
CONST:MPI_TYPECLASS_REAL, 26
CONST:MPI_UNDEFINED, 21, 22
CONST:MPI_UNWEIGHTED, 28
CONST:MPI_VAL, 50
CONST:MPI_WEIGHTS_EMPTY, 28
CONST:MPI_Win, 51
CONST:MPI_WIN_BASE, 61
CONST:MPI_WTIME_IS_GLOBAL, 57

EXAMPLES:ASYNCHRONOUS, 39, 47
EXAMPLES:Attributes between languages,

58
EXAMPLES:C/Fortran handle conversion, 51
EXAMPLES:Fortran 90 copying and sequence

problem, 30–32
EXAMPLES:Fortran 90 derived types, 34
EXAMPLES:Fortran 90 heterogeneous com-

munication (unsafe), 27
EXAMPLES:Fortran 90 invalid KIND, 22
EXAMPLES:Fortran 90 MPI_TYPE_MATCH_SIZE

implementation, 26

65

66 INDEX

EXAMPLES:Fortran 90 overlapping commu-
nication and computation, 44, 45, 48

EXAMPLES:Fortran 90 register optimization,
37, 38

EXAMPLES:Interlanguage communication, 62
EXAMPLES:MPI_GET_ADDRESS, 34, 35,

55
EXAMPLES:MPI_TYPE_COMMIT, 34, 35
EXAMPLES:MPI_TYPE_CREATE_RESIZED,

34, 35
EXAMPLES:MPI_TYPE_CREATE_STRUCT,

34, 35

MPI_ABORT, 50
MPI_ADDRESS, 14
MPI_ALLOC_MEM, 11, 12, 14–16, 29
MPI_ALLOC_MEM_CPTR, 11
MPI_ATTR_GET, 57, 58
MPI_ATTR_PUT, 57, 58, 60, 61
MPI_CART_CREATE, 30
MPI_COMM_C2F, 50
MPI_COMM_CREATE_KEYVAL, 56, 57
MPI_COMM_DUP_FN, 12
MPI_COMM_F2C, 50
MPI_COMM_GET_ATTR, 57, 58, 60
MPI_COMM_GET_ATTR(MPI_COMM_WORLD,

MPI_TAG_UB, val, flag, ierr), 60
MPI_COMM_KEYVAL_CREATE, 12
MPI_COMM_NULL_COPY_FN, 4, 56
MPI_COMM_RANK, 12
MPI_COMM_SET_ATTR, 57, 58, 61
MPI_ERRHANDLER_C2F, 51
MPI_ERRHANDLER_F2C, 51
MPI_F_SYNC_REG, 2, 18, 20, 39–43, 45
MPI_F_SYNC_REG(bbbb), 42
MPI_F_SYNC_REG(buf), 19, 41, 42
MPI_F_SYNC_REG(buff), 42
MPI_FILE_C2F, 51
MPI_FILE_F2C, 51
MPI_FILE_READ_ALL_BEGIN, 44
MPI_FILE_READ_ALL_END, 44
MPI_FILE_READ_AT_ALL_BEGIN, 44
MPI_FILE_READ_AT_ALL_END, 44
MPI_FILE_READ_ORDERED_BEGIN, 44
MPI_FILE_READ_ORDERED_END, 44
MPI_FILE_WRITE_ALL_BEGIN, 30, 44
MPI_FILE_WRITE_ALL_END, 44
MPI_FILE_WRITE_AT_ALL_BEGIN, 9, 44

MPI_FILE_WRITE_AT_ALL_END, 44
MPI_FILE_WRITE_ORDERED_BEGIN, 44
MPI_FILE_WRITE_ORDERED_END, 44
MPI_FINALIZE, 50, 52, 53
MPI_FINALIZED, 50
MPI_FREE_MEM, 12
MPI_GET, 42
MPI_GET_ADDRESS, 12, 14, 33, 37, 38,

55, 56
MPI_GET_VERSION, 17
MPI_GROUP_C2F, 51
MPI_GROUP_F2C, 51
MPI_INFO_C2F, 51
MPI_INFO_F2C, 51
MPI_INIT, 49, 50, 52, 53
MPI_INIT_THREAD, 49
MPI_INITIALIZED, 50
MPI_IRECV, 32, 35, 36
MPI_ISEND, 12, 13, 30, 32, 37
MPI_MESSAGE_C2F, 51
MPI_MESSAGE_F2C, 51
MPI_OP_C2F, 51
MPI_OP_CREATE, 12
MPI_OP_F2C, 51
MPI_PACK_EXTERNAL, 24
MPI_PUT, 30, 42
MPI_RECV, 37, 38, 41, 42
MPI_REGISTER_DATAREP, 12
MPI_REQUEST_C2F, 51
MPI_REQUEST_F2C, 51
MPI_SEND, 9–13, 37, 38, 41, 42
MPI_SIZEOF, 2, 26
MPI_SIZEOF(x, size), 25
MPI_STATUS_C2F, 52
MPI_STATUS_C2F08, 53
MPI_STATUS_F082C, 53
MPI_STATUS_F082F(f08_status, f_status),

54
MPI_STATUS_F2C, 52
MPI_STATUS_F2F08(f_status, f08_status),

54
MPI_TYPE_C2F, 50
MPI_TYPE_COMMIT, 51
MPI_TYPE_CREATE_F90_COMPLEX, 2,

23, 24
MPI_TYPE_CREATE_F90_COMPLEX(p, r,

newtype), 22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

INDEX 67

MPI_TYPE_CREATE_F90_INTEGER, 2, 23,
24

MPI_TYPE_CREATE_F90_INTEGER(r, new-
type), 22

MPI_TYPE_CREATE_F90_REAL, 2, 21–24
MPI_TYPE_CREATE_F90_REAL(p, r, new-

type), 21
MPI_TYPE_CREATE_KEYVAL, 57
MPI_TYPE_F2C, 50
MPI_TYPE_GET_ATTR, 57
MPI_TYPE_GET_ENVELOPE, 23
MPI_TYPE_GET_EXTENT, 26, 55
MPI_TYPE_MATCH_SIZE, 2, 26
MPI_TYPE_MATCH_SIZE(typeclass, size,

datatype), 25
MPI_TYPE_SET_ATTR, 57, 61
MPI_UNPACK_EXTERNAL, 24
MPI_WAIT, 30, 31, 36, 37, 41
MPI_WIN_ALLOCATE, 12, 15, 16
MPI_WIN_ALLOCATE_SHARED, 16
MPI_WIN_C2F, 51
MPI_WIN_CREATE_KEYVAL, 57
MPI_WIN_F2C, 51
MPI_WIN_FENCE, 42
MPI_WIN_GET_ATTR, 57, 61
MPI_WIN_GET_ATTR(win, MPI_WIN_BASE,

val, flag, ierror), 61
MPI_WIN_SET_ATTR, 57, 61
MPI_WIN_SHARED_ALLOCATE, 12
MPI_WIN_SHARED_QUERY, 12, 16

PMPI_SEND, 11

SEND, 42
sizeof(), 26

TYPEDEF:MPI_Comm_copy_attr_function,
4

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Language Bindings
	Fortran Support
	Overview
	Fortran Support Through the mpi_f08 Module
	Fortran Support Through the mpi Module
	Fortran Support Through the mpif.h Include File
	Interface Specifications, Linker Names and the Profiling Interface
	MPI for Different Fortran Standard Versions
	Requirements on Fortran Compilers
	Additional Support for Fortran Register-Memory-Synchronization
	Additional Support for Fortran Numeric Intrinsic Types
	Problems With Fortran Bindings for MPI
	Problems Due to Strong Typing
	Problems Due to Data Copying and Sequence Association with Subscript Triplets
	Problems Due to Data Copying and Sequence Association with Vector Subscripts
	Special Constants
	Fortran Derived Types
	Optimization Problems, an Overview
	Problems with Code Movement and Register Optimization
	Temporary Data Movement and Temporary Memory Modification
	Permanent Data Movement
	Comparison with C

	Language Interoperability
	Introduction
	Assumptions
	Initialization
	Transfer of Handles
	Status
	MPI Opaque Objects
	Attributes
	Extra-State
	Constants
	Interlanguage Communication

